冶金方法湿法

合集下载

湿法冶金原理的化学方程式

湿法冶金原理的化学方程式

湿法冶金原理的化学方程式
湿法冶金是一种利用化学反应来提取金属的方法,其原理涉及
多种化学方程式。

以提取铜为例,湿法冶金的原理包括浸出、沉淀、萃取和电解等步骤。

首先,浸出阶段涉及到化学方程式,通常是利用硫酸溶液浸出
含铜矿石,其化学反应方程式为:
CuFeS2 + 4H2SO4 + O2 → CuSO4 + FeSO4 + 2H2O + 2SO2。

在这个方程式中,CuFeS2代表含铜的黄铜矿,H2SO4代表硫酸,O2代表氧气,CuSO4代表硫酸铜,FeSO4代表硫酸铁,SO2代表二氧
化硫。

接下来是沉淀阶段,通过加入铁粉或者氢气还原硫酸铜溶液,
使其中的铜离子还原成固体的金属铜,化学反应方程式为:
CuSO4 + Fe → Cu + FeSO4。

然后是萃取阶段,通过有机溶剂来萃取金属离子,例如利用二
甲基苯酚(萘酚)来萃取铜离子,其化学反应方程式为:
2HNO3 + Cu → Cu(NO3)2 + H2O.
最后是电解阶段,将含铜离子的溶液进行电解,将铜离子还原成固体铜,化学反应方程式为:
Cu2+ + 2e→ Cu.
以上是湿法冶金提取铜的基本化学方程式,该原理在提取其他金属时也会有所不同,但都遵循类似的化学反应原理。

