SNP单核苷酸多态性检测方法

合集下载

生物样本的单核苷酸多态性(SNP)位点检测--高通量飞行时间质谱法(MALDI-TOF MS)

生物样本的单核苷酸多态性(SNP)位点检测--高通量飞行时间质谱法(MALDI-TOF MS)

生物样本的单核苷酸多态性(SNP)位点检测--高通量飞行时间质谱法(MALDI-TOF MS)1 适用范围本标准为检验实验室进行药物靶点基因的检测提供技术指导。

本标准适用的样本包括:全血标本、石蜡包埋组织、干血片、口腔拭子、唾液等。

2 规范性引用文件下列文件对于本文件的应用是必不可少的,凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

药物代谢酶和药物作用靶点基因检测技术指南(试行),(2015年国家卫生和计划生育委员会医政医管局国卫医医护便函〔2015〕240号)个体化医学检测微阵列基因芯片技术规范(国家卫生计生委办公厅,国卫办医函〔2017〕1190号)感染性疾病相关个体化医学分子检测技术指南(国家卫生计生委办公厅,国卫办医函〔2017〕1190号)农业部1782号公告-12-2012 转基因生物及其产品食用安全检测蛋白质氨基酸序列飞行时间质谱分析方法卫生部办公厅关于印发《医疗机构临床基因扩增检验实验室管理办法》的通知(卫办医政发〔2010〕194号)3、术语和定义3.1 rs和ss体系SNP由美国国立生物技术信息中心(national center for biotechnologyinformation,NCBI)建立、dbSNP数据库制定的SNP命名体系,rs体系的SNP代表已获得官方认可和推荐的参考SNP(reference SNP),ss体系的SNP代表用户新递交但尚未得到认可的SNP(submitted SNP)。

3.2 单核苷酸多态性(SNP)是指由单个核苷酸-A、T、C或G的改变而引起的DNA序列的改变,造成包括人类在内的物种之间染色体基因组的多样性。

3.3 等位基因(allele)一般是指位于一对同源染色体相同位置上控制某一性状的不同形态的一对基因。

若成对的等位基因中两个成员完全相同,则该个体对此性状来说是纯合子。

最新单核苷酸多态性SNP概念优点检测方法意义应用课件PPT

最新单核苷酸多态性SNP概念优点检测方法意义应用课件PPT
方法; ㈢食物中毒和其他食源性疾病的预防
方法;第二章 资 格•(四)食品加工经营场所环境、设 备以及食品采购、储存、加工、检 验、运输过程的卫生要求;
• (五)从业人员个人卫生要;(六) 其他与健康相关的食品卫生知识。
第二章 资 格
• 第七条 食品卫生管理员培训分为食 品生产加工、餐饮、食品流通三类。
3.目前几种筛选检测未知或已知SNP多态性的方法 :
1.基于杂交的方法 2.基于酶或PCR的方法 3.以构象为基础的方法 4.直接测序的方法 5.其他方法
3、目前几种筛选检测未知或已知SNP多态性的方

1.基于杂交的方法
• 原理:短的核苷酸探针在和互补的目的片段进行杂 交时,完全匹配和有错配两种情况下,根据杂交 复合体稳定性的不同而将SNP 位点检测出来。 (差异越大,检测的特异性就越好)
2)变性梯度凝胶电泳DGGE
3)单链构象多态性SSCP
4)变性高效液相色谱DHPLC
4直接测序:
DNA测序是最容易实施但目前费用仍较昂贵 SNPs检测方法。通过不同个体的同一基因或DNA 片段
的直接测序,然后进行简单的序列比对,SNP变异检 出率可达100%。采用直接测序法,还可以直观地得 到突变碱基的类型及其准确位置等SNPs分型的参 数。随着DNA测序自动化和测序成本的降低,直接测 序法将越来越多地用于未知SNPs的发掘和已SNPs 的检测与分型。
2).基因芯片技术(Gene chips)
基因芯片是在一微小的基片(硅片、玻片、塑料片等)表面集成了 大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大 信息量的筛选和检测分析
3).探针技术(TaqMan)
4).动态等位基因特异杂交(Dynamic allelespecific hybridization,DASH)

