高三文科数学一轮复习之三角函数和解三角形
2024届高三数学一轮复习-三角函数与解三角形 第4练 二倍角公式及应用(解析版)

B. cos A cos B
C. sin 2A sin 2B
D. cos 2A cos 2B
12.(2023·全国·高三专题练习)给出下列说法,其中正确的是( )
A.若 cos 1 ,则 cos 2 7
3
9
C.若 x 1 ,则 x 1 的最小值为 2
2
x
B.若 tan 2 4 ,则 tan 1
D. 5 或
5
5
)
D. 24 25
7.(2023·全国·高三专题练习)下列四个函数中,最小正周期与其余三个函数不同的是( )
A. f x cos2 x sin x cos x
B. f x 1 cos 2 x
2sin x cos x
C.
f
x
cos
x
π 3
cos
x
π 3
D.
f
x
sin
D
不
正确,
故选:BC.
10.AD
【分析】根据二倍角正弦公式、辅助角公式,结合正弦型函数的单调性、平移的性质、对称
性、换元法逐一判断即可.
【详解】 f (x) sin x cos x 1 sin 2x, g(x) sin x cos x 2 sin(x π ) ,
2
4
当
x
0,
π 4
时,
3 5 8
2
5 1 5 1.
16
4
故选:D.
2.B 【分析】根据三角恒等变换公式求解.
【详解】
sin
π 6
cos
3 sin 1 cos cos 3 ,
2
2
5
所以 3 sin 1 cos 3 ,
2024届高考数学一轮总复习第三章三角函数解三角形第三讲两角和与差及二倍角的三角函数公式课件

(5)tan (α-β)=1t+antαan-αttaannββ(T(α-β)). (6)tan (α+β)=1t-antαan+αttaannββ(T(α+β)).
2.二倍角公式 (1)基本公式 ①sin 2α=2sin αcos α. ②cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
答案:C 【反思感悟】 理解数学文化内容,结合题目条件进行三角变换求值是关键.
【高分训练】
(2021 年泸州市模拟)《周髀算经》中给出了弦图,所谓弦图
是由四个全等的直角三角形和中间一个小正方形拼成
一个大的正方形,若图3-3-1中直角三角形两锐角分别
为α,β,且小正方形与大正方形面积之比为 9∶25,
答案:12
⊙三角变换与数学文化的创新问题 新高考数学考查的学科素养提炼为理性思维,数学应用,数 学探究和数学文化,其中数学文化作为素养考查的四大内涵之一, 以数学文化为背景的试题将是新高考的必考内容.
[例 4]公元前 6 世纪,古希腊的毕达哥拉斯学派研究过正五边 形和正十边形的作图方法,发现了黄金分割,其比值约为 0.618,
考向 2 公式的变形
[例
3](1)存在角
θ,已知
(1+sin θ∈(0,π),则
θ+cos θ)sin 2+2cos θ
2θ-cos
θ 2
=______.
解析:由 θ∈(0,π),得 0<2θ<π2, ∴cos 2θ>0,∴ 2+2cos θ= 4cos22θ=2cos2θ.
又(1+sin θ+cos θ)sin
解析:原式=1-cos22α-π3+1-cos 22α+π3-sin2α=1- 12cos2α-π3+cos 2α+π3-sin2α=1-cos2α·cos π3-sin2α=1- co2s2α-1-c2os 2α=12.
高三一轮复习 三角函数、解三角形 教案,习题,答案

第三章 三角函数、解三角形第一节 任意角、弧度制及任意角的三角函数2019考纲考题考情1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角。
(2)从终边位置来看,角可分为象限角与轴线角。
(3)若β与α是终边相同的角,则β用α表示为β=2k π+α,k ∈Z 。
2.弧度与角度的互化 (1)1弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角。
(2)角α的弧度数如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr 。
(3)角度与弧度的换算①1°=π180rad ;②1 rad =⎝ ⎛⎭⎪⎫180π°。
(4)弧长、扇形面积的公式设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则l =|α|r ,扇形的面积为S =12lr =12|α|·r 2。
3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0)。
(2)几何表示:三角函数线可以看作是三角函数的几何表示。
正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是点(1,0)。
如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线。
1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角。
(2)不相等的角未必终边不相同,终边相同的角也未必相等。
2.一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦。
3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=x r ,tan α=y x 。
一、走进教材1.(必修4P 10A 组T 7改编)角-225°=________弧度,这个角在第________象限。
答案 -5π4 二2.(必修4P 15练习T 2改编)设角θ的终边经过点P (4,-3),那么2cos θ-sin θ=________。
高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系及诱导公式创新教学案(含

第2讲 同角三角函数的基本关系及诱导公式[考纲解读] 1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α,并能熟练应用同角三角函数关系进行化简求值.(重点)2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式,理解“奇变偶不变,符号看象限〞的含义,并能利用诱导公式进行化简.(重点、难点) [考向预测] 从近三年高考情况来看,本讲内容在高考中一般不单独命题,但它是三角函数的基础.预测2021年高考将以诱导公式为基础内容,结合同角三角函数关系式及三角恒等变换进行考查,试题以客观题为主,难度小,具有一定的技巧性.对应学生用书P0631.同角三角函数的基本关系(1)平方关系:01 sin 2α+cos 2α=1.(2)商数关系:02 sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.三角函数的诱导公式一 二三四五 六 角2k π+α(k ∈Z )π+α-απ-απ2-α π2+α 正弦sin α01 -sin α 02 -sin α 03sin α 04cos α 05 cos α 余弦cos α06 -cos α07cos α 08 -cos α 09sin α10 -sin α正切tan α11 tan α12 -tan α13 -tan α ——口诀 函数名不变,符号看象限函数名改变,符号看象限1.