初中数学—图形的旋转
初中数学专题复习:旋转(类型全面)

旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
人教版初中数学九年级上册 图形的旋转(第1课时)课件PPT

旋 转
第二十三章
23、1
旋 转
图形的旋转
第1课时 旋转的概念与性质
学习目标
1 了解旋转的概念,理解图形旋转的三要素“旋转中心、旋转
方向和旋转角”、(重点)
2 理解旋转的性质,并会运用其解决简单的旋转问题、(重点)
游乐园里的摩天轮、旋转木马、海
盗船的运动有什么共同点?
知识讲解
旋转的性质:
旋转前后的图形全等;
(旋转不改变图形的大小和形状)
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角、
知识讲解
例3、 △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的、
已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′
1
1
∴ AO=CO= AB= ×6=3,∴ OD1=DC﹣CO=7﹣3=4,
2
2
在Rt△AD1O中,由勾股定理得,AD1= 2 + 12 = 32 + 42 = 5 、
(2)点B在△D2CE2的内部、
理由如下:设直线CB与D2E2相交于点P,
∵ △D1CE1绕着点C顺时针再旋转30°,∴ ∠PCE2=15°+30°=45°,
3 ,OA ′ = 5 ,旋转角= 44 ° 、
=
13
知识讲解
例4、把一副三角板按如图①放置,其中∠ACB=∠DEC=90°,∠A=45°,
∠D=30°,斜边AB=6 cm,DC=7 cm、把三角板DCE绕点C顺时针旋转
15°得到△D1CE1(如图②)、这时AB与CD1相交于点O、与D1E1相交
于点F、
(1)求线段AD1的长;
初中数学九年级旋转知识点总结

旋转是数学中的一个重要概念,主要是围绕一些中心点将图形绕着一些轴旋转一定的角度。
在初中数学九年级的课程中,学生会接触到旋转的一些基本知识点,下面是对这些知识点进行总结。
1.旋转概念旋转是指将一个平面图形绕一些固定点旋转一定角度,得到一个新的图形的操作。
固定点称为旋转中心,角度称为旋转角度。
2.旋转中心旋转中心是旋转的基准点,围绕该点进行旋转。
可以是图形上的任意一点,也可以是图形外的一点。
3.旋转角度旋转角度是指图形绕旋转中心旋转的角度,用度来表示,常用的旋转角度有90度、180度、270度和360度。
4.旋转方向旋转方向分为顺时针和逆时针两种。
顺时针旋转是指沿着顺时针方向绕旋转中心旋转,逆时针旋转是指沿着逆时针方向绕旋转中心旋转。
5.旋转对称性旋转对称性是指一个图形经过旋转后与原来的位置、大小和形状完全相同。
旋转对称性有以下几种:-旋转对称:图形与它的一些旋转位置完全相同。
-旋转中心对称:图形围绕旋转中心旋转180度后与原来的位置完全相同。
-旋转中心旋转:图形围绕旋转中心旋转90度、180度或270度后与原来的位置完全相同。
6.旋转的性质旋转具有以下几个基本性质:-旋转不改变图形的面积。
-旋转不改变图形的内外角度。
-旋转不改变图形的对称性。
-旋转后的图形与原图形相似。
7.旋转图形的坐标变换当一个图形绕一些旋转中心旋转一定角度后,图形上的每个点都会发生坐标的变化。
对于二维平面上的点P(x,y),绕坐标原点逆时针旋转a度后,点的新坐标为P':- P'(x',y') = (x\cdot\cos{a}-y\cdot\sin{a},x\cdot\sin{a}+y\cdot\cos{a})8.旋转图形的运用旋转图形可以用来验证一些几何性质,解决一些几何问题。
比如可以通过旋转来证明两线段相等,两角相等,以及判断两个图形是否相似等等。
初中数学九年级旋转知识点