SNP分析原理方法及其应用

SNP分析原理方法及其应用

SNP分析原理方法及其应用SNP(Single Nucleotide Polymorphism,单核苷酸多态性)是指在基因组中的一些位置上,不同个体之间存在的碱基差异,是常见的遗传变异形式之一、SNP分析是研究SNP在基因与表型之间关联性的方法,用于揭示SNP与遗传疾病、药物反应性等的关系。

本文将介绍SNP分析的原理、方法以及其应用。

一、SNP分析原理1.SNP检测技术:SNP检测技术包括基于DNA芯片的方法、测序技术、实时荧光PCR等。

其中,高通量测序技术是最常用的SNP检测方法,可以同时检测数千个SNP位点。

2.数据分析与统计学方法:通过SNP检测技术获得的数据可以分为基因型数据(AA、AB、BB等)和等位基因频率数据(A频率、B频率等)。

统计学方法常用的有卡方检验、线性回归、逻辑回归等,用于研究SNP与表型之间的关联性。

二、SNP分析方法1.关联分析:关联分析是研究SNP与表型之间关联性的基本方法。

常用的关联分析方法包括单基因型分析、单SNP分析、基因组关联分析(GWAS)等。

单基因型分析主要是比较单个SNP的基因型在表型不同组之间的差异;单SNP分析是研究单个SNP是否与表型相关;GWAS是通过分析数万个SNP与表型之间的关系来找到与表型相关的SNP。

2. 基因型预测:基因型预测是根据已有的SNP数据,通过统计模型来预测个体的基因型。

常用的基因型预测方法有HapMap、PLINK等。

3. 功能注释:功能注释是研究SNP位点的生物学功能,揭示SNP与基因功能、表达水平之间的关系。

常用的功能注释工具有Ensembl、RegulomeDB等。

三、SNP分析应用1.遗传疾病研究:SNP与遗传疾病之间存在着密切的关系。

通过SNP分析可以发现与遗传疾病相关的SNP位点,进一步揭示疾病发生的机制,为疾病的诊断、治疗提供依据。

2.药物反应性研究:个体对药物的反应性往往存在较大差异,这与个体的遗传背景密切相关。

SNP单核苷酸多态性检测技术

SNP单核苷酸多态性检测技术

1定义:单核苷酸多态性( single nucleotide polymorphism,SNP),主若是指在基因组水平上由单个核苷酸的变异所惹起的 DNA 序列多态性。

它是人类可遗传的变异中最常有的一种。

占全部已知多态性的 90%以上。

SNP 在人类基因组中宽泛存在,平均每 500~1000 个碱基对中就有1 个,预计其总数可达 300 万个甚至更多。

SNP 所表现的多态性只波及到单个碱基的变异,这类变异可由单个碱基的变换(transition)或颠换(transversion)所惹起,也可由碱基的插入或缺失所致。

但平时所说的 SNP 其实不包括后两种情况。

单核苷酸多态性( SNP)是指在基因组上单个核苷酸的变异,包括置换、颠换、缺失和插入。

所谓变换是指同型碱基之间的变换 ,如嘌呤与嘌呤 ( G2A) 、嘧啶与嘧啶( T2C) 间的取代 ;所谓颠换是指发生在嘌呤与嘧啶 (A2T 、A2C 、C2G、G2T) 之间的取代。

从理论上来看每一个 SNP 位点都能够有 4 种不同的变异形式,但实质上发生的只有两种,即变换和颠换,两者之比为 2:1。

SNP 在 CG 序列上出现最为频频,而且多是C 变换为 T ,原因是 CG 中的 C 常为甲基化的,自觉地脱氨后即成为胸腺嘧啶。

一般而言, SNP 是指变异频率大于 1 %的单核苷酸变异。

在人类基因组中大体每 1000 个碱基就有一个 SNP ,人类基因组上的 SNP 总量大体是 3 ×106个。

依照排列组合原理 ,SNP 一共能够有 6 种取代情况,即 A/ G、 A/ T 、A/ C 、C/ G、C/ T 和 G/ T ,但事实上 ,变换的发生频率占多数 ,而且是 C2T 变换为主 ,其原因是 Cp G 的 C 是甲基化的 ,简单自觉脱氨基形成胸腺嘧啶T , Cp G 也所以变为突变热点。

理论上讲,SNP 既可能是二等位多态性,也可能是3 个或4 个等位多态性,但实质上,后两者特别少见,几乎能够忽略。

snp鉴定流程

snp鉴定流程

SNP(单核苷酸多态性)鉴定是研究基因变异和关联分析的重要方法。

SNP鉴定流程主要包括以下几个步骤:
1. 样本收集与DNA提取:从生物体(如血液、组织、细胞等)中提取DNA。

2. 基因组DNA定量:使用spectrophotometer(分光光度计)或其他相关设备,对提取的DNA进行定量,确保实验过程中的DNA浓度一致。

3. 基因组DNA酶切:根据实验需求,选择合适的酶切酶,对DNA进行酶切。

酶切后的DNA片段长度分布均匀,便于后续实验操作。

4. 连接酶切片段与荧光标记的适配子:将酶切后的DNA片段与荧光标记的适配子连接,形成复合物。

该步骤为后续杂交和检测打下基础。

5. 杂交与洗涤:将制备好的复合物在特定设备(如杂交箱)中进行杂交,然后洗涤去除未结合的荧光标记适配子。

6. 荧光检测与数据分析:将洗涤后的样本置于荧光检测设备中,检测荧光信号。

根据荧光信号的强弱,分析样本中的SNP位点。

7. 结果验证与分析:对检测结果进行验证,如PCR扩增、测序等。

进一步分析SNP位点的分布、频率等,探讨其与疾病、表型等因素之间的关系。

实验三单核苷酸多态性的检测

实验三单核苷酸多态性的检测

单核苷酸多态性的检测原理
总结词
单核苷酸多态性的检测原理基于分子生物学技术,如DNA测序、PCR扩增和电泳分离 等技术。
详细描述
目前检测单核苷酸多态性的方法有多种,主要包括直接测序法、单链构象多态性分析、 限制性片段长度多态性分析、变性梯度凝胶电泳和基于PCR的引物延伸技术等。这些方 法均可用于检测基因组中单核苷酸的变异,为遗传学研究和医学应用提供有力支持。
关系。
04
实验结果与数据分析
实验结果展示
实验结果表格
提供了各个样本的单核苷酸多态性位点检测结果,包括基因型、 等位基因频率等数据。
实验结果图
通过条形图、饼图等形式展示了不同样本间的单核苷酸多态性分 布和比较结果。
数据解读
对实验结果表格和图进行了详细的解读,包括各个位点的基因型 分布、等位基因频率等信息。
点样与电泳
将PCR产物点样至电泳介 质上,进行电泳分离。
染色与观察
对分离后的DNA片段进行 染色,以便观察和记录结 果。
结果分析
条带识别
01
根据电泳结果,识别并记录不同样本间的差异条带。
数据分析
02
对数据进行统计分析,比较不同样本间的单核苷酸多态性分布
和频率。
结果解释
03
根据数据分析结果,解释单核苷酸多态性与相关表型或疾病的
掌握实验操作技能
通过实验操作,掌握SNP检测 的实验操作技能,包括DNA提 取、PCR扩增、电泳检测和基 因测序等。
02
实验原理
单核苷酸多态性的定义与特性
总结词
单核苷酸多态性是指基因组中单个核苷酸的变异,包括碱基的替换、插入或缺 失。
详细描述
单核苷酸多态性是基因组中常见的变异形式,通常表现为单个碱基的差异,例 如A、T、C、G之间的替换、插入或缺失。这些变异在人群中具有一定的频率, 并呈现出一定的遗传特征。

基因组学研究中SNP标记方法与数据分析

基因组学研究中SNP标记方法与数据分析

基因组学研究中SNP标记方法与数据分析SNP标记方法与数据分析在基因组学研究中起着重要的作用。

SNP(Single Nucleotide Polymorphism,单核苷酸多态性)是基因组中最常见的变异形式,是导致个体间遗传差异的主要原因之一。

因此,对SNP标记方法和数据分析的研究对于揭示基因与表型之间的关联、为功能基因组学研究提供有效工具具有重要意义。

SNP标记方法主要分为两种:基于技术平台的方法和计算预测的方法。

技术平台包括传统的基因测序、SNP芯片和下一代测序。

传统的基因测序方法通过测序反应来确定SNP位点上的碱基,虽然准确性高,但费时费力。

SNP芯片是一种高通量的方法,可以同时检测多个SNP位点,准确性相对较低。

下一代测序则是目前最常用的方法,具有高通量、高分辨率、低成本的特点。

在SNP标记方法的选择上,需要根据研究对象、目标和预算来权衡不同方法的优缺点。

在SNP标记数据的分析中,主要涉及到数据的预处理、基因型分型和遗传关联分析。

首先,数据的预处理包括对原始数据进行质量控制、过滤掉低质量的SNP位点和个体,以及进行数据标准化和归一化。

这一步骤对后续的分析至关重要,能够减少误报率和漏报率,提高结果的可靠性。

其次,基因型分型是确定每个个体在每个SNP位点上的基因型。

由于SNP位点的碱基组合较多,需要运用一系列的算法和统计模型来进行基因型分型,其中包括Bayes算法、混合模型和机器学习方法等。

最后,遗传关联分析是研究SNP位点与表型之间关联的主要方法,可以通过构建模型、计算单个SNP的关联程度,或者进行基因组广义关联分析(GWAS),来揭示SNP位点与表型之间的关系。

在进行SNP标记方法和数据分析时,还需注意一些常见的挑战和问题。

首先,SNP标记的质量控制和过滤是一个关键的步骤,需要选择合适的阈值来确保数据的准确性。

同时,样本大小也是一个重要的考虑因素,在样本量较小时,可能会出现较大的偏差。

另外,SNP位点之间的连锁不平衡(Linkage Disequilibrium,LD)也需要在分析中进行考虑,以减少虚假关联的可能性。

07 单核苷酸多态性(SNP)实验

07 单核苷酸多态性(SNP)实验

单核苷酸多态性(SNP)实验SNP (Single Nucleotide Polymorphism)即单核苷酸多态性,是由于单个核苷酸改变而导致的核酸序列多态性(Polymorphism)。

据估计,在人类基因组中,大约每千个碱基中有一个SNP,无论是比较于度多态性(RFLP)分析还是微卫星标记(STR),都要广泛得多。

实验方法原理:SNP (Single Nucleotide Polymorphism)即单核苷酸多态性,是由于单个核苷酸改变而导致的核酸序列多态性(Polymorphism)。

据估计,在人类基因组中,大约每千个碱基中有一个SNP,无论是比较于限制性片段长度多态性(RFLP)分析还是微卫星标记(STR),都要广泛得多。

SNP是我们考察遗传变异的最小单位,据估计,人类的所有群体中大约存在一千万个SNP位点。

一般认为,相邻的SNPs倾向于一起遗传给后代。

于是,我们把位于染色体上某一区域的一组相关联的SNP等位位点称作单体型(haplotype)。

大多数染色体区域只有少数几个常见的单体型(每个具有至少5%的频率),它们代表了一个群体中人与人之间的大部分多态性。

一个染色体区域可以有很多SNP位点,但是我们一旦掌握了这个区域的单体型,就可以只使用少数几个标签SNPs(tagSNP)来进行基因分型,获取大部分的遗传多态模式。

实验材料:组织样品试剂、试剂盒:液氮、PBS、GA缓冲液、GB缓冲液、蛋白酶K、无水乙醇、蛋白液、漂洗液等仪器、耗材:离心管、离心机、废液收集管、吸附柱、水浴锅、分光光度计、低温冰箱等实验步骤:一、DNA抽提1. 取新鲜肌肉组织约100 mg,PBS漂洗干净,置于1.5 ml离心管中,加入液氮,迅速磨碎。

2. 加200 μl 缓冲液GA,震荡至彻底悬浮。

加入20 μl 蛋白酶K(20 mg/ml)溶液,混匀。

3. 加220 μl 缓冲液GB,充分混匀,37℃消化过夜,溶液变清亮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DGGE
• 变性梯度凝胶电泳法(DGGE)依据首要的 一点是: DNA 双链末端一旦解链,其在凝 胶中的电泳速度将会极剧下降。第二个根 据是,如果某一区域首先解链,而与其仅 有一个碱基之差的另一条链就会有不同的 解链温度,因此,将样品加入含有变性剂 梯度的凝胶进行电泳就可将二者分开。
DHPLC
• 变性高效液相色谱分析(DHPLC):在部分
变性的条件下,通过杂合与纯合二倍体在 柱中保留时间的差异,发现DNA突变 • 在部分变性条件下,异源双链因有错配区 的存在而更易变性,在色谱柱中的保留时 间短于同源双链,故先被洗脱下来,在色 谱图中表现为双峰或多峰的洗脱曲线
等位基因
TaqmanMGB探针
基因芯片
测序
• • • • • 双脱氧法 焦磷酸法 454 Solid Solexa-Illumina
SNP及检测方法
黄宝福 2011-5-11
SNP
• SNP(Single nucleotide polymorphism)单核苷酸 多态性 • 包括单碱基的转换、颠换,以及单碱基的插入/缺 失等
ATGCATGCATGCATGCATGC ATGCATGCGTGCATGCATGC
SNP
• SNPs作为第三代遗传标记(已知性、可遗 传性、可检测性),用于疾病基因的定位、 克隆和鉴定 • SNP是人类基因组DNA序列中最常见的变 异形式。并非所有的SNP都有临床意义, 对疾病和药物治疗有重大影响的SNP,估 计只占数以百万计SNP的很小一部分
理想的检测SNPs的方法
——发现未知的SNPs,或检测已知的SNPs
(1) 灵敏度和准确度的要求 (2) 快速、简便、高通量 (3) 费用相对低廉
DNA熔解分析
• 紫外吸收 • 样品量:几微克 • 升温速率:0.1~1℃/min
DASH
• Dynamic allele-specific hybridization
HRM
• High resolution melting curve高分辨率熔解 曲线 • 饱和染料:LC-Green,Eva-Green,Super Green • 温度:升温和信号采集,温度均一性 • Lighter Scanner
HRM
Thank You!
SNP
• SNP可直接影响个体间对疾病的易感性、 外源物质的代谢差异和药物不良反应表现 因此对SNP的研究在个体化用药、个体化 治疗中具有重要的指导作用
SSCP
• 单链构象多态性(SSCP)分析,是一种基 于DNA构象差别来检测点突变的方法。相 同长度的单链DNA,如果碱基序列不同, 形成的构象就不同,这样就形成了单链构 象多态性 • 空间构象有差异的单链DNA分子在聚丙烯 酰胺凝胶中受排阻大小不同.因此,通过非 变性聚丙烯酰胺凝胶电泳,可以非常敏锐 地将构象上有差异的分子分离开
相关文档
最新文档