锌的湿法冶金方法概述

锌的湿法冶金方法概述

锌的湿法冶金
锌的湿法冶金是指使用水溶液作为冶炼锌的介质,其主要包括电解法、酸浸法和氨浸法等几种方法。

1.电解法:将锌精矿放入电解槽中,加入电解液(主要成分为硫酸和氯化铵),在外加
电流的作用下,锌离子被还原成金属锌沉积在阴极上。

这种方法具有效率高、能耗低等优点,是目前最主要的生产方式。

2.酸浸法:将锌精矿浸入硫酸水溶液中,利用硫酸的氧化作用将锌离子溶解出来。


种方法适用于高品位的锌矿石,但浸出过程中会产生大量的酸性废水,对环境造成污染。

3.氨浸法:将锌精矿浸入氨水溶液中,通过氨水的配位作用将锌离子溶解出来。

这种
方法对锌矿石的品位要求较低,同时产生的废水为碱性废水,对环境污染较小。

但该方法的操作成本较高。

以上三种方法各有优缺点,应根据不同情况选择合适的冶炼方式。

除了上述的电解法、酸浸法和氨浸法外,还有其他一些较为次要的湿法冶金方法。

4.氯化法:将锌精矿与氯气反应,生成氯化锌,再通过还原反应得到金属锌。

这种方
法主要应用于高品位的锌矿石,但因为氯气对环境的危害性较大,所以逐渐被淘汰。

5.氧化焙烧法:将锌精矿加入到反应炉中,通过高温氧化反应,将锌矿石中的锌转化
为氧化锌,再通过还原反应得到金属锌。

这种方法主要适用于低品位的锌矿石,但因为会产生大量的氧化废气,对环境造成了污染。

总的来说,湿法冶金方法相对于干法冶金方法来说,工艺流程更为复杂,但其适用范围更广,能够处理更多种不同品位的锌矿石,且可以生产出较为高纯度的金属锌。

但湿法冶金方法中会产生大量的废水和废气,需要进行处理和净化,以减少对环境的影响。

湿法冶金的原理,化学方程式

湿法冶金的原理,化学方程式

湿法冶金的原理,化学方程式
湿法冶金是一种利用溶液中的化学反应来提取金属的方法。

它通常用于提取贵金属如金、银等。

其原理是利用化学反应将金属从矿石中溶解出来,然后通过沉淀、电解或其他方法从溶液中提取金属。

以提取金为例,湿法冶金的过程包括破碎矿石、浸出、沉淀、纯化和提炼等步骤。

首先,矿石经过破碎后与氰化钠或氰化钾等物质混合,形成含有金的氰化物溶液。

然后,通过加入氢氧化钠或氢氧化钙来沉淀金,形成金的氢氧化物。

最后,通过加热或电解等方法将金从氢氧化物中提取出来,得到金属金。

化学方程式可以用来描述湿法冶金的化学反应过程。

以提取金为例,可以用以下化学方程式来描述:
1. 溶解金矿石,Au + 2CN+ 2OH→ Au(CN)2+ H2O.
2. 沉淀金氢氧化物,Au(CN)2+ 2OH→ Au(OH)2 + 2CN-。

3. 提取金属金,Au(OH)2 → Au + H2O.
这些化学方程式描述了湿法冶金中金的溶解、沉淀和提取过程。

当然,实际的湿法冶金过程可能会涉及到更多的化学反应和步骤,
具体的化学方程式会根据具体的提取金属和使用的化学试剂而有所
差异。

总的来说,湿法冶金利用化学反应将金属从矿石中提取出来,
通过溶解、沉淀和提取等步骤,最终得到纯金属。

这种方法在提取
贵金属方面具有重要的应用价值。

湿法冶金

湿法冶金

❖ 根据能斯特方程: G ZF
❖ 得: G2098 RT ln Kc
ZF
G2098 RT ln
b B
ZF
ZF
a A
n H
G2098 2.303RT lg
b B
ZF
ZF
a A
n H
0 A/
B
2.303RT ZF
(lg
b B
lg
a A
nPH )
0 A/ B
2.303RT ZF
lg
,气相为
❖ 3.反应的G0 等于生成物的G0 减去反应物G的0
❖ 例:Fe3 3OH Fe(OH)3
G908
G0 Fe (OH )3
[G 0 Fe
3
3G 0 OH
]
694.544 [10.586 3 (157.256)]
212.163(KJ )
❖ 三、影响物质稳定性的主要因素 ❖ 物质在水溶液中的稳定程度主要取决于溶液
PH 2
0.0591PH 0.0295 lg PH2

❖ 2. 在给定条件下,溶液中有电极电位比氢更正的 氧化剂存
❖ 在。以下两反应亦属于有电子得失,也有H+参

加的还 氧原 化反O02 / H应2O 。 2.3Z0F3RT
1
lg
P 4
H
O2

O2ZG+F20948 H2+.3Z0+3FR4Telg=H42 H l2gOPO2
❖ 因此水溶液中当电势低于a线,则水将被 分解析出H2,高于b线则析出O2,只有在a、b 线之间H2O才是稳定的。或者说所有在水溶液 中进行的反应,其氧化还原电势应在a线、b线 之间,否则将导致水分解析出H2或O2。

第湿法冶金原理课件 (一)

第湿法冶金原理课件 (一)

第湿法冶金原理课件 (一)第湿法冶金原理课件湿法冶金是冶金工艺中的一种炼铜、炼锌、炼锡、提金、提银、提钨、提钛等非铁冶金诸多工艺中广泛应用的方法。

在湿法冶金中,混合和矿石粉末熔炼的操作方式不同于操作流程。

1. 湿法冶金的定义湿法冶金是一种将矿石在水溶液的存在下用化学反应方法分离、提取所需金属的过程,比如将铜从含铜硫化物中分离等。

但是湿法冶金一般是一个要短于将矿石直接冶炼的过程。

2. 湿法冶金的原理湿法冶金适用于低品位的金属矿石,是通过溶浸、浮选、融炼和复合等手段,将所需的金属进行提取。

因而湿法冶金原理可通过以下几点进行说明:2.1 溶浸反应利用酸性溶液或氧化剂对含有金、铜、铝等金属的硫化或氧化矿石进行溶浸反应。

2.2 金属分离根据肖特基、法拉第等原理利用电现象将所需金属从已溶解于水中的金属中分离出来。

2.3 浮选金属利用氧化剂将已溶解于水中的金属浮于水面上或离心分离。

2.4 溶剂萃取利用有机溶剂对溶解在水中的金属进行萃取,随后再采用蒸馏技术去除有机溶剂。

3. 湿法冶金的优势和局限在经济和环境方面,湿法冶金具有以下优势:3.1 技术成熟湿法冶金在冶金领域具备着完善的技术体系和规范的操作流程。

3.2 能够利用低品位矿脉湿法冶金技术能够使用低品位矿脉,降低了开采的成本。

3.3 手段多样湿法冶金能够通过种种手段对不同种类的金属进行提取。

3.4 无二氧化硫污染由于运行水作为电解液所使用的二氧化硫源相对于其他冶金方法较少,因此采用湿法冶金不会产生环境污染。

但是湿法冶金也有以下的局限:3.5 历程时间较长湿法冶金所需的传送和处理过程较长,投入资本较大,即便湿法冶金在处理低品位的金属矿脉方面的投资也很高。

3.6 费用高湿法冶金的成本相较于其他冶金方法较高,并且净得率相对较低,即净得块产量(产品中有效的金属量)除以原矿的投资成本最终盈利能力较差。

3.7 难以实施控制湿法冶金过程中的变化较大,比如pH值、温度等参数难以实施有效的控制,因此更难达到良好的稳定状态。

湿法冶金的工艺流程和原理

湿法冶金的工艺流程和原理

湿法冶金的工艺流程和原理嘿,朋友们,今天咱们来聊聊湿法冶金。

这玩意儿听起来挺高大上的,其实呢,就是把金属从矿石里提取出来的一种方法。

就像你从一堆沙子里淘金一样,只不过这里的沙子换成了矿石,金子换成了各种金属。

首先,咱们得从矿石说起。

矿石,就是那些含有金属的石头。

这些石头里,金属是以化合物的形式存在的,不是纯金属。

所以,咱们得想办法把这些金属从化合物里分离出来。

湿法冶金的第一步,就是把矿石磨成粉末。

这就好比你要把豆子磨成豆浆,得先把它磨碎。

磨矿石的机器叫做球磨机,里面有很多铁球,矿石放进去,铁球就在里面滚来滚去,把矿石磨成粉末。

磨好的矿石粉末,下一步就是浸出。

这一步,就是把金属从矿石粉末里提取出来。

这就好比你要把豆浆里的豆渣过滤掉,留下纯豆浆。

