统计学9.相关与回归
统计学相关与回归分析试题

相关与回归分析试题一、单项选择题1、自然界和人类社会中的诸多关系基本上可归纳为两种类型,这就是( )A.函数关系和相关关系B.因果关系和非因果关系C.随机关系和非随机关系D.简单关系和复杂关系 2、相关关系是指变量间的( )A.严格的函数关系B.简单关系和复杂关系C.严格的依存关系D.不严格的依存关系3.具有相关关系的两个变量的关系是()A.一个变量的取值不能由另一个变量唯一确定B.一个变量的取值由另一个变量唯一决定C.变量之间的一种确定性的数量关系D.变量之间存在的一种函数关系 4.当变量x 的值增加时,变量y 的值也随之增加,那么变量x 和变量y 之间存在着()。
A.正相关系 B.负相关系C.不确定关系D.非线性相关关系 5.下列相关系数的取值不正确的是()A. 0B. -0.96C.0.87D.1.066.两个变量之间的线性相关关系越不密切,相关系数r 值就越接近() A.-1 B.+1D.0 D.大于-1或小于+1 7.相关系数的值越接近-1,表明两个变量间()A.正线性相关关系越弱B.负线性相关关系越强C.负线性相关关系越弱D.正线性相关关系越强 8.回归分析中,被解释的变量称为()A.自变量B.因变量C.随机变量D.非随机变量 9.根据最小二乘法配合线性回归方程是使()A.最小)(=∑2y ˆ-y B.最小)(=∑y ˆ-yC.最小)(=∑2y -y D.最小)(=∑y -y10.回归方程 1.5x 123yˆ+=中回归系数的意思是,当自变量每增加一个单位时,因变量()A.增加1.5个单位B.平均增加1.5个单位C.增加123个单位D.平均增加123个单位11.若回归系数b 大于0,表明回归直线是上升的,此时相关系数r 的值() A.一定大于0 B.一定小于0 C.等于0 D.无法判断 12.在回归分析中,F 检验主要用来检验()A.相关系数的显著性B.回归系数的显著性C.线性关系的显著性D.估计标准误差的显著性13.在多元线性回归方程k k 22110x b x b x b b yˆ++++= 中,回归系数i b 表示() A.自变量i x 每变动一个单位因变量y 的平均变动量 B.自变量i x 每变动一个单位因变量y 的变动总量C.在其他条件不变的情况下,自变量i x 每变动一个单位因变量y 的平均变动量D.在其他条件不变的情况下,自变量i x 每变动一个单位因变量y 的变动总量 14.在多元线性回归分析中,t 检验用来检验()A.总体线性关系的显著性B.各回归系数的显著性C.样本线性关系的显著性D.各相关系数的显著性15.在多元线性回归分析中,如果F 检验表明线性关系显著,则意味着() A.至少有一个自变量与因变量之间的线性关系是显著的 B.所有自变量与因变量之间的线性关系都是显著的C.至少有一个自变量与因变量之间的线性关系是不显著的D.所有自变量与因变量之间的线性关系都是不显著的16.在多元线性回归分析中,若自变量i x 对因变量y 的影响很小,则回归系数i b () A.可能接近0 B.可能接近1 C.可能小于0 D.可能大于1 二、多项选择题1.下列关系中属于相关关系的是()A.家庭收入与消费支出的关系B.商品价格与商品需求量的关系C.速度不变,路程与时间的关系D.肥胖程度和死亡率的关系E.利率变动与居民储蓄存款额的关系2.判断变量之间相关关系形态及密切程度的方法有() A.回归方程 B.散点图 C.相关系数 D.回归系数3.回归方程可用于()A.根据自变量预测因变量B.根据给定因变量推算自变量C.确定两个变量之间的相关程度D.解释自变量与因变量的数量依存关系 4.在回归分析中要建立有意义的线性回归方程,应该满足的条件是() A.现象间存在着显著性的线性相关关系 B.相关系数必须等于1C.在两个变量中须确定自变量和因变量D.相关数列的项数应足够多 5.对于简单线性回归方程的回归系数b ,下列说法中正确的是()A.b 是回归直线的斜率B.b 的绝对值介于0~1之间C.b 接近0表明自变量对因变量的影响不大D.b 与r 有相同的符号三、计算题1、为探讨某产品的耗电量x (单位:度)与日产量y (单位:件)的相关关系,随机抽选了10个企业,经计算得到:,,,,要求:①计算相关系数;②建立直线回归方程,解释回归系数的经济意义。
统计学第9章 相关分析和回归分析

回归模型的类型
回归模型
一元回归
线性回归
10 - 28
多元回归
线性回归 非线性回归
非线性回归
统计学
STATISTICS (第二版)
一元线性回归模型
10 - 29
统计学
STATISTICS (第二版)
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系
被预测或被解释的变量称为因变量 (dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变 量称为自变量 (independent variable) ,用 x 表示
统计学
STATISTICS (第二版)
3.相关分析主要是描述两个变量之间线性关 系的密切程度;回归分析不仅可以揭示 变量 x 对变量 y 的影响大小,还可以由 回归方程进行预测和控制 4.回归系数与相关系数的符号是一样的,但 是回归系数是有单位的,相关系数是没 有单位的。
10 - 27
统计学
STATISTICS (第二版)
10 - 19
统计学
STATISTICS (第二版)
相关系数的经验解释
1. 2. 3. 4.