初中数学九年级旋转知识点在初中数学九年级,旋转是一个重要的几何变换方法。
通过旋转,我们可以改变图形的位置和方向,从而帮助我们解决一些几何问题。
本文将介绍九年级数学中与旋转相关的知识点,包括旋转的定义、旋转的性质以及旋转的应用。
一、旋转的定义旋转是指将一个图形绕着固定点旋转一定角度,保持图形内部的点与固定点的距离保持不变。
旋转的固定点称为旋转中心,旋转的角度称为旋转角度。
九年级数学中常用的旋转角度有90度、180度和270度。
二、旋转的性质1. 旋转保持图形面积不变:无论如何旋转一个图形,它的面积都保持不变。
2. 旋转保持图形周长不变:无论如何旋转一个图形,它的周长也保持不变。
3. 旋转保持图形对称性不变:如果一个图形是对称的,那么它的旋转图形也将保持对称性。
三、旋转的应用1. 确定旋转后的图形:通过给出旋转中心和旋转角度,我们可以确定旋转后的图形。
例如,给出一个三角形ABC,旋转中心为点O,旋转90度,我们可以通过连接OA、OB和OC来确定旋转后的图形。
2. 解决几何问题:旋转常常被用于解决一些几何问题。
例如,在证明两个图形相似时,可以通过旋转一个图形使其与另一个图形重合,从而得到相似的证明。
3. 观察图形性质:通过观察旋转后的图形,我们可以揭示一些图形的性质。
例如,通过旋转正方形,可以发现旋转后的图形仍然是正方形,这说明正方形具有旋转对称性。
四、注意事项在进行旋转时,需要注意以下几点:1. 旋转角度是逆时针方向旋转:九年级数学中的旋转一般都是逆时针方向旋转,所以在进行旋转时需要根据旋转角度确定旋转方向。
2. 旋转中心的选择:选择旋转中心时,需要注意选择一个能够旋转整个图形的点,使得旋转后的图形可以被完全覆盖。
3. 使用适当的工具:在实际操作中,可以使用直尺、量角器等几何工具来进行旋转操作,以确保旋转的准确性。
总结:初中数学九年级的旋转知识点是我们在几何学习中重要的一部分。
通过学习旋转的定义、性质和应用,我们可以更好地理解和解决与旋转相关的问题。
初中数学课《图形的旋转》教学反思(精简版)

初中数学课《图形的旋转》教学反思初中数学课《图形的旋转》教学反思教学反思薛淑娜对学生学习过程的描述:学生应主动参与特定的教学活动,通过观察、实验、推理等活动发现对象的某些特征。
数学活动是学生经历数学化过程的活动。
它强调学生要经历学习过程。
而新修改的课程标准越来越注重课堂的实效教学反思薛淑娜对学生学习过程的描述:学生应主动参与特定的教学活动,通过观察、实验、推理等活动发现对象的某些特征。
数学活动是学生经历数学化过程的活动。
它强调学生要经历学习过程。
而新修改的课程标准越来越注重课堂的实效性。
从两点加以说明:1.修改后的课程标准:教学活动是师生积极参与、交往互动、共同发展的过程,有效的教学活动是学生学与教师教的统一。
2.原课标:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
修改后的:认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式。
学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
从这两点可以看出课程标准也越来越重视对学生听与教师讲的重要性的强调。
所以我在本节课的设计中也认真的思考:怎样让学生在经历知识生成过程的同时真正的学有所获?本节课我想通过两个方面的达成来达到此要求:1.教师尽量减少语言参与,给学生留出较大的观察和思考的空间。
课上教师语言过多是一直困扰我们的问题,原因是多方面的,有时可能是教学惯性,也有可能是教师怕学生理解不透彻,还有可能是教师怕耽误课上宝贵的时间,而包揽了整个课堂。
原因虽有很多,但尽量减少语言参与,给学生留出足够的语言和思维空间是我们一直的追求。
教师应该在哪些环节上有语言上的参与呢?①需点的(点拨)②需过的(过渡)③需引的(引导)④需激的(激励)。
在本节课备课的环节中,我认真分析了本节课的知识特点属概念和性质类教学。
比演绎推理类教学要简单的多。
另外进行了学情分析,确定:多放手让学生去做是完全有可能的。
初中数学旋转题型

初中数学旋转题型
在初中数学中,旋转是一个重要的概念和技能。
掌握旋转的原理和方法,可以帮助我们解决很多几何问题。
下面介绍一些初中数学中常见的旋转题型。
1. 点的旋转
在平面直角坐标系中,给定一个点P(x, y),绕原点旋转θ度,求旋转后的点坐标。
解法:设旋转后的点为P'(x', y'),则有:
x' = x*cosθ - y*sinθ
y' = x*sinθ + y*cosθ
其中,cosθ和sinθ可以通过三角函数表查找。
2. 图形的旋转
在平面直角坐标系中,给定一个图形,绕原点旋转θ度,求旋转后的图形。
解法:将图形上的每个点都按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的图形。
3. 对称图形的旋转
在平面直角坐标系中,给定一个对称图形,绕对称轴旋转θ度,求旋转后的图形。
解法:对称轴不变,将图形上的每个点都按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的图形。
4. 正方形的旋转
在平面直角坐标系中,给定一个正方形,绕其中心旋转θ度,求旋转后的正方形。
解法:连接正方形的对角线,得到两个对称轴,分别将正方形上的每个点按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的正方形。
5. 圆的旋转
在平面直角坐标系中,给定一个圆,绕其中心旋转θ度,求旋转后的圆。
解法:圆上每个点到圆心的距离不变,因此可以先求出旋转后的圆心坐标,然后将圆心和圆上的每个点都按照点的旋转方法进行旋转,就得到了旋转后的圆。
以上就是初中数学中常见的旋转题型,希望能对大家的学习有所帮助。
初中数学旋转的知识点