浸出的方法有很多,最常见的就是用酸或者碱溶液。

把矿石粉末和酸或者碱溶液混合,金属就会溶解在溶液里,形成金属离子。

浸出后的溶液,里面含有金属离子,但是还有很多杂质。

所以,下一步就是净化。

这一步,就是把金属离子从溶液里分离出来,去除杂质。

这就好比你要把豆浆里的豆渣彻底过滤掉,留下纯豆浆。

净化的方法有很多,比如沉淀法、溶剂萃取法、离子交换法等等。

净化后的溶液,里面就只剩下金属离子了。

最后一步,就是把金属离子还原成纯金属。

这一步,就是把金属从溶液里提取出来,形成纯金属。

这就好比你要把豆浆里的蛋白质提取出来,做成豆腐。

还原的方法有很多,比如电解法、置换法、还原法等等。

好了,这就是湿法冶金的整个工艺流程。

听起来是不是挺复杂的?其实,这个过程就像你做豆浆一样,需要很多步骤,但是每一步都是为了把金属从矿石里提取出来。

湿法冶金的原理,其实就是化学反应。

金属从矿石里提取出来,就是通过化学反应实现的。

比如,浸出的时候,金属和酸或者碱发生反应,形成金属离子。

净化的时候,金属离子和杂质发生反应,形成沉淀或者被萃取出来。

还原的时候,金属离子发生还原反应,形成纯金属。

总的来说,湿法冶金就是通过一系列的化学反应,把金属从矿石里提取出来。

金属冶炼中的湿法冶金工艺

金属冶炼中的湿法冶金工艺
电积
对提取出的金属进行进一步提纯和精炼,以满足不同需求和应用。
精炼
湿法冶金工艺的应用
通过浸出、萃取、电积等工艺,从铜矿石中提取铜。
铜的湿法冶炼
采用浸出、净化、电积等工艺,从锌矿石中提取锌。
锌的湿法冶炼
通过拜耳法、联合法等工艺,从铝土矿中提取铝。
铝的湿法冶炼
钨的湿法冶炼
采用离子交换、萃取、沉淀等工艺ห้องสมุดไป่ตู้从钨矿中提取钨。
离心分离
溶剂萃取法
利用有机溶剂将目标金属离子从水相中萃取至有机相,实现净化和富集。
沉淀法
通过向溶液中加入沉淀剂,使目标金属离子以固体形式沉淀下来,实现净化和富集。
离子交换法
利用离子交换剂将目标金属离子吸附在交换剂上,实现净化和富集。
将净化和富集后的含金属离子的溶液通电,使金属离子在阴极上还原成金属析出。
总结词
湿法冶金工艺在生产过程中会产生大量的废气、废水和固体废物,这些废弃物如果不经过妥善处理,会对环境造成严重污染。例如,废气中的硫化物、氮化物等有害物质会导致酸雨、光化学烟雾等问题;废水中的重金属离子、酸碱物质等会导致水体污染、土壤污染等问题;固体废物则可能占用大量土地,且其中的有害物质可能渗透到土壤和地下水中。
新型反应器
设计新型反应器,优化反应条件,提高生产效率和金属纯度。
VS
将湿法冶金与其他冶金工艺(如火法冶金、电冶金等)相结合,实现优势互补,提高金属提取效率。
优化集成
对各种工艺进行优化集成,形成高效、环保的金属冶炼系统,实现资源的高效利用。
联合工艺
感谢观看
THANKS
详细描述
总结词:为了应对湿法冶金工艺面临的挑战,需要不断进行技术更新和改进。