概念辨析(1)对任意α,β∈R ,有sin 2α+cos 2β=1.( ) (2)假设α∈R ,那么tan α=sin αcos α恒成立.( )(3)(sin α±cos α)2=1±2sin αcos α.( )(4)sin(π+α)=-sin α成立的条件是α为锐角.( ) 答案 (1)× (2)× (3)√ (4)× 2.小题热身 (1)假设sin α=55,π2<α<π,那么tan α=________. 答案 -12解析 因为sin α=55,π2<α<π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎪⎫552=-255, 所以tan α=sin αcos α=-12.(2)化简:cos 2α-1sin αtan α=________.答案 -cos α解析 原式=-sin 2αsin α·sin αcos α=-cos α.(3)sin 2490°=________;cos ⎝ ⎛⎭⎪⎫-52π3=________.答案 -12-12解析 sin2490°=sin(7×360°-30°)=-sin30°=-12.cos ⎝ ⎛⎭⎪⎫-52π3=cos ⎝ ⎛⎭⎪⎫16π+π+π3=cos ⎝⎛⎭⎪⎫π+π3 =-cos π3=-12.(4)sin ⎝⎛⎭⎪⎫π2+α=35,α∈⎝ ⎛⎭⎪⎫0,π2,那么sin(π+α)=________.答案 -45解析 因为sin ⎝⎛⎭⎪⎫π2+α=cos α=35,α∈⎝⎛⎭⎪⎫0,π2,所以sin α=1-cos 2α=45,所以sin(π+α)=-sin α=-45.对应学生用书P063题型 一 同角三角函数关系式的应用角度1 化简与求值1.(2019·某某模拟)角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上一点A (2sin α,3),那么cos α=( )A.12 B .-12C.32D .-32答案 A解析 由任意角三角函数的定义得tan α=32sin α,即sin αcos α=32sin α,所以3cos α=2sin 2α=2(1-cos 2α).整理得2cos 2α+3cos α-2=0,解得cos α=12或cos α=-2(舍去).角度2 sin α+cos α、sin αcos α、sin α-cos α三者之间的关系2.(2019·某某石室中学模拟)α为第二象限角,且sin α+cos α=15,那么cos α-sin α=( )A.75 B .-75C .±75D.2425答案 B解析 因为sin α+cos α=15,所以(sin α+cos α)2=125,即1+2sin αcos α=125,所以2sin αcos α=-2425.所以(cos α-sin α)2=1-2sin αcos α=1+2425=4925.又因为α为第二象限角.所以cos α<0,sin α>0.所以cos α-sin α<0.所以cos α-sin α=-75.角度3“齐次式〞问题3.sin α+3cos α3cos α-sin α=5,那么cos 2α+sin αcos α的值是() A.35 B .-35C .-3D .3 答案 A 解析 因为sin α+3cos α3cos α-sin α=5,所以tan α+33-tan α=5,解得tan α=2,所以cos 2α+sin αcos α=cos 2α+sin αcos αsin 2α+cos 2α=1+tan αtan 2α+1=1+222+1=35.1.应用同角三角函数关系式化简、求值的方法(1)利用sin 2α+cos 2α=1可实现α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.如举例说明1.(2)由一个角的任一三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系〞公式,需求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.2.sin α+cos α,sin αcos α,sin α-cos α之间的关系问题(1)方法:利用(sin α±cos α)2=1±2sin αcos α可以知一求二.(2)关注点:根据角α终边的位置确定sin α+cos α,sin α-cos α的符号.如举例说明2.3.sin α,cos α的齐次式的解法 (1)常见的结构①sin α,cos α的二次齐次式(如a sin 2α+b sin αcos α+c cos 2α)的问题常采用“切〞代换法求解;②sin α,cos α的齐次分式⎝ ⎛⎭⎪⎫如a sin α+b cos αc sin α+d cos α的问题常采用分式的基本性质进行变形.(2)巧用“1〞的变换:1=sin 2α+cos 2α.如举例说明3.1.假设α是第二象限角,那么tan α1sin 2α-1化简的结果是( ) A .-1 B .1 C .-tan 2α D .tan 2α答案 A解析 因为α是第二象限角,所以sin α>0,cos α<0,所以tan α1sin 2α-1=sin αcos α·⎪⎪⎪⎪⎪⎪cos αsin α=-sin αcos α·cos αsin α=-1. 2.假设sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,那么sin αcos α的值等于( ) A .-25B .-15C.25或-25D.25答案 A解析 由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,可得sin α=-2cos α,那么tan α=-2,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan α1+tan 2α=-25. 3.α∈⎝⎛⎭⎪⎫0,π4,sin αcos α=229,那么sin α-cos α=________.(提示(22-1)2=9-42)答案1-223解析 因为sin αcos α=229,所以(sin α-cos α)2=1-2sin αcos α =1-429=9-429=⎝ ⎛⎭⎪⎫22-132.又因为α∈⎝⎛⎭⎪⎫0,π4,所以sin α-cos α<0,所以sin α-cos α=1-223.题型 二 诱导公式的应用1.化简sin(-1071°)sin99°+sin(-171°)sin(-261°)的结果为( ) A .1 B .-1 C .0 D .2答案 C解析 原式=(-sin1071°)sin99°+sin171°sin261°=-sin(3×360°-9°)sin(90°+9°)+sin(180°-9°)·sin(270°-9°)=sin9°cos9°-sin9°cos9°=0.2.(2019·某某六校教育研究会联考)假设sin ⎝ ⎛⎭⎪⎫α-π4=55,那么cos ⎝ ⎛⎭⎪⎫α+π4的值为( )A.255 B .-255C.55D .-55 答案 D解析 cos ⎝ ⎛⎭⎪⎫α+π4=cos ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫α-π4=-55. 3.假设cos ⎝ ⎛⎭⎪⎫π6-θ=a ,那么cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值为________.答案 0 解析 因为cos ⎝⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a .sin ⎝⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , 所以cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0.(1)诱导公式的两个应用方向与原那么①求值,化角的原那么与方向:负化正,大化小,化到锐角为终了. ②化简,化简的原那么与方向:统一角,统一名,同角名少为终了. (2)应用诱导公式的基本流程(3)巧用口诀:奇变偶不变,符号看象限.(4)注意观察角与所求角的关系,如果两者之差或和为π2的整数倍,可考虑诱导公式,如举例说明2中⎝⎛⎭⎪⎫α+π4-⎝ ⎛⎭⎪⎫α-π4=π2.1.(2020·某某高三摸底)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),那么sin ⎝ ⎛⎭⎪⎫α-2021π2=( )A .-45B .-35C.35D.45答案 B解析 因为角α的终边经过点P (3,4). 所以cos α=332+42=35. 所以sin ⎝ ⎛⎭⎪⎫α-2021π2=sin ⎝ ⎛⎭⎪⎫α-π2-1010π =sin ⎝ ⎛⎭⎪⎫α-π2=-sin ⎝ ⎛⎭⎪⎫π2-α=-cos α=-35. 2.k ∈Z ,化简:sin k π-αcos[k -1π-α]sin[k +1π+α]cos k π+α=________.答案 -1解析 当k 为偶数时,原式=sin -αcos -π-αsin π+αcos α=-sin α-cos α-sin αcos α=-1.当k 为奇数时,原式=sin π-αcos -αsin αcos π+α=sin αcos αsin α-cos α=-1.综上知,原式=-1.题型 三 同角三角函数基本关系式和诱导公式的综合应用1.(2019·某某模拟)cos ⎝ ⎛⎭⎪⎫2019π2+α=12,α∈⎝ ⎛⎭⎪⎫π2,π,那么cos α=( )A.12 B .-12C .-32D.32答案 C 解析 因为cos ⎝⎛⎭⎪⎫2019π2+α=cos ⎝ ⎛⎭⎪⎫1008π+3π2+α=cos ⎝ ⎛⎭⎪⎫3π2+α=sin α=12,又α∈⎝⎛⎭⎪⎫π2,π,所以cos α=-1-sin 2α=-32.2.在△ABC 中,3sin ⎝ ⎛⎭⎪⎫π2-A =3sin(π-A ),且cos A =-3cos(π-B ),那么C 等于( )A.π3 B.π4 C.π2D.2π3答案 C解析 因为3sin ⎝⎛⎭⎪⎫π2-A =3sin(π-A ),所以3cos A =3sin A ,所以tan A =33,又0<A <π,所以A =π6.因为cos A =-3cos(π-B ),即cos A =3cos B ,所以cos B =13cos π6=12,又0<B <π,所以B =π3,所以C =π-(A +B )=π2.应选C. 3.(2019·某某六中第一次阶段性检测)f (α)=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π2-αtan π+α-cos π-α2-14sin ⎝ ⎛⎭⎪⎫3π2+α+cos π-α+cos 2π-α.(1)化简f (α);(2)假设-π3<α<π3,且f (α)<14,求α的取值X 围.解 (1)f (α)=cos αtan α+cos α2-1-4cos α-cos α+cos α=sin α+cos α2-1-4cos α=2sin αcos α-4cos α=-12sin α.(2)由得-12sin α<14,∴sin α>-12,∴2k π-π6<α<2k π+7π6,k ∈Z .∵-π3<α<π3,∴-π6<α<π3.故α的取值X 围为⎝⎛⎭⎪⎫-π6,π3.同角三角函数关系式和诱导公式综合应用题的解法(1)使用诱导公式把求解的三角函数式化为只含一个角的三角函数式.如举例说明3.(2)使用同角三角函数的基本关系式求解该三角函数式的值,求解中注意公式的准确性.1.(2019·某某八校联考)sin(π+α)=-13,那么tan ⎝ ⎛⎭⎪⎫π2-α=() A .2 2 B .-2 2 C.24D .±2 2答案 D解析 因为sin(π+α)=-sin α=-13,所以sin α=13,所以cos α=±1-sin 2α=±223, 所以tan ⎝ ⎛⎭⎪⎫π2-α=sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α=cos αsin α=±2 2. 2.1+2sin π-3cos π+3化简的结果是( ) A .sin3-cos3 B .cos3-sin3 C .±(sin3-cos3) D .以上都不对答案 A解析 因为sin(π-3)=sin3,cos(π+3)=-cos3,所以原式=1-2sin3·cos3=sin3-cos32=|sin3-cos3|.因为π2<3<π,所以sin3>0,cos3<0,即sin3-cos3>0,所以原式=sin3-cos3.3.tan100°=k ,那么sin80°的值等于( ) A.k1+k2B .-k1+k2kk答案 B解析 由得tan100°=k =tan(180°-80°)=-tan80°,所以tan80°=-k ,又因为tan80°=sin80°cos80°=sin80°1-sin 280°,所以sin 280°1-sin 280°=k 2,注意到k <0,可解得sin80°=-k1+k2.对应学生用书P277组 基础关1.计算:sin 11π6+cos 10π3=( )A .-1B .1C .0 D.12-32答案 A 解析 sin 11π6+cos 10π3=sin ⎝ ⎛⎭⎪⎫2π-π6+cos ⎝⎛⎭⎪⎫3π+π3=-sin π6-cos π3=-12-12=-1.2.sin(π+θ)=-3cos(2π-θ),|θ|<π2,那么θ等于( )A .-π6B .-π3C.π6D.π3答案 D解析 因为sin(π+θ)=-3cos(2π-θ),所以-sin θ=-3cos θ,所以tan θ=sin θcos θ= 3.又因为|θ|<π2,所以θ=π3. 3.cos31°=a ,那么sin239°·tan149°的值是( ) A.1-a2aB.1-a 2a答案 B解析 sin239°·tan149°=sin(270°-31°)·tan(180°-31°)=(-cos31°)·(-tan31°)=sin31°=1-a 2.4.假设0≤2x ≤2π,那么使1-sin 22x =cos2x 成立的x 的取值X 围是( )A.⎝⎛⎭⎪⎫0,π4B.⎝⎛⎭⎪⎫3π4,πC.⎝⎛⎭⎪⎫π4,5π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤3π4,π答案 D解析 显然cos2x ≥0,因为0≤2x ≤2π,所以0≤2x ≤π2或3π2≤2x ≤2π,所以x ∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤3π4,π.5.(2019·某某二中模拟)角α终边上一点P 的坐标是(2sin2,-2cos2),那么sin α等于( )A .sin2B .-sin2C .cos2D .-cos2答案 D 解析 因为r =2sin22+-2cos22=2,由任意角的三角函数的定义,得sin α=y r=-cos2.6.假设sin θ,cos θ是方程4x 2+2mx +m =0的两根,那么m 的值为( ) A .1+ 5 B .1- 5 C .1± 5 D .-1- 5答案 B解析 由得Δ=(2m )2-4×4×m =4m (m -4)≥0,所以m ≤0或m ≥4,排除A ,C.又因为sin θ+cos θ=-m 2,sin θcos θ=m4,(sin θ+cos θ)2=1+2sin θcos θ,所以m 24=1+m2,解得m =1-5或m =1+5(舍去).7.tan α=3,那么1+2sin αcos αsin 2α-cos 2α的值是( )A.12 B .2C .-12D .-2答案 B解析 因为tan α=3,所以1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=tan 2α+1+2tan αtan 2α-1 =32+1+2×332-1=2. 8.化简:(1+tan 2α)(1-sin 2α)=________. 答案 1解析 (1+tan 2α)(1-sin 2α)=⎝ ⎛⎭⎪⎫1+sin 2αcos 2α·cos 2α=cos 2α+sin 2α=1.9.化简:sin α+πcos π-αsin ⎝ ⎛⎭⎪⎫5π2-αtan -αcos 3-α-2π=________. 答案 -1解析 原式=-sin α-cos αsin ⎝ ⎛⎭⎪⎫π2-α-tan αcos 3α=sin αcos αcos α-sin αcos αcos 3α=sin αcos 2α-sin αcos 2α=-1. 10.cos(75°+α)=13,那么sin(α-15°)+cos(105°-α)的值是________.答案 -23解析 因为cos(75°+α)=13,所以sin(α-15°)=sin[(75°+α)-90°]=-cos(75°+α)=-13.cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-13.所以sin(α-15°)+cos(105°-α)=-23.组 能力关1.2θ是第一象限的角,且sin 4θ+cos 4θ=59,那么tan θ=( )A.22B .-22C. 2 D .- 2答案 A解析 因为sin 4θ+cos 4θ=59,所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23,所以tan θtan 2θ+1=23,解得tan θ=22(tan θ=2,舍去,这是因为2θ是第一象限的角,所以tan θ为小于1的正数).2.(2019·某某模拟)当θ为第二象限角,且sin ⎝ ⎛⎭⎪⎫θ2+π2=13时,1-sin θcos θ2-sinθ2的值是( )A .1B .-1C .±1D .0答案 B解析 ∵sin ⎝ ⎛⎭⎪⎫θ2+π2=13,∴cos θ2=13,∴θ2在第一象限,且cos θ2<sin θ2,∴1-sin θcos θ2-sin θ2=-⎝⎛⎭⎪⎫cos θ2-sin θ2cos θ2-sinθ2=-1.3.-π2<α<0,sin α+cos α=15,那么1cos 2α-sin 2α的值为() A.75 B.257 C.725D.2425答案 B解析 因为-π2<α<0,所以cos α>0,sin α<0,可得cos α-sin α>0,因为(sin α+cos α)2+(cos α-sin α)2=2,所以(cos α-sin α)2=2-(sin α+cos α)2=2-125=4925,cos α-sin α=75,cos 2α-sin 2α=15×75=725,所以1cos 2α-sin 2α的值为257. 4.(2020·某某摸底)假设1+cos αsin α=2,那么cos α-3sin α=( )A .-3B .3C .-95D.95答案 C解析 因为1+cos αsin α=2,所以cos α=2sin α-1.又因为sin 2α+cos 2α=1,所以sin 2α+(2sin α-1)2=1.整理得5sin 2α-4sin α=0,因为sin α≠0,所以sin α=45.所以cos α=2sin α-1=35.所以cos α-3sin α=35-125=-95.5.cos ⎝⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,那么cos ⎝ ⎛⎭⎪⎫π12-α等于( )A.223B.13 C .-13D .-223答案 D 解析 因为⎝ ⎛⎭⎪⎫5π12+α+⎝ ⎛⎭⎪⎫π12-α=π2,所以cos ⎝ ⎛⎭⎪⎫π12-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-α=sin ⎝⎛⎭⎪⎫5π12+α.因为-π<α<-π2,所以-7π12<α+5π12<-π12.又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以-π2<α+5π12<-π12,所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝⎛⎭⎪⎫5π12+α=-1-⎝ ⎛⎭⎪⎫132=-223.6.sin 21°+sin 22°+sin 23°+…+sin 289°=________. 答案 44.5解析 因为sin(90°-α)=cos α,所以当α+β=90°时,sin 2α+sin 2β=sin 2α+cos 2α=1, 设S =sin 21°+sin 22°+sin 23°+…+sin 289°, 那么S =sin 289°+sin 288°+sin 287°+…+sin 21°,两个式子相加得2S =1+1+1+…+1=89,S =44.5. 7.α∈⎝ ⎛⎭⎪⎫π,3π2,且满足 1-sin α1+sin α+1cos α=2,那么cos 2α+2sin2α=________.答案 95解析 因为α∈⎝⎛⎭⎪⎫π,3π2,所以 1-sin α1+sin α+1cos α=1-sin α1-sin α1+sin α1-sin α+1cos α=1-sin α-cos α+1cos α=sin αcos α,那么sin αcos α=2,tan α=2,而cos 2α+2sin2α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=95. 8.sin α=255,求tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α的值.解 tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ∵sin α=255>0,∴α为第一或第二象限角.当α为第一象限角时,cos α=1-sin 2α=55, 那么原式=1sin αcos α=52;当α为第二象限角时,cos α=-1-sin 2α=-55, 那么原式=1sin αcos α=-52.。