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
10 - 20
10 - 6
统计学
STATISTICS (第二版)
函数关系
(几个例子)
某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)
相关和回归分析

第八章 相关与回归分析第一节 相关关系及其种类一、相关分析的意义相关与回归分析,是统计学中最有适应价值的一个分支,在科学研究、社会经济管理等若干方面,都能够发挥重要的作用。
世界是普遍联系的有机整体,现象之间存在着相关依存、相互制约的关系,每一个现象的运动、变化和发展,与其周围的现象相互联系和相互影响着。
比如,销售规模扩大了,相应地会降低产品的销售成本,价格的上升,将导致供应量的增加,但与此同时,可能会压制消费水平,适当地增加土地耕作深度、施肥量,有利于农作物产出的提高,投入的学习时间与取得的成绩一般呈现出正向关系,数学课学得好则计算机也会学得好一些,身材高的父母,他们的子女的身高也相对较高,降低储蓄的利率,可能会引起存款量的减少,一个人接受教育的程度,与他的劳动效率有着千丝万缕的联系,工作年限长的工人,由于动作熟练和经验丰富,因此比起新手其生产效率将高出一截等等。
通过对现象间的这些关系的研究,可以帮助人们找到现象变化内在与外在的影响因素及其发生机制,进而达到认识规律的目的。
如果能够准确地把握住这些规律,借以估计、预测和控制,就可以对决策活动和科学研究给予帮助与指导。
相关关系又叫统计关系,它是指现象之间客观存在的相互依存关系。
这种关系,只是大致的、从总体上而言的,并不是说某一现象的每一变化,都一定会引起与它有联系的另一现象的同样的变化,换句话,就是一个现象发生了变化,另一现象可能暂时无反应,或者该现象没变,但另一现象却有些变化,可是如果从更大的截面上观察,似乎又存在着某些必然的联系。
比如,生产规模与经济效益有联系,但有可能的情况是,规模小的企业不见得单位产品成本就一定比规模大的低甚至低多少,父母身材高的小孩他的身高不会肯定就比父母身材矮的小孩的身材高。
那么,说规模和效益、高身材与低身材父母的遗传关系的规律,不过是从普遍的事实中概括出来的。
统计学是研究客观现象数量方面的,从数量角度研究现象间的相互依存关系,需要把它们转化为变量的描述和处理。
西南财经大学向蓉美、王青华《统计学》第三版——第9章:相关与回归分析

相关关系(例)
▪ 单位成本(y)与产量(x) 的关系…… ▪ 父亲身高(y)与子女身高(x)之间的关系 ▪ 社会商品零售额(y)与居民可支配收入(x)之
间的关系 ▪ 收入 (y)与文化程度(x)之间的关系 ▪ 商品销售量(y)与广告费支出(x1)、价格(x2)
之间的关系 ▪ 需要PPT配套视频,请加VX:1033604968
简单相关系数(简单线性相关系数) 对两个变量(定量变量)之间线性相关程 度的度量。 也称直线相关系数, 常简称相关系数。
等级相关(秩相关)
对两个定序变量之间线性相关程度的度量。
9--19
相关系数(Pearson’s
correlation coefficient)
有总体相关系数与样本相关系数之分:
• 总体相关系数ρ
变量间的相互依存关系有 两种类型:
——函数关系 ——相关关系
9--3
函数关系
1. 指变量之间确定性的数量依存关系;
2. 当变量 x 取某个数值时,
y 有确定的值与之对应, 则称 y 是 x 的函数 y = f
(x)
• 通常将作为变动原因的变 量 x 称为自变量,作为变
Y
动结果的变量y 称为因变量
将两个变量成对的观测数据在坐标图上标示出来, 变量 x 的值为横坐标,另一个变量 y 对应的数值 为纵坐标,一对观测值对应一个点,样本数据若 有n 对观测值,则相应的 n 个点形成的图形就称为 散点图。
如果一个是解释变量另一个是被解释变量,则通常 将解释变量放在横轴。
有助于分析者判断相关的有无、方向、形态、密 切程度。
9--5
相关关系
1. 指变量间数量上不确定的依存关系;
2. 一个变量的取值不能唯一地由 另一个变量来确定。当变量 x 取某个值时,与之相关的 变量 y 的取值可能有若干个 (按某种规律在一定范围内
统计学原理 相关与回归分析

粮食产量y 随机的
降雨量
土质
种子 耕作技术
X3
X4 X5
可 控 的
(二)相关的种类
完全相关 函数关系是相关关系的一种特例。 不完全相关 相关分析的基本内容
度相 关 密 切 程
y 完全由x的数值唯一确定,函数关系。
不相关
相 关 的 性 质
x、y值变化各自独立,变量间没有相关
关系
正相关 x 负相关
y
x
x2 26896 28900 31329 24336 25600 27556
y2
62540 73695 420857
70225 83521 463382
55696 65025 382469
合计
2114
从表上可以看出,随着个人收入的增加,消 费支出有明显的增长趋势,二者存在一定的依存 关系。正相关关系。 2、相关图(散点图) 直角坐标系第一象限
1、相关表
单变量分组相关表
分组相关表
双变量分组相关表
先做定性分析——相关资料排序——列在一张表上
个人收入x 164 170 177 182 192 207 225 243 265 289
消费支出y 156 160 166 170 178 188 202 218 236 255 1929
xy 25584 27200 29382
yc = 25.32 + 0.7927 300 = 263.13万元
(三)估计标准误差Syx P197
Syx = Syx =
=
(y - yc) 2 n-2 y2 - a y -b xy n-2
382469 -25.32 1929 -0.7927 420857
10 - 2
医学统计学-直线相关与回归

病例号
血糖
胰岛素
i
YI
Xi
1
12.21
15.2
2
14.54
16.7
3
12.27
11.9
4
12.04
14.0
5
7.88
19.8
6
11.10
16.2
7
10.43
17.0
8
13.32
10.3
9
19.59
5.9
10
9.05
18.7
i
Yi
Xi
11
6.44
25.1
12
9.49
16.4
13
10.16
22.0
14
8.38
年龄-身高; 肺活量-体重; 药物剂量-动物死亡率
双变量资料
统计资料
单变量资料:X 双变量资料:X,Y 多变量资料:X1,X2,…,XK,Y
3
相关与回归是研究两个或多个变量之间相互关系的
一种分析方法。
数据结构
编号
Y
1
2
n
X1
……
XK
4
概念:
回归:是研究变量之间在数量上依存关系的一种 方法。
相关:是研究随机变量之间相互联系密切程度和 方向的方法。
23.1
5
7.88
19.8
15
8.49
23.2
6
11.10
16.2
16
7.71
25.0
7
10.43
17.0
17
11.38
16.8
8
13.32
10.3
18
10.82
第9章 相关与回归分析

第九章相关与回归分析习题一、单选题1.下面的函数关系是()。
A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于()。
A、+1B、0C、0.5D、+1或-13.回归系数和相关系数的符号是一致的,其符号均可用来判断现象()。
A、线性相关还是非线性相关B、正相关还是负相关C、完全相关还是不完全相关D、单相关还是复相关4.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为( )。
A、8B、0.32C、2D、12.55.下面现象间的关系属于相关关系的是()。
A、圆的周长和它的半径之间的关系B、价格不变条件下,商品销售额与销售量之间的关系C、家庭收入愈多,其消费支出也有增长的趋势D、正方形面积和它的边长之间的关系6.下列关系中,属于正相关关系的是()。
A、合理限度内,施肥量和平均单产量之间的关系B、产品产量与单位产品成本之间的关系C、商品的流通费用与销售利润之间的关系D、流通费用率与商品销售量之间的关系7.相关分析是研究()。
A、变量之间的数量关系B、变量之间的变动关系C、变量之间的相互关系的密切程度D、变量之间的因果关系8.在回归直线y=a+bx中,b<0,则x与y之间的相关系数( )。
A、r=0B、r=lC、0<r<1D、-1<r<09.在回归直线y=a+bx中,b表示()。
A、当x增加一个单位时,y增加a的数量B、当y增加一个单位时,x增加b的数量C、当x增加一个单位时,y的平均增加量D、当y增加一个单位时,x的平均增加量10.当相关系数r=0时,表明()。
A、现象之间完全无关B、相关程度较小C、现象之间完全相关D、无直线相关关系11.下列现象相关密切程度最高的是()。
A、某商店的职工人数与商品销售额之间的相关系数0.87B、流通费用水平与利润率之间的相关关系为-0.94C、商品销售额与利润率之间的相关系数为0.51D、商品销售额与流通费用水平的相关系数为-0.8112.估计标准误差是反映()。
统计学第六章 研究变量的关系:相关与回归

• 例:
第三节 简单线性回归:推断
• 前两节从数据分析的角度对数据之间关系 的模式进行搜寻,如果将可观察的数据作 为总体的一个样本,搜寻到的模式就是总 体变量关系的一种估计,由此需要统计推 断方法来估计与检验此种关系。 • 推断问题开始于对总体模型的假定,本节 仅限于一个解释变量与一个响应变量线性 关系的研究,这被称为简单线性回归或一 元线性回归。
• 最小二乘回归特点:
第二节 数值型数据之间关系研究:相关与回归
• 可决系数R-squared: 表示在响应变量的总变动中能被回归方程解 释的百分比,用来描述直线关系的强度。 在一元线性回归中,其值等于相关系数的 平方。
第二节 数值型数据之间关系研究:相关与回归
• 残差(residuals):
回归线是解释变量与响应变量之间线性关系整体模 式的数学模型,研究与整体模式的偏差也是很重 要的。
第二节 数值型数据之间关系研究:相关与回归
残差图:
第二节 数值型数据之间关系研究:相关与回归
• 回归中的异常观测点和有影响的观测点
第二节 数值型数据之间关系研究:相关与回归
• 小心使用相关与回归方法:
第二节 数值型数据之间关系研究:相关与回归
• 例:
第二节 数值型数据之间关系研究:相关与回归
第一节 分类数据之间关系研究:列联表
模型2:检验独立性
Model for Examining Independence in Two-Way Tables Select an SRS of size n from a population. Measure two categorical variables for each individual. The null hypothesis is that the row and column variables are independent. The alternative hypothesis is that the row and column variables are dependent. CASE7.2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容
❖9.1.变量的相关关系(掌握) ❖9.2.一元线性回归(掌握) ❖9.3.一元线性回归的拓展(理解) ❖9.4.回归方程的应用(理解)
9.1 变量的相关关系
一、变量间的关系 二、相关关系的度量和检验 三、相关分析和回归分析
变量间的关系
【课本P230-234为回归】
数值变量间的关系
1.函数关系
2 ). H 0 : P 0 .1; H 1 : P 0 .1; 0.08 0.1
Z 0 .1 * 0 .9 / 1 0 0 2 / 3 Z 0.05 1 .6 4 5 不差
推断统计学 要点回顾
统计推断的过程
总体均值、 比例、方差
总体
样 描述
本
统计
样本统计量
(样本均值、比 例、方差)
在实际中往往通过相关关系表现出来。 ❖在研究相关关系时,又常常要使用函数关
系的形式来表现,以便找到相关关系的一 般数量表现形式。
Y = f ( X ) + ε =f ( X , ε ) ( ε为随机变量)
❖相关关系不一定是因果关系!。
相关关系的分类
4.:相关关系的分类
1)、按相关关系涉及因素(变量)的多少分为: ▪ 单相关——一元相关,指两个变量间的相关关系 (如商品销售额与商品价格的关系); ▪ 复相关——多元相关,指三个(或以上)变量间 的相关关系(如商品销售额与居民收入、商品价格 等的关系)。
不能拒绝原假设
第七章 课后习题 参考答案
❖课本P211习题7.15。大样本成数的检验,
用Z检验。1)双侧检验,2)右侧检验
1). H 0 : P 0 .1; H 1 : P 0 .1; 0.08 0.1
Z 0 .1 * 0 .9 / 1 0 0 2 / 3 Z 0.05 /2 1 .9 6 一样好
总体(变量)间的关系
❖客观现象普遍联系和相互依存,变量间存在 一定的关系。
▪ 变量:数值变量;分类变量。
❖独立性检验:分析分类变量之间是的关系;
(P203-204)
❖方差分析: 数值变量与(一个或多个)分 类变量之间的关系;(第八章)
❖相关与回归分析:主要处理数值变量之间的 关系。(第九章)
第九章 相关与回归
X / n X
s/ n
~ N(0,1) ~ N(0,1)
t
X s/
n
~
t(n
1)
▪ 区间估计:
ZZ/2
XZ/2
nXZ/2
n
t t/2 Xt/2
snXt/2
s n
▪ 参数检验:左侧、右侧、双侧检验拒绝域 0
Z检 验 : ZZ;ZZ;ZZ/2 t检 验 : tt;tt;tt/2
推断统计要点回顾
统计研究的过程
统计设计[2]
实际问题
收集数据[2,5] (取得数据)
整理数据[2] (处理数据)
解释数据 (结果说明)
分析数据 (研究数据)
统计研究的主要内容
研究数据
单位
总体
部分
总体
总体
之间 关系
总体 时间 变化
综合指标 [3]
推断统计 [4,5,6,7,8]
相关与 指数[10]、 回归[9] 时间序列[11]
它反映现象之间存在着严格的依存关系,在这种 关系中,对于某一变量的每一个数值,都有另一 个变量的确定值与之相对应,并且这种关系可以 用一个数学表达式反映出来。
y = f (x)
例: ▪ 某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)
▪ 圆的面积(S)与半径之间的关系可表示为S = R2
方法B:男孩:(父亲身高+母亲身高 ×1.08)÷2 女孩:(父亲身高×0.923+母亲身高)÷2
(我国系数:男1.11~1.12,女0.948~0.980之间 )
2、足长身高预测法
成年的身高=13岁时足长×7 运用这种方法来预测孩子未来的身高更为简单方便,误差不
超过3厘米
数值变量间的关系
3.相关关系与函数关系的联系 ❖ 由于有观察或测量误差等原因,函数关系
统计学9.相关与回归
第七章 课后习题 参考答案
❖ 课本P211习题7.12。是正态总体均值的检验,小 样本而且方差未知,用t检验。需要计算样本均值 和样本方差
X 1 2 4 .9 3 7ຫໍສະໝຸດ 5 ;S 2 1 .7 1 4 7
H 0 : 120; H 1 : 120; t 12214..79134775/112600.9095t0.005 2.947
推断统计要点回顾
❖点估计:矩估计法(替代) ❖估计量优良的评判标准:
▪ 无偏性 ▪ 有效性 ▪ 一致性
❖区间估计:估计总体参数的置信区间
❖假设检验:
▪ 参数检验:对总体参数的检验 ▪ 非参数检验:对分布形式等的检验
推断统计要点回顾
❖总体均值的推断
▪ 样本均值 抽样分布: X ~ N(,
2
/
n)
Z Z
推断统计要点回顾
❖总体方差的推断
▪ 正态总体样本方差抽样分布:
2
(n1)s2
2
~2(n1)
▪ 区间估计:
1 2 /22 2 /2 (n 2 1 )s22(n 21 )s2
/2
1 /2
▪ 参数检验:左侧、右侧、双侧检验拒绝域 0 2 检 验 : 2 2 1 ;2 2 ;2 2 1 / 2 o r 2 2 / 2
例如:孩子的身高与父母身高的关系;成人升高与体重的关系;收入与
学历的关系;GDP与投资的关系,粮食亩产量与施肥量、降雨量、 温度之间的关系……
Y = f ( X ) + ε =f ( X , ε ) ( ε为随机变量)
数值变量间的关系
2.相关关系
例:身高的预测方法:
1、父母身高预测方法
方法A:男孩:(母亲身高+父亲身高+13厘米)/2 女孩:(父亲身高+母亲身高-13厘米)/2
❖总体成数的推断
▪
样本成数(大样 本)抽样分布:
p~N (P ,P (1 P )) Z p P ~N (0 ,1 )
n
P (1 P )/n
▪ 区间估计:根号下Pp
Z Z /2 p Z /2
p ( 1 n p ) p Z /2
p ( 1 p ) n
▪ 参数检验:左侧、右侧、双侧检验拒绝域 P P0 Z 检 验 : Z Z ;Z Z ;Z Z /2
▪ 企业的原材料消耗额(y)与产量(x1) 、单位产量消耗(x2) 、 原材料价格(x3)之间的关系可表示为y = x1 x2 x3
数值变量间的关系
2.相关关系
它反映现象之间确实存在的,但关系数值不固定 的相互依存关系。这一概念表明: (1)相关关系是指现象之间确实存在数量上的相互 依存关系。 (2)现象之间数量依存关系的具体关系值不是固定 的。