金属冶炼的湿法冶金技术

金属冶炼的湿法冶金技术
湿法冶金技术还可以用于处理含放射性元素的矿石,提取其中的铀、钚等元素,为核能工业提供原料 。
废旧金属回收
• 湿法冶金技术在废旧金属回收领域中主要用于从废旧金属中提 取有价值的金属,如铜、镍、钴等。通过使用适当的化学试剂 ,可以将这些金属从废旧金属中溶解出来,再通过置换、吸附 或离子交换等方法,将金属从溶液中分离出来。这种方法能够 有效地回收利用废旧金属,减少资源浪费和环境污染。
盐法
利用盐类溶剂溶解矿石,再通 过分离和提纯得到金属的过程 。
氧化还原法
利用氧化剂或还原剂将矿石中 的金属元素进行氧化或还原, 再通过分离和提纯得到金属的
过程。
02
湿法冶金技术的原理
浸出过程
浸出过程是湿法冶金技术的核心环节,通过化学反应将矿石中的有价金属转化为可 溶性的化合物,使其从固体矿物中溶解出来进入溶液中。
稀有金属提取
• 湿法冶金技术在稀有金属提取领域中主要用于从复杂的矿物 原料或二次资源中提取稀有金属,如锆、铪、铌、钽等。这 些金属在高科技产业、航空航天等领域具有广泛的应用价值 。湿法冶金技术通过使用适当的化学试剂,将稀有金属从原 料中溶解出来,再通过分离和纯化,获得高纯度的稀有金属 产品。这种方法能够满足市场对稀有金属的需求,促进高科 技产业的发展。
01
利用微生物资源,实现金属的生物提取和分离,具有环保、低
能耗等优势。
电化学冶金技术
02
利用电化学原理,实现金属的高效提取和分离,具有工艺简单
、操作方便等优点。
溶剂萃取冶金技术
03
利用有机溶剂萃取金属离子,具有分离效果好、金属回收率高
、操作简便等优点。
THANKS
感谢观看
湿法冶金技术的历史与发展
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适温细菌和其他靠吃矿石为生细菌如何氧化酸性金属的 机理不得而知。化学和生物作用将酸性金属氧化变成可溶性 的硫酸盐,不可溶解的贵金属留在残留物中,铁、砷和其他 贱金属,如铜、镍和锌进入溶液。溶液可与残留物分离,在 溶液中和之前,采取传统的加工方式,如溶剂萃取,来回收 贱金属,如铜。残留物中可能存在的金属,经细菌氧化后,
5.细菌的进一步改造和重新构建
诱变育种: 分离获得的菌种,在改造上要选择具以下特征进行育种:
1)具有很高的氧化铁或硫的能力 2)具再生生长能力 3)已有相当程度的变异。诱变后,挑选浸出效率提高,又具
稳定遗传性的突变菌株。
基因工程构建新菌株 筛选合适酶的菌株 → 确定酶基因的位置(基因或质粒)
钩端螺菌属
所有的钩端螺菌属菌都是严格好氧微生物,专一性地通过 氧化溶液中的Fe3+或矿物质中的Fe2+来获取能量。
硫化杆菌属
能量来源是Fe2+、硫磺和其它矿物。该属菌严格好氧且极度嗜 酸。
2.微生物冶金的原理 • 细菌直接作用浸矿 细菌对矿石存在着直接氧化的能力,细菌与矿石之间通过
物理化学接触把金属溶解。从而使金属从矿石中提取出来。
→ 如基因组则提取及纯化基因组染色体 → 将纯化后的基 因片段克隆到大肠杆菌的质粒上 → 检出被转化的大肠杆菌 → 从转化菌中提取质粒,切割质粒上相关的酶基因片段 → 检测所获酶基因片段及由该基因表达的酶的氨基酸顺序 → 构建穿梭质粒,将酶基因导入目的硫杆菌内 → 表达。
6.细菌浸出扩大试验(工业级)
培养温度的初步确定 培养温度根据菌种来源而定。有适合30℃培养的,但中度嗜热
菌的最佳生长温度约50℃,极度嗜热菌最适生长温度60~70℃。 通过初步设定培养温度可以有选择地获得一些适于特定环境浸出 的微生物类群。培养基pH以3~4为宜。还必须通气,避免阳光照 射等以利繁殖。
3.驯化培养
• 驯化培养就是不断提高目的矿样在培养基中的浓度,同时不 断减少其他易于被菌体分解利用的化合物的量,直至完全停 止。
细菌间接作用浸矿
细菌能把金属从矿石中溶浸出来是细菌生命活动中生成 代谢物的间接作用 ,例如细菌作用产生硫酸和硫酸铁,然后 通过硫酸或硫酸铁作为溶剂浸提出矿石中的有用金属 。
3. 浸矿用菌的开发途径
从已有菌 群中开发
基因工程 构建和重组
获得新性状菌 株(工程菌)
接矿小试验 及扩大试验
效果不明显 抛弃 效果明显 菌种保藏
ห้องสมุดไป่ตู้• 但跟国外比还有很大差距,如对浸矿微生物菌种没有监控,对菌 种生理状态等也缺乏全面认识,不能很好指导浸矿。我国还 没 有真正建立起一家细菌浸矿工厂。
1.与微生物冶金有关的菌类
硫杆菌属
包括至少14种,最重要的是氧化亚铁硫杆菌和氧化硫硫杆菌。 硫杆菌属无机化能营养型,细胞为革兰氏阴性,棒状。直径0.3 ~0.8 μm ,长0.9~2.0 μm 。菌体通过单极生鞭毛进行运动,许多 菌体表面还有粘液层。
什么是微生物湿法冶金?
微生物湿法冶金,又称生物浸出技术,通常指矿石的细菌 氧化或生物氧化,由自然界存在的微生物进行。这些微生物 被称作适温细菌,大约有0.5~2.0微米长、0.5微米宽,只能 在显微镜下看到,靠无机物生存,对生命无害。这些细菌靠 黄铁矿、砷黄铁矿和其他金属硫化物如黄铜矿和铜铀云母为
生。
搅拌浸出、堆浸和原位浸出3种方法。
• 驯化培养实际上是定向选择抗性菌体的过程,一开始可能所 需时间比较长,但随着目的菌数的不断增多,驯化培养的周 期会不断缩短。
• 当菌体对某种金属离子具有较强的耐受力,或菌数在一个较 短周期内到达108~109个/ml时,驯化菌样就可用于生物浸 矿试验。
4.浸矿试验
浸矿试验要注意以下因素:
酸度: 细菌氧化过程中,pH的选择非常重要。有菌体培 养 物、处理硫化矿物及氧化工艺造成的影响。 大部分控制pH2~3。
堆矿环境呈酸性,温度60~80 ℃,是理想的采样地 点。这些菌活跃在浸矿液、矿石表面等区域。
2.在合适条件下培养样品
• 培养基的选择
刚采集到的样品一般不直接用于接矿培养基来培养。通常选 择一些易于菌体分解利用的培养物来扩大菌体数量。
由于冶金菌多为自养型细菌,培养基中一般加入硫酸胺或硝 酸钾、磷酸钾、硫酸镁、硫酸铁、硫等作为N及矿物质来源。
通气 : 对好氧嗜酸菌很重要。 当溶解氧下降至0.5~1.0mg/L 时,细菌氧化很 快停止。但堆矿工艺不通气,只在矿堆上撒水。
温度: 一般情况下,细菌最适生长温度并不等于最适浸出温度。 每种细菌都有最适生长温度与浸出温度。 硫化矿物的量:搅拌浸出法矿浆浓度并非越高越好。较高矿浆浓 度下,需氧量高,需提高搅拌速度,对细菌剪切力随之增加,使细 菌难于吸附到矿物表面;同时在同样条件下矿浆浓度越高,相对吸 附到矿体表面的细菌数目就少,从而降低细菌的氧化速率。 其他(如营养物等)
通过氰化物提取。
微生物冶金工业流程
基本情况
• 国外在生物冶金方面的研究起步较早,目前许多国家已实现了铜 矿、油矿、金矿等一系列矿种的微生物工业化浸出生产。此外, 已有大量的现代生物学手段被引入工业化生产,对其中的金矿微 生物进行有效监控。如用免疫荧光标记技术来活体检测菌体的吸 附过程,用蛋白质定量分析来确定菌体对矿石的吸附量等。
• 国内系统研究适于1959年。1972年开始有微生物湿法冶金技术 应用于工业化生产(细菌浸出铜铀半生矿)。1977年完成高硫锰 矿和锡矿的微生物浸出半工业化生产。1994年在陕西进行吨位黄 铁矿类型贫瘠矿的细菌堆浸实验,金回收率提高58%(原矿含金 量只有0.54g/吨);1995年以后有更多的开发应用。
工业化生产
野外采 样开发
不断 驯化培养
接矿小试验 扩大试验
效果不明显 继续驯化 基因改造
效果明显
细致研究
改善浸出条件 提高浸出效率
浸矿微生物开发
• 1.选择适合的采样地点
• 浸矿微生物可能存在的地点: 矿山、矿堆或尾矿中流淌出来的酸性水 矿石本身 热泉水样或矿浆
微生物一般集中选择在低pH条件下,其最适生长温 度分为30℃(中温菌)、45℃(中度嗜热菌)或70~ 80℃(极度嗜热菌)的类群。
相关文档
最新文档