高三数学一轮总复习第三章三角函数解三角形3.7解三角形应用举例课件.ppt

解析:如图所示,某人在 C 处,AB 为塔高,他沿 CD 前进,CD=40,此时∠ DBF=45°,过点 B 作 BE⊥CD 于 E,则∠AEB=30°,
在△BCD 中,CD=40,∠BCD=30°,∠DBC=135°,由正弦定理,得 sin∠CDDBC=sin∠BDBCD, ∴BD=4s0insi1n3350°°=20 2(米)。 ∠BDE=180°-135°-30°=15°。 在 Rt△BED 中,
29
通关特训 3 如图所示,位于 A 处的信息中心获悉:在其正东方向相距 40 海里
的 B 处有一艘渔船遇险,在原地等待营救。信息中心立即把消息告知在其南偏西 30°,
相距 20 海里的 C 处的乙船,现乙船朝北偏东 θ 的方向即沿直线 CB 前往 B 处救援, 则 cosθ 等于( )
A.
21 7
解析:如图所示,
由题意知∠C=45°,
由正弦定理得siAn6C0°=sin245°,
∴AC=
2× 2
23=
6。
2
答案: 6
13
4.一船向正北航行,看见正东方向有相距 8 海里的两个灯塔恰好在一条直线 上。继续航行半小时后,看见一灯塔在船的南偏东 60°,另一灯塔在船的南偏东 75°, 则这艘船每小时航行__________海里。
并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,求 A、B 之间的距
离。
16
解析:如图所示,在△ACD 中,∠ACD=120°,∠CAD=∠ADC=30°,
∴AC=CD= 3 km。
在△BCD 中,∠BCD=45°,
∠BDC=75°,∠CBD=60°。
∴BC=
s3isni6n07°5°=
高考数学一轮复习 第四章 三角函数与解三角形 4

高考数学一轮复习 第四章 三角函数与解三角形4.5 三角函数的图象与性质考试要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝⎛⎭⎫-π2,π2上的性质.知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x | x ≠k π ⎭⎬⎫+π2 值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性奇函数偶函数奇函数递增区间⎣⎡ 2k π-π2,⎦⎤2k π+π2[2k π-π,2k π]⎝⎛ k π-π2,⎭⎫k π+π2递减区间⎣⎡ 2k π+π2,⎦⎤2k π+3π2[2k π,2k π+π]对称中心 (k π,0) ⎝⎛⎭⎫k π+π2,0⎝⎛⎭⎫k π2,0对称轴方程 x =k π+π2x =k π常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ).(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)正切函数y =tan x 在定义域内是增函数.( × ) (2)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (3)y =sin|x |是偶函数.( √ )(4)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( √ ) 教材改编题1.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( )A .T =π,A =1B .T =2π,A =1C .T =π,A =2D .T =2π,A =2 答案 A2.函数f (x )=-2tan ⎝⎛⎭⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠π6B.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π+π6k ∈Z D.⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π2+π6k ∈Z答案 D解析 由2x +π6≠k π+π2,k ∈Z ,得x ≠k π2+π6,k ∈Z .3.函数y =3cos ⎝⎛⎭⎫2x -π3的单调递减区间是________. 答案 ⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z 解析 因为y =3cos ⎝⎛⎭⎫2x -π3, 令2k π≤2x -π3≤2k π+π,k ∈Z ,求得k π+π6≤x ≤k π+2π3,k ∈Z ,可得函数的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z .题型一 三角函数的定义域和值域例1 (1)函数y =1tan x -1的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z 解析 要使函数有意义, 则⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z .故函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4+k π,且x ≠π2+k π,k ∈Z .(2)函数y =sin x -cos x +sin x cos x 的值域为________.答案 ⎣⎢⎡⎦⎥⎤-1+222,1解析 设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t 22, 且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2]. 当t =1时,y max =1; 当t =-2时,y min =-1+222. ∴函数的值域为⎣⎢⎡⎦⎥⎤-1+222,1.教师备选1.函数y =sin x -cos x 的定义域为________.答案 ⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 解析 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象, 如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z . 2.函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 答案 1解析 由题意可得 f (x )=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1. ∵x ∈⎣⎡⎦⎤0,π2, ∴cos x ∈[0,1]. ∴当cos x =32,即x =π6时,f (x )取最大值为1. 思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数的图象来求解. (2)三角函数值域的不同求法①把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域. ②把sin x 或cos x 看作一个整体,转换成二次函数求值域. ③利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练1 (1)(2021·北京)函数f (x )=cos x -cos 2x ,试判断函数的奇偶性及最大值( ) A .奇函数,最大值为2 B .偶函数,最大值为2 C .奇函数,最大值为98D .偶函数,最大值为98答案 D 解析 由题意,f (-x )=cos (-x )-cos (-2x ) =cos x -cos 2x =f (x ), 所以该函数为偶函数,又f (x )=cos x -cos 2x =-2cos 2x +cos x +1=-2⎝⎛⎭⎫cos x -142+98, 所以当cos x =14时,f (x )取最大值98.(2)函数y =lg(sin 2x )+9-x 2的定义域为________. 答案 ⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 解析 ∵函数y =lg(sin 2x )+9-x 2,∴应满足⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0, 解得⎩⎪⎨⎪⎧k π<x <π2+k π,-3≤x ≤3,其中k ∈Z ,∴-3≤x <-π2或0<x <π2,∴函数的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2.题型二 三角函数的周期性、奇偶性、对称性例2 (1)(2019·全国Ⅱ)下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2上单调递增的是( ) A .f (x )=|cos 2x | B .f (x )=|sin 2x |答案 A解析 A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎝⎛⎭⎫π4,π2时,2x ∈⎝⎛⎭⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎝⎛⎭⎫π4,π2时,2x ∈⎝⎛⎭⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.(2)函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ+1,φ∈(0,π),且f (x )为偶函数,则φ=________,f (x )图象的对称中心为________. 答案5π6 ⎝⎛⎭⎫π4+k π2,1,k ∈Z 解析 若f (x )=3sin ⎝⎛⎭⎫2x -π3+φ+1为偶函数,则-π3+φ=k π+π2,k ∈Z , 即φ=5π6+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=5π6.∴f (x )=3sin ⎝⎛⎭⎫2x +π2+1=3cos 2x +1, 由2x =π2+k π,k ∈Z 得x =π4+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎫π4+k π2,1,k ∈Z . 教师备选1.下列函数中,是周期函数的为( ) A .y =sin|x |B .y =cos|x |答案 B解析 ∵cos|x |=cos x ,∴y =cos|x |是周期函数.其余函数均不是周期函数. 2.函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π),若f (x )为奇函数,则φ=________. 答案 π3解析 若f (x )=3sin ⎝⎛⎭⎫2x -π3+φ为奇函数, 则-π3+φ=k π,k ∈Z ,即φ=π3+k π,k ∈Z ,又∵φ∈(0,π), ∴φ=π3.思维升华 (1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.跟踪训练2 (1)(2021·全国乙卷)函数f (x )=sin x 3+cos x3最小正周期和最大值分别是( )A .3π和 2B .3π和2C .6π和 2D .6π和2答案 C解析 因为函数f (x )=sin x 3+cos x3=2⎝⎛⎭⎫22sin x 3+22cos x 3=2⎝⎛⎭⎫sin x 3cos π4+cos x 3sin π4 =2sin ⎝⎛⎭⎫x 3+π4,所以函数f (x )的最小正周期T =2π13=6π,最大值为 2.(2)已知f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数,且当x =3时,f (x )取得最小值-3,当ω取得最小正数时,f (1)+f (2)+f (3)+…+f (2 022)的值为( ) A.32 B .-6-3 3 C .1 D .-1答案 B解析 ∵f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)是定义域为R 的奇函数, ∴φ=π2+k π,k ∈Z ,则φ=π2,则f (x )=-A sin ωx .当x =3时,f (x )取得最小值-3, 故A =3,sin 3ω=1, ∴3ω=π2+2k π,k ∈Z .∴ω的最小正数为π6,∴f (x )=-3sin π6x ,∴f (x )的周期为12,∴f (1)+f (2)+f (3)+…+f (12)=0, ∴f (1)+f (2)+f (3)+…+f (2 022) =168×0+f (1)+f (2)+…+f (6) =-6-3 3.(3)(2022·郑州模拟)设函数f (x )=2sin ⎝⎛⎭⎫2x -π3+34,则下列叙述正确的是( ) A .f (x )的最小正周期为2π B .f (x )的图象关于直线x =π12对称 C .f (x )在⎣⎡⎦⎤π2,π上的最小值为-54 D .f (x )的图象关于点⎝⎛⎭⎫2π3,0对称 答案 C解析 对于A ,f (x )的最小正周期为2π2=π,故A 错误;对于B ,∵sin ⎝⎛⎭⎫2×π12-π3=-12≠±1, 故B 错误;对于C ,当x ∈⎣⎡⎦⎤π2,π时,2x -π3∈⎣⎡⎦⎤2π3,5π3, ∴sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-1,32, ∴2sin ⎝⎛⎭⎫2x -π3+34∈⎣⎡⎦⎤-54,3+34, ∴f (x )在⎣⎡⎦⎤π2,π上的最小值为-54,故C 正确; 对于D ,∵f ⎝⎛⎭⎫2π3=2sin ⎝⎛⎭⎫2×2π3-π3+34=34, ∴f (x )的图象关于点⎝⎛⎭⎫2π3,34对称,故D 错误. 题型三 三角函数的单调性 命题点1 求三角函数的单调区间例3 函数f (x )=sin ⎝⎛⎭⎫-2x +π3的单调递减区间为________.答案 ⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 解析 f (x )=sin ⎝⎛⎭⎫-2x +π3 =sin ⎣⎡⎦⎤-⎝⎛⎭⎫2x -π3 =-sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). 延伸探究 f (x )=sin ⎝⎛⎭⎫-2x +π3在[0,π]上的单调递减区间为________. 答案 ⎣⎡⎦⎤0,5π12和⎣⎡⎦⎤11π12,π 解析 令A =⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z , B =[0,π],∴A ∩B =⎣⎡⎦⎤0,5π12∪⎣⎡⎦⎤11π12,π, ∴f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,5π12和⎣⎡⎦⎤11π12,π. 命题点2 根据单调性求参数例4 (1)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.答案 32解析 ∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2, 即0≤x ≤π2ω时,y =sin ωx 单调递增; 当π2≤ωx ≤3π2, 即π2ω≤x ≤3π2ω时,y =sin ωx 单调递减. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减,知π2ω=π3, ∴ω=32. (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 ⎣⎡⎦⎤12,54解析 由π2<x <π,ω>0, 得ωπ2+π4<ωx +π4<ωπ+π4, 因为y =sin x 的单调递减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z , 所以⎩⎨⎧ ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k π,k ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z . 又由4k +12-⎝⎛⎭⎫2k +54≤0,k ∈Z , 且2k +54>0,k ∈Z , 解得k =0,所以ω∈⎣⎡⎦⎤12,54.教师备选(2022·定远县育才学校月考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为( ) A .11 B .9 C .7 D .1答案 B解析 因为x =-π4为f (x )的零点, x =π4为y =f (x )图象的对称轴, 所以2n +14·T =π2(n ∈N ), 即2n +14·2πω=π2(n ∈N ), 所以ω=2n +1(n ∈N ),即ω为正奇数.因为f (x )在⎝⎛⎭⎫π18,5π36上单调,则5π36-π18=π12≤T 2, 即T =2πω≥π6, 解得ω≤12.当ω=11时,-11π4+φ=k π,k ∈Z , 因为|φ|≤π2, 所以φ=-π4,此时f (x )=sin ⎝⎛⎭⎫11x -π4. 当x ∈⎝⎛⎭⎫π18,5π36时,11x -π4∈⎝⎛⎭⎫13π36,46π36, 所以f (x )在⎝⎛⎭⎫π18,5π36上不单调,不满足题意;当ω=9时,-9π4+φ=k π,k ∈Z , 因为|φ|≤π2, 所以φ=π4, 此时f (x )=sin ⎝⎛⎭⎫9x +π4. 当x ∈⎝⎛⎭⎫π18,5π36时,9x +π4∈⎝⎛⎭⎫3π4,3π2, 此时f (x )在⎝⎛⎭⎫π18,5π36上单调递减,符合题意.故ω的最大值为9.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3 (1)(2021·新高考全国Ⅰ)下列区间中,函数f (x )=7sin ⎝⎛⎭⎫x -π6的单调递增区间是( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π2,π C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π答案 A解析 令-π2+2k π≤x -π6≤π2+2k π,k ∈Z ,得-π3+2k π≤x ≤2π3+2k π,k ∈Z .取k =0,则-π3≤x ≤2π3.因为⎝⎛⎭⎫0,π2⎣⎡⎦⎤-π3,2π3,所以区间⎝⎛⎭⎫0,π2是函数f (x )的单调递增区间. (2)(2022·开封模拟)已知函数y =sin ⎝⎛⎭⎫ωx +π3 (ω>0)在区间⎝⎛⎭⎫-π6,π3上单调递增,则ω的取值范围是( ) A.⎝⎛⎦⎤0,12 B.⎣⎡⎦⎤12,1 C.⎝⎛⎦⎤13,23D.⎣⎡⎦⎤23,2答案 A解析 当-π6<x <π3时, -πω6+π3<ωx +π3<πω3+π3, 当x =0时,ωx +π3=π3. 因为函数y =sin ⎝⎛⎭⎫ωx +π3(ω>0)在区间⎝⎛⎭⎫-π6,π3上单调递增, 所以⎩⎨⎧ -πω6+π3≥-π2,πω3+π3≤π2,解得ω≤12, 因为ω>0,所以ω的取值范围是⎝⎛⎦⎤0,12. 课时精练1.y =|cos x |的一个单调递增区间是( )A.⎣⎡⎦⎤-π2,π2 B .[0,π]C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π 答案 D 解析 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.函数f (x )=2sin π2x -1的定义域为( ) A.⎣⎡⎦⎤π3+4k π,5π3+4k π(k ∈Z ) B.⎣⎡⎦⎤13+4k ,53+4k (k ∈Z ) C.⎣⎡⎦⎤π6+4k π,5π6+4k π(k ∈Z ) D.⎣⎡⎦⎤16+4k ,56+4k (k ∈Z ) 答案 B解析 由题意,得2sin π2x -1≥0, π2x ∈⎣⎡⎦⎤π6+2k π,5π6+2k π(k ∈Z ), 则x ∈⎣⎡⎦⎤13+4k ,53+4k (k ∈Z ). 3.函数f (x )=sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x -π12是( ) A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的非奇非偶函数答案 D解析 由题意可得f (x )=sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x -π12 =sin ⎝⎛⎭⎫x +5π12cos ⎝⎛⎭⎫x +5π12-π2 =sin 2⎝⎛⎭⎫x +5π12, ∴f (x )=12-12cos ⎝⎛⎭⎫2x +5π6, 故f (x )的最小正周期T =2π2=π,由函数奇偶性的定义易知,f (x )为非奇非偶函数. 4.函数f (x )=sin x +x cos x +x 2在[-π,π]的图象大致为( )答案 D解析 由f (-x )=sin -x +-x cos -x +-x2 =-sin x -x cos x +x 2=-f (x ),得f (x )是奇函数,其图象关于原点对称,排除A ; 又f ⎝⎛⎭⎫π2=1+π2⎝⎛⎭⎫π22=4+2ππ2>1, f (π)=π-1+π2>0,排除B ,C. 5.