《初中数学旋转知识点全解析》在初中数学的学习中,旋转是一个重要的几何变换概念。
它不仅在数学知识体系中占据着关键地位,也为我们解决各种几何问题提供了有力的工具。
一、旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
这个定点称为旋转中心,转动的角称为旋转角。
如果图形上的点 P 经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
例如,时钟的指针围绕时钟的中心旋转,风车的叶片绕着中心轴旋转等,都是生活中常见的旋转现象。
二、旋转的性质1. 对应点到旋转中心的距离相等。
即旋转前后,图形上任意一点到旋转中心的距离始终保持不变。
例如,在一个正三角形绕其中心旋转的过程中,三角形的三个顶点到旋转中心的距离始终相等。
2. 对应点与旋转中心所连线段的夹角等于旋转角。
旋转过程中,对应点与旋转中心连接形成的线段之间的夹角大小与旋转角相等。
比如,一个矩形绕其对角线的交点旋转一定角度,任意一对对应点与旋转中心所连线段的夹角都等于旋转角。
3. 旋转前后的图形全等。
经过旋转,图形的形状和大小都不会发生改变。
无论旋转角度是多少,旋转后的图形与旋转前的图形完全相同。
例如,一个圆绕其圆心旋转任意角度,得到的图形仍然是与原来一样的圆。
三、旋转的三要素1. 旋转中心旋转中心是图形旋转时所围绕的那个定点。
它决定了图形旋转的位置。
不同的旋转中心会导致图形的旋转结果不同。
2. 旋转方向旋转方向分为顺时针和逆时针两种。
明确旋转方向对于准确描述和进行旋转操作至关重要。
3. 旋转角度旋转角度是指图形绕旋转中心转动的角度大小。
旋转角度的不同会使图形的位置发生不同程度的变化。
四、旋转的应用1. 解决几何问题在证明三角形全等、相似等问题时,常常可以通过旋转图形,使分散的条件集中起来,从而找到解题的思路。
例如,对于两个有公共顶点的等腰三角形,可以通过旋转其中一个三角形,使它们的对应边重合,进而证明全等。
2. 设计图案利用旋转可以设计出各种美丽的图案。
九年级上册旋转数学知识点

九年级上册旋转数学知识点九年级上册旋转数学知识点1.旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。
重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。
2.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等3.作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素。
确定旋转中心的关键是看图形在旋转过程中某一点是“动〞还是“不动〞,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角。
作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.知识点二、中心对称与中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.中心对称的两条基本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.3.中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.初中数学重要考点数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(三要素)②任何一个有理数都可以用数轴上的一个点来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转
1.如图,如果把钟表的指针看做三角形OAB,它绕O 点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么旋转角是什么
(2)经过旋转,点A、B分别移动到什么位置
2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.
(1)这个图案可以看做是哪个“基本图案”通过旋转得到的
(2)请画出旋转中心和旋转角
(3)指出,经过旋转,点A、B、C、D分别移到什么位置
3.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.
,△ABF是△ADE 4.如图,四边形ABCD是边长为1的正方形,且DE=1
4
的旋转图形.
(1)旋转中心是哪一点
(2)旋转了多少度
(3)AF的长度是多少
(4)如果连结EF,那么△AEF是怎样的三角形
5.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.
参考答案
1. 解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
2. (1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)
•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、
点G、点H.
(3)旋转前、后的图形全等.
3. 分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.
解:(1)连结CD
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD
(3)在射线CE上截取CB′=CB
则B′即为所求的B的对应点.
(4)连结DB′
则△DB′C就是△ABC绕C点旋转后的图形.
4. 分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE是完全重合的,所以它是直角三角形.
解:(1)旋转中心是A点.
(2)∵△ABF是由△ADE旋转而成的
∴B是D的对应点∴∠DAB=90°就是旋转角
(3)∵AD=1,DE=1
4∴AE=221
1()
4
=17
4
∵对应点到旋转中心的距离相等且F是E的对应点∴AF=17
4(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF是等腰直角三角形.
5. 分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.
解:∵四边形ABCD、四边形AKLM是正方形
∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°
∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM。