正比例的图像

合集下载

第16讲 正比例函数的图像及性质(解析版)

第16讲 正比例函数的图像及性质(解析版)

第16讲 正比例函数的图像及性质【学习目标】正比例函数的图像及性质是八年级数学上学期第三章第二节内容,主要对正比例函数的图像及性质进行讲解,重点是对正比例函数的性质的理解,难点是正比例函数表达式的归纳总结.通过这节课的学习为我们后期学习正比例函数的应用提供依据.【基础知识】一、正比例函数的图像1.一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是经过,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =;2.图像画法:列表、描点、连线. 二、正比例函数的性质:(1) 当0k >时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值 也随着逐渐增大.(2) 当0k <时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值则随着逐渐减小.【考点剖析】考点一:正比例函数的图像例1.已知正比例函数2y x =.列表:取自变量x 的一些值,根据正比例函数的解析式,填写下表.x…… 1.5- -1 0.5- 0 0.5 1 1.5 2 …… 2y x =……-4-3 -2-1 01 234……描点:分别以所取x 的值和相应函数值作为点的横坐标和纵坐标,描出相应点. 连线:用光滑的曲线(包括直线)把描出的点按照横坐标由小到大的顺序连接. 【难度】★【解析】考查正比例函数图像的画法.例2.在同一直角坐标平面内画出下列函数图像.(1)4y x =;(2)14y x =;(3)32y x =-;(4)32y x =.【难度】★【解析】考查正比例函数图像的画法.例3.函数15y x =-的图像是经过点________、________的________.【难度】★【答案】,,一条直线.【解析】考查正比例函数图像的特点.例4.(1)正比例函数y kx =的图像是____________,它一定经过点_______和_______.(2)函数y kx =的图像经过点1(5)2A -,,写出函数解析式,并说明函数图像经过哪几个象限? 【难度】★★【答案】(1)一条直线,,; (2)x y 10-=,经过二、四象限.【解析】考查正比例函数解析式的解法和图像性质.例5.已知2y -与x 成正比例,且x =2时,y =4; (1)求y 与x 之间的函数关系式;(2)若点(m ,2m +7),在这个函数的图象上,求m 的值.【难度】★★【答案】(1)2+=x y ;(2)-5.【解析】(1)设kx y =-2,将x =2时,y =4代入其中可得:1=k ,则2+=x y ;(2)点(m ,2m +7)在这个函数的图象上,则272+=+m m ,解得:5-=m .【总结】本题一方面考查利用待定系数法求函数解析式,另一方面考查根据函数解析式求函数值或者是自变量的值.例6.已知正比例函数图像上的一点到x 轴距离与到y 轴距离之比为1:2,则此正比例函数的解析式是________________. 【难度】★★【答案】x y 21=或x y 21-=. 【解析】由题意可知,该点的横坐标的绝对值是纵坐标绝对值的两倍,然后再求解析式. 【总结】注意距离需要分正负.例7.如果正比例函数的图像经过点(24)-,,说明是否在这个图像上,并作出该正比例函数的图像.【难度】★★【答案】x y 2-=,不在这个图像上,图像略.【解析】设正比例函数解析式为,将点(24)-,代入,可得:2k =-,所以该正 比例函数的解析式为x y 2-=.当4x =-时,,所以点不在该函数的图像上.【总结】考查正比例函数解析式的求法、图像的画法.例8.已知函数2(2)21y t x t =-+-,当t 为何值时该函数图像经过原点?此时函数解析式是什么?【难度】★★ 【答案】21=t ;x y 47-=.【解析】函数2(2)21y t x t =-+-经过原点,则012=-t ,解得:21=t .代入表达式中可得,函数解析式为:x y 47-=.【总结】本题主要考查正比例函数的概念.例9.一个正比例函数的图像经过点A ,B ,求a 的值.【难度】★★【答案】41-=a .【解析】设正比例函数的解析式为, ∵图像经过点A , ∴3=-k ,则3-=k . ∵图像经过点B ,∴a a 31=--,则41-=a .【总结】本题一方面考查利用待定系数法求正比例函数的解析式,另一方面考查利用解析式求图像上点的坐标.考点二:正比例函数的性质:例1.直线经过一、三象限,则m ________.【难度】★【答案】2<m .【解析】考查的图像经过一、三象限.例2.已知正比例函数的图像经过第二、四象限,求k 的取值范围.【难度】★ 【答案】25>k . 【解析】由题意,可得:520k -<,解得:25>k . 【总结】考查的图像经过二、四象限.例3.若正比例函数(3)y m x =-,y 的值随x 的增大而减小,则m _______.【难度】★ 【答案】3<m .【解析】由题意,可得:30m -<,解得:3m <. 【总结】考查的图像性质y 的值随x 的增大而减小.例4.(3)y x π=-图像经过_______象限,y 的值随x 的值增大而_______.【难度】★【答案】一、三;增大.【解析】由题意,可得:30π->,所以图像过一、三象限. 【总结】考查的图像y 的值随x 的增大而增大.例5.当a =_______时,2(3)(9)y a x a =-+-是正比例函数,图像经过第______象限.【难度】★ 【答案】;二、四.【解析】因为正比例函数,所以,解得:3a =-,所以图像过二、四象限. 【总结】考查的图像y 的值随x 的增大而减小.例6.已知点(11,x y ),(22,x y )在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 【难度】★★ 【答案】2<k .【解析】当12x x >时,12y y <,可以理解成y 的值随x 的增大而减小. 【总结】本题主要考查正比例函数图像的性质.例7.已知正比例函数25(3)mm y m x +-=+,那么它的图像经过____________象限.【难度】★★ 【答案】一、三.【解析】∵152=-+m m ,∴3-=m 或2=m ,又∵03≠+m ,∴2=m .∴图像过一、三 象限. 【总结】本题主要考查正比例函数的概念及图像的性质.例8.正比例函数2mmy mx +=的图像经过第一、三象限,求m 的值.【难度】★★ 【答案】.【解析】由题意,可得:12=+m m ,则251±-=m . ∵正比例函数2m my mx +=的图像经过第一、三象限,∴0>m ,∴215-=m . 【总结】本题主要考查正比例函数的概念及图像的性质.例9.已知0mn <,那么函数my x n =经过______象限,y 的值随x 的值增大而______.【难度】★★【答案】二、四;减小.【解析】∵0mn <,∴,所以图像过二、四象限,并且y 的值随x 的值增大而减小. 【总结】考查的图像y 的值随x 的增大而减小.例10.函数()2(2)2k y k x -=-是正比例函数,且y 的值随着x 的减小而增大,求k 的值.【难度】★★ 【答案】1.【解析】由题意,可得:()122=-k ,则3=k 或1=k .∵y 的值随着x 的减小而增大,∴02<-k ,∴1=k .【总结】本题主要考查正比例函数的概念及图像的性质.例11.如果正比例函数y kx =的自变量增加5,函数值减少2,那么当3x =时,y =_______.【难度】★★【答案】56-.【解析】∵正比例函数y kx =的自变量增加5,函数值减少2,∴52-=k∴正比例函数解析式为x y 52-=.∴当3x =时,26355y =-⨯=-.【总结】本题主要考查正比例函数的概念及图像的性质.例12.(1)已知y ax =是经过第二、四象限的直线,且3a +在实数范围内有意义, 求a 的取值范围;(2)已知函数的值随自变量x 的值增大而增大,且函数的值随自变量x 的增大而减小,求m 的取值范围. 【难度】★★【答案】(1)03<≤-a ;(2)3121-<<-m . 【解析】(1)由题意,可得:,所以;(2)由题意,可得:,解得:,所以1123m -<<-.【总结】考查正比例函数图像的性质.例13.正比例函数()41y m x =-的图像经过点11(,)A x y 和22(,)B x y ,且该图像经过第 二、四象限.(1)求m 的取值范围;(2)当12x x >时,比较1y 与2y 的大小,并说明理由.【难度】★★ 【答案】(1)41<m ;(2)1y 2y <,正比例函数y 的值随着x 的增大而减小. 【解析】考查正比例函数图像的变化情况.【过关检测】一、填空题1.(2020·上海市静安区实验中学八年级课时练习)已知正比例函数的图像过点(3,2),(a ,6),则a 的值=_________. 【答案】9【分析】先根据点(3,2)坐标求出正比例函数解析式,再把点(a ,6)代入解析式,即可求解. 【详解】解:设正比例函数解析式为y=kx (k≠0), ∵正比例函数的图像过点(3,2), ∴3k=2, ∴k=23, ∴正比例函数解析式是23y x =,再把x=a ,y=6代入23y x =得, 263a =, 解得a =9. 故答案为:9【点睛】本题考查了待定系数法求正比例函数和已知正比例函数求字母的值,根据待定系数法求出正比例函数解析式是解题关键.2.(2019·上海凉城第二中学八年级月考)若正比例函数()231my m x-=-的图像经过一、三象限,则函数解析式是_______________. 【答案】y x =.【分析】根据正比例函数的定义和图像所经过的象限即可求出m ,从而求出函数解析式. 【详解】解:∵正比例函数()231m y m x -=-的图像经过一、三象限,∴解得:2m =∴函数解析式是y x =. 故答案为:y x =.【点睛】此题考查的是求正比例函数的解析式,掌握正比例函数的定义和图像所经过的象限与比例系数的关系是解决此题的关键.3.(2020·上海市位育实验学校八年级月考)已知直线y kx =(k≠0),当直线与x 轴正半轴夹角为30º时,直线解析式是____________ 【答案】y=x.【分析】依题意作图,根据含30°的直角三角形的特点设AO=2a ,得到故求出A 点坐标,再代入解析式即可求解.【详解】如图,AB ⊥x 轴,设OA=2a,∵∠AOB=30°,∴=∴A ,a )代入y kx =,即∴直线解析式是y=x 故填:y=x.【点睛】此题主要考查正比例函数的解析式,解题的关键是熟知含30°的直角三角形的性质. 4.(2019·上海市西南模范中学)正比例函数3y x =-的图像经过_____象限. 【答案】二、四.【分析】由题目可知,该正比例函数过原点,且系数为负数,故函数图象过二、四象限. 【详解】由题意,y=-3x , 可知函数过二、四象限. 故答案为:二、四.【点睛】此题主要考查了正比例函数的性质,同学们应熟练掌握根据函数式判断出函数图象的位置,这是考查重点内容之一.5.(2017·上海市青浦区金泽中学八年级期末)如果正比例函数的图象经过点(2,12),则正比例函数解析式是_____. 【答案】y =14x 【分析】设正比例函数解析式为y =kx (k ≠0),把经过的点的坐标代入解析式求出k 值,即可得解. 【详解】设正比例函数的解析式是y =kx (k ≠0),把(2,12)代入就得到:2k =12, 解得:k =14,因而这个函数的解析式为:y =14x .故答案为:y =14x.【点睛】本题考查待定系数法求正比例函数解析式.6.(2020·上海八年级期中)已知正比例函数y kx =的图像经过点()4,3A -,则函数图像经过______象限. 【答案】第二、第四【分析】将点()4,3A -代入正比例函数解析式中,即可求出k 的值,再根据k 的符号即可得出结论. 【详解】解:将点()4,3A -代入y kx =中,得解得:34k =-∴正比例函数34y x =- ∵34-<0 ∴函数图像经过第二、第四象限 故答案为:第二、第四.【点睛】本题考查的是正比例函数的性质,熟知利用待定系数法求正比例函数解析式是解答此题的关键. 7.(2020·上海八年级期中)已知正比例函数()21y a x =-,如果y 的值随着x 的值增大而减小,则a 的取值范围是______. 【答案】12a <【分析】根据正比例函数的性质可知关于a 的不等式,解出即可.【详解】解:∵正比例函数()21y a x =-,y 的值随着x 的值增大而减小, ∴21a -<0 解得:12a <故答案为:12a <. 【点睛】此题考查的是正比例函数图象的性质,掌握正比例函数图象的性质:它是经过原点的一条直线.当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小,是解题关键.8.(2020·上海市静安区实验中学八年级课时练习)正比例函数()21y k x =+的图像经过第二、四象限,则k ______. 【答案】12k <-【分析】根据正比例函数经过象限,得到关于k 的不等式,解不等式即可求解. 【详解】解:∵正比例函数()21y k x =+的图像经过第二、四象限, ∴210k +<, 解得12k <-.故答案为:12k <-【点睛】本题考查了正比例函数的图象与性质,在正比例函数中当k>0时,图象经过第一、三象限,当k<0时,图象经过第二、四象限.9.(2020·上海市静安区实验中学八年级课时练习)函数y =的图像过点(b ,则b=________. 【答案】-1【分析】把点(b b .【详解】解:∵函数y =的图像过点(b ∴, ∴b=-1. 故答案为:-1【点睛】本题考查了已知正比例函数解析式求点的坐标的参数,把点的坐标代入函数解析式是解题关键. 10.(2018·上海八年级期末)如果正比例函数y kx =的图像经过点(2-,6),那么y 随x 的增大而______. 【答案】减小【分析】求出k 的值,根据k 的符号确定正比例函数的增减性. 【详解】解:∵正比例函数y kx =的图像经过点(2-,6), ∴-2k =6, ∴k =-3,∴y 随x 的增大而减小. 故答案为:减小【点睛】本题考查了求正比例函数和正比例函数的性质,求出正比例系数k 的值是解题关键. 二、解答题11.(2020·上海市静安区实验中学八年级课时练习)已知y 与x 成正比例,且当x=12时, 求(1)y 关于x 的函数解析式? (2)当y=-2时,x 的值?【答案】(1)y =;(2)2x =.【分析】(1)首先设反比例函数解析式为y =k x(k≠0),再把x=12时,y=k 的值,进(2)把y=-2代入函数解析式即可.【详解】(1)设,把x=12,12k ,∴k =故y 关于x 的函数解析式是y =.(2)把y=-2代入解析式y =中,得-2=,解得2x =-. 【点睛】此题主要考查了待定系数法求正比例函数解析式,关键是掌握正比例函数解析式的形式. 12.(2020·上海市静安区实验中学八年级课时练习)正比例函数的图像经过点P (-3,2)和Q (-m ,m-1 ),求m 的值.【答案】3【分析】图象经过点,即点的坐标符合图象解析式,据此解题,先用待定系数法设正比例函数解析式,再代入点坐标求m 的值即可.【详解】设正比例函数解析式为(0)y kx k =≠,因为正比例函数的图像过点P (-3,2),将点P 坐标代入得,23y x =- 再代入点Q 坐标,即把x=-m ,y=m-1代入23y x =-左右两边, 解得m=3.【点睛】本题考查正比例函数图象性质、待定系数法等知识,是典型考点,难度较易,掌握相关知识是解题关键.13.(2020·上海市格致初级中学八年级期中)已知点(2,﹣4)在正比例函数y =kx 的图象上. (1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.【答案】(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y=kx的图象上∴-4=2k解得:k=-2;(2)结合(1)的结论得:正比例函数的解析式为y=-2x∵点(-1,m)在函数y=-2x的图象上∴当x=-1时,m=-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.14.(2018·上海)已知y与x﹣1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)当x=﹣1时,求y的值;(3)当﹣3<y<5时,求x的取值范围.【答案】(1)y=2x﹣2;(2)﹣4;(3)x的取值范围是﹣12<x<72.【分析】(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;(2)利用(1)中关系式求出自变量为-1时对应的函数值即可;(3)先求出函数值是-3和5时的自变量x的值,x的取值范围也就求出了.【详解】(1)设y=k(x﹣1),把x=3,y=4代入得(3﹣1)k=4,解得k=2,所以y=2(x﹣1),即y=2x﹣2;(2)当x=﹣1时,y=2×(﹣1)﹣2=﹣4;(3)当y=﹣3时,x﹣2=﹣3,解得:x=﹣12,当y=5时,2x﹣2=5,解得:x=72,∴x的取值范围是﹣12<x<72.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.15.(2020·上海市静安区实验中学八年级课时练习)正比例函数23my mx -=的图象经过第一、三象限,求m 的值.【答案】2【分析】根据正比例函数的定义和图象经过象限得到关于m 的方程和m 的取值范围,即可求解.【详解】解:∵函数函数23my mx -=为正比例函数, ∴231m -=,∴2m =±,又∵正比例函数的图像经过第一、三象限,∴m >0,∴2m =【点睛】本题考查了正比例函数的定义和性质,注意正比例函数是一次函数,自变量次数为1,熟知正比例函数图象与性质是解题关键.。

正比例函数图像及性质

正比例函数图像及性质

y 3x
3
yx
2 1
y

1 3
x
y 4
3
2
1
-4 -3 -2 -1
O1 2 3 4
-1
x
-2
-3
-4
-4 -3 -2 -1 O 1
-1
-2
-3
-4
234
xy


1 3
x
y x
y 3x
正比例函数y kx(k 0)的性质:
(1) 当k>0时,直线 y=kx的图像经过一、三象限,从 左向右呈上升趋势,自变量x逐渐增大时,y的值也随着 逐渐增大。
2、正比例函数y=kx的图象的画法;
3、正比例函数的性质:
1)图象都经过原点; 2)当k>0时,它的图象从左向右上升,经过第一、二象限,y随x 的增大而增大;
当k<0时,它的图象从左向右下降,经过第二、四象限,y随x 的增大而减少。
4、正比例函数y=kx在实际应用中、自变量、函数值受实际 条件的制约。
x
01
x
1
2
如何画正比例函数的图像?
因为正比例函数的图像是一条直线,而 两点确定一条直线
画正比例函数的图像时,只需描两 个点,然后过这两个点画一条直线
结论
正比例函数图象经过点(0,0)和点(1,k)
y y= kx (k>0)
y
y= kx
k
(k<0)
01
x
01
x
k
在同一坐标系内画下列正比例函数的图像:
y 3x y x y 1 x y
y 3x
3
3
yx
当k>0
时,它的图

正比例函数与反比例函数(含图像)

正比例函数与反比例函数(含图像)

1、正比例函数
定义:
形如y=kx(k为常数,且k≠0),我们就说y是x的正比例函数。

正比例函数是特殊的一次函数【一次函数的一般形式为y=kx+b(b不为0,k为常数)】。

图象作法:
a.列表(待定系数)
b.描点
c.连线
正比例函数的图象是一条直线,一定经过坐标的原点;
当k>0时,图象经过一、三象限,y随x的增大而增大;
当k<0时,图象经过二、四象限,y随x的增大而减小。

具体图像:
正比例函数y=x的函数图像
2、反比例函数
定义:
形如y=k/x(k为常数且k≠0)的函数,我们就说y是x的反比例函数。

(自变量x的取值范围是不等于0的一切实数)
图像作法:
反比例函数的图像为双曲线。

它可以无限地接近坐标轴,但永不相交;
当k>0时,图象在一、三象限,在每个象限内,y随x的增大而减小;
当k<0时,图象在二、四象限,在每个象限内,y随x的增大而增大。

具体图像:
反比例函数y=1/x的函数图像。

正比例函数图像及性质

正比例函数图像及性质

布置作业
A组:必做题:函数y=-5x的图象在第 象限
内,经过点(0, )与点(1, ),y随
着x的增大而

选做题:P89页,练习(1),(2)任选一 B组:写出正比例函数的性质
1.正比例函数的定义
一般地,形如 y=kx(k为常数,k≠0)的函 数,叫做正比例函数,其中k叫做比例系数
2.画函数图象的步骤
列表、描点、连线
例1 画出下列正比例函数的图象 (1)y=2x;(2)y=-2x
动动

x … -2 -1 0 1 2 …
y … -4 -2 0 2 4 …
y=2x
例1 画出下列正比例函数的图象 (1)y=2x;(2)y=-2x
y 1 x 3
o1
时,它的
x
图像经过 第二、四
像限
思考3 对一般正比例函数y =kx,当k<0时,
它的图象形状是什么?位置怎样?
当k<0时图像是经过原点的一条直线,且经
过二、四象限
思考4 在k<0 的情况下,图象是左低右高
还是左高右低?
当k<0时图像从左到右下降趋势,即y随着x
的增大而减小
口答:看谁反应快
y 3x y x y 1 x y
y 3x
3
3
yx
当k>0
时,它的图
1
y1x
像 经过第
一、三象
o1
3
3xΒιβλιοθήκη 限思考1 对一般正比例函数y =kx,当k>0时,
它的图象形状是什么?位置怎样?
当k>0时图像是经过原点的一条直线,且经
过一、三象限
思考2 在k>0 的情况下,图象是左低右高
还是左高右低?

正比例函数图像及性质

正比例函数图像及性质

正比例函数的图像和性质知识精要1.正比例函数的图像一般地,正比例函数y=kx(k是常数,k0≠)的图像是经过原点O(0,0)和点M(1,k)的一条直线。

我们把正比例函数y=kx的图像叫做直线y=kx。

2.正比例函数性质精讲名题例1.若函数y=(m-1)3-mx是正比例函数,则m= ,函数的图像经过象限。

解:m=4,图像经过第一、三象限。

例2.已知y-1与2x成正比例,当x=-1时,y=5,求y与x的函数解析式。

解:∵y-1与2x成正比例∴设y-1=k·2x (k0≠)把x=-1,y=5代入,得k=-2,∴y-1=-2·2x∴y=-4x+1例3.已知y与x的正比例函数,且当x=6时y=-2(1)求出这个函数的解析式;(2)在直角坐标平面内画出这个函数的图像;(3)如果点P (a ,4)在这个函数的图像上,求a 的值;(4)试问,点A (-6,2)关于原点对称的点B 是否也在这个图像上?解:(1) 设y=k ·x (k 0≠)当x=6时,y=-2∴-2=6k ∴31-=k ∴这个函数的解析式为x y 31-=(2) x y 31-=的定义域是一切实数,图像如图所示:(3)如果点P (a ,4)在这个函数的图像上,∴a 314-=,∴a=-12(4)点A (-6,2)关于原点对称的点B 的坐标(6,-2),当x=6时,y=2631-=⨯- 因此,点B 也在直线x y 31-=上例4.已知点(11,y x ),(22,y x )在正比例函数y=(k-2)x 的图像上,当21x x >时,21y y <,那么k 的取值范围是多少?解:由题意,得函数y 随x 的值增大而减小,∴k-2<0,∴k<2例5.(1)已知y=ax 是经过第二、四象限的直线,且3+a 在实数范围内有意义,求a 的取值范围。

(2)已知函数y=(2m+1)x 的值随自变量x 的值增大而增大,且函数y=(3m+1)x 的值随自变量x 的增大而减小,求m 的取值范围。

正比例的意义和图象

正比例的意义和图象

金融问题
总结词
在金融领域,投资与回报、成本与售价等也存在正比关系。
详细描述
在正常情况下,投入的资金越多,获得的回报也越高;成本 越高,商品的售价也往往越高。
05 总结与回顾
重点回顾
01
02
03
正比例的定义
正比例是指两个量之间的 比值保持不变,即y/x=k (k为常数)。
正比例的特性
当两个量成正比例时,它 们的图像是一条直线,并 且该直线经过原点。
03 正比例的图象表示
正比例函数图象的画法
01
02
03
04
确定坐标系
首先确定x轴和y轴,并选择 适当的单位长度。
确定函数表达式
根据正比例函数的定义,函数 表达式为y=kx(k为常数)。
描点
在坐标系中选取一些x值,代 入函数表达式计算y值,并描
出对应的点。
连线
用平滑的曲线将这些点连接起 来,形成正比例函数的图象。
不断练习
通过大量的练习题和实际应用 ,加深对正比例的理解和掌握

THANKS FOR WATCHING
感谢您的观看
正比例的应用
在现实生活中,许多现象 都可以用正比例关系来描 述,例如速度、时间和距 离之间的关系。
学习建议
深入理解概念
对于正比例的概念,需要深入 理解其定义和特性,并能够熟
练运用。
掌握图像表示
正比例的图像是一条直线,需 要掌握如何绘制和解释这种图 像。
实际应用
尝试将正比例的概念应用到现 实生活中,例如计算速度、时 间和距离等。
正比例的性质
总结词
正比例的性质包括对称性、等距性和比例性。
详细描述
正比例的图像是过原点的直线,因此具有对称性;在图像上,任意两点P1(x1,y1)和P2(x2,y2)之间的线段的中点 M的坐标为((x1+x2)/2,(y1+y2)/2),这个中点M必然在图像上,这体现了等距性;任意两点P1(x1,y1)和 P2(x2,y2)之间的线段与x轴的夹角θ的正切值等于y1/x1与y2/x2的平均值,这体现了比例性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小玲用计算机打字的数量和所用的时间如下表:
(3)根据图像判断,小玲5分钟可以打多少个字? 打750个字需要多少分钟?
答:小玲5分钟可 以打250个字,打 750个字需要15分 钟。
G F B E D C A
比较这两张正比例图像,你发现有什么相同的地方?
练习十
∵ ∴他们骑车行的路程和时间成正比例。
2020
正比例的图像
苏教版六年级下册 数学
授课教师:江苏省无锡师范学校附属小学教育集团 华唯一 指导教师:江苏省无锡师范学校附属小学教育集团 钱阳辉
一辆汽车在公路上行驶,行驶时间和路程如下表:
时间 / 时 路程 / 千米
1 2 3 4 5 6 7… 80 160 240 320 400 480 560 …
(1)小玲打字的数量和所用的时间成正比例吗?为什么?
100 50 2

200 50 4

300 50 6
……

打字的数量 所用的 时间
每分钟打字的数量(一
定)
∴ 小玲打字的数量和所用的时间成正比例。
小玲用计算机打字的数量和所用的时间如下表:
(2)在下图中描出打字数量和时间所对应的点,再按顺序连接起来。
《正比例的图像》(自主练习)
一、判断
(1)一个正数和它的倒数成正比例。 (2)正方体的棱长和与棱长成正比例。 (3)三角形的面积一定,底和高成正比例。 (4)正方体的表面积与底面积成正比例。 (5)小圆周长和大圆周长之比为1 :2,那么它们的面积比为1 :4。
() () () () ()
二、选择
回顾总结
观察 研究方法 描点
连线
正比例的图说像 说你特有点 什是反么一映条两收直种线量获的?正比例关系
根据图像判断估计
小知识
法国数学家 ——笛卡尔
数学史上最伟大的转折点 就是笛卡尔的变数。
他用运动的观点,把变数 引入数学,建立坐标系,把 点与数相对应,用方程来解 决图形问题。
数学在思想方法上发生了 根本的转折,由常量数学进 入了变量数学时期。
路程 / 千米 80 160 240 320 400 480 560 …
G F B
E D C A
一辆汽车在公路上行驶,行驶时间和路程如下表:
时间 / 时
1 2 3 4 5 6 7…
路程 / 千米 80 160 240 320 400 480 560 …
连线
G F B
E D C A
比较这几张图,你有什么发现?
描点
G
F B
E D C A
点A表示1小时行80千米
点B表示5小时行400千米 点C表示2小时行160千米 点D表示3小时行240千米 点E表示4小时行320千米 点F表示6小时行480千米 点G表示7小时行560千米
一辆汽车在公路上行驶,行驶时间和路程如下表:
时间 / 时
1 2 3 4 5 6 7…
思考: (1)根据图像判断, 这辆汽车 2.5 小时行驶多少千米?
(2)行驶440 千米需要多少小时?
G F B E D C A
回顾思考一下: (1)这条直线表示的图像是怎样画成的?
描点 连线
(2)在图像上任意找出一点,说说它表 示的意义。
(3)这个图像表示了路程和时间的什么 关系?为什么?
小玲用计算机打字的数量和所用的时间如下表:
A 成正比例 B 不成比例
4、圆的面积和( )成正比例。
A 半径
B 直径
C 半径的平方
5、如果5x=y,那么x与y成( )比例
A 成正比例 B 不成比例ຫໍສະໝຸດ A 30分钟行8千米C
B 60分钟行16千米
C 90分钟行24千米
B
A
因为图像呈一条直线,所以他们骑车行的路程和时间成正比例。
练习十
练习十
练习十
练习十
(2)物体的质量与弹簧伸长的长度成正比例吗?为什么?
因为图像呈一条直线,所以物体的质量与弹簧伸长的长度成正比例。
练习十
小挑战
A
B
C
三辆车,分别在限速大桥、 公路、高速公路上行驶, 你知道究竟是哪辆车行驶 在高速公路上吗?
80 1
=
160
80,
=
240
80,
=
80
2
3
……
路程 时间
=速度(一定)
路程和时间是两种相关联的量,时间变化,路程也随着变化, 路程和相对应时间的比的比值(也就是速度)总是一定的。
一辆汽车在公路上行驶,行驶时间和路程如下表:
时间 / 时 路程 / 千米
1 2 3 4 5 6 7… 80 160 240 320 400 480 560 …
1、钟表上的一种零件长为3mm,画在图纸上长为12cm,这幅图纸的比例尺是( )。
A 40:1
B 1:40
C 4:1
2、一个圆柱和一个圆锥的体积相等,圆柱和圆锥底面积的比是3:1,高的比是( )。
A 1:3
B 3:1
C 1:9
3、大豆的出油率一定,大豆的出油量(千克数)与大豆的重量(千克数)( )。
一辆汽车在公路上行驶,行驶时间和路程如下表:
时间 / 时 路程 / 千米
1 2 3 4 5 6 7… 80 160 240 320 400 480 560 …
描点 连线
G F B E D C A
G F B E D C A
一看:看准对应的点 二画:纵轴或者横轴的垂线 三读:读出正确数据
这辆汽车2.5小时行驶200千米; 行驶440千米需要5.5小时。
相关文档
最新文档