关于函数f (x )=sin 2x -cos 2x ,下列命题中为假命题的是( )A .函数y =f (x )的周期为πB .直线x =π4是y =f (x )图象的一条对称轴 C .点⎝⎛⎭⎫π8,0是y =f (x )图象的一个对称中心D .y =f (x )的最大值为 2答案 B解析 因为f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π4, 所以f (x )的最大值为2,故D 为真命题;因为ω=2,故T =2π2=π,故A 为真命题; 当x =π4时,2x -π4=π4,终边不在y 轴上,故直线x =π4不是y =f (x )图象的一条对称轴, 故B 为假命题;当x =π8时,2x -π4=0,终边落在x 轴上, 故点⎝⎛⎭⎫π8,0是y =f (x )图象的一个对称中心,故C 为真命题.6.(2022·广州市培正中学月考)关于函数f (x )=sin|x |+|sin x |,下列叙述正确的是( )A .f (x )是奇函数B .f (x )在区间⎝⎛⎭⎫π2,π上单调递增C .f (x )的最大值为2D .f (x )在[-π,π]上有4个零点答案 C解析 f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),f (x )是偶函数,A 错误;当x ∈⎝⎛⎭⎫π2,π时,f (x )=sin x +sin x =2sin x ,单调递减,B 错误;f (x )=sin|x |+|sin x |≤1+1=2,且f ⎝⎛⎭⎫π2=2,C 正确;在[-π,π]上,当-π<x <0时,f (x )=sin(-x )+(-sin x )=-2sin x >0,当0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错误.7.写出一个周期为π的偶函数f (x )=________.(答案不唯一) 答案 cos 2x8.(2022·上外浦东附中检测)若在⎣⎡⎦⎤0,π2内有两个不同的实数值满足等式cos 2x +3sin 2x =k +1,则实数k 的取值范围是________.答案 0≤k <1解析 函数f (x )=cos 2x +3sin 2x=2sin ⎝⎛⎭⎫2x +π6, 当x ∈⎣⎡⎦⎤0,π6时, f (x )=2sin ⎝⎛⎭⎫2x +π6单调递增; 当x ∈⎣⎡⎦⎤π6,π2时,f (x )=2sin ⎝⎛⎭⎫2x +π6单调递减, f (0)=2sin π6=1, f ⎝⎛⎭⎫π6=2sin π2=2, f ⎝⎛⎭⎫π2=2sin 7π6=-1,所以在⎣⎡⎦⎤0,π2内有两个不同的实数值满足等式cos 2x +3sin 2x =k +1, 则1≤k +1<2,所以0≤k <1.9.已知函数f (x )=4sin ωx sin ⎝⎛⎭⎫ωx +π3-1(ω>0)的最小正周期为π. (1)求ω及f (x )的单调递增区间;(2)求f (x )图象的对称中心.解 (1)f (x )=4sin ωx ⎝⎛⎭⎫12sin ωx +32cos ωx -1 =2sin 2ωx +23sin ωx cos ωx -1 =1-cos 2ωx +3sin 2ωx -1 =3sin 2ωx -cos 2ωx=2sin ⎝⎛⎭⎫2ωx -π6. ∵最小正周期为π,∴2π2ω=π, ∴ω=1,∴f (x )=2sin ⎝⎛⎭⎫2x -π6, 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z , 解得-π6+k π≤x ≤π3+k π,k ∈Z , ∴f (x )的单调递增区间为⎣⎡⎦⎤-π6+k π,π3+k π (k ∈Z ).(2)令2x -π6=k π,k ∈Z , 解得x =π12+k π2,k ∈Z ,∴f (x )图象的对称中心为⎝⎛⎭⎫π12+k π2,0,k ∈Z .10.(2021·浙江)设函数f (x )=sin x +cos x (x ∈R ).(1)求函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22的最小正周期; (2)求函数y =f (x )f ⎝⎛⎭⎫x -π4在⎣⎡⎦⎤0,π2上的最大值. 解 (1)因为f (x )=sin x +cos x ,所以f ⎝⎛⎭⎫x +π2=sin ⎝⎛⎭⎫x +π2+cos ⎝⎛⎭⎫x +π2 =cos x -sin x ,所以y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22=(cos x -sin x )2 =1-sin 2x .所以函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π22的最小正周期T =2π2=π. (2)f ⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫x -π4+cos ⎝⎛⎭⎫x -π4 =2sin x ,所以y =f (x )f ⎝⎛⎭⎫x -π4 =2sin x (sin x +cos x ) =2(sin x cos x +sin 2x ) =2⎝⎛⎭⎫12sin 2x -12cos 2x +12 =sin ⎝⎛⎭⎫2x -π4+22. 当x ∈⎣⎡⎦⎤0,π2时,2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以当2x -π4=π2,即x =3π8时, 函数y =f (x )f ⎝⎛⎭⎫x -π4在⎣⎡⎦⎤0,π2上取得最大值,且y max =1+22.11.(2022·苏州模拟)已知函数f (x )=sin ⎝⎛⎭⎫2x +π3,则下列结论不正确的是( ) A .x =-π6是函数f (x )的一个零点 B .函数f (x )在区间⎣⎡⎦⎤-5π12,π12上单调递增 C .函数f (x )的图象关于直线x =π12对称 D .函数f ⎝⎛⎭⎫x -π3是偶函数 答案 D解析 对于A 选项,因为f ⎝⎛⎭⎫-π6=sin 0=0, 故x =-π6是函数f (x )的一个零点,A 对; 对于B 选项,当-5π12≤x ≤π12时, -π2≤2x +π3≤π2, 所以函数f (x )在区间⎣⎡⎦⎤-5π12,π12上单调递增,B 对; 对于C 选项,因为对称轴满足2x +π3=π2+k π,k ∈Z , 解得x =π12+k π2,k ∈Z ,当k =0时,x =π12,C 对; 对于D 选项,令g (x )=f ⎝⎛⎭⎫x -π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π3 =sin ⎝⎛⎭⎫2x -π3, 则g ⎝⎛⎭⎫π6=0,g ⎝⎛⎭⎫-π6=sin ⎝⎛⎭⎫-2π3≠0, 故函数f ⎝⎛⎭⎫x -π3不是偶函数,D 错. 12.(2022·厦门模拟)已知函数f (x )=cos 2⎝⎛⎭⎫x -π6-cos 2x ,则下列结论正确的是( ) A .f (x )的最大值为3-12B .f (x )的图象关于点⎝⎛⎭⎫7π6,0对称C .f (x )的图象的对称轴方程为x =5π12+k π2(k ∈Z ) D .f (x )在[0,2π]上有2个零点答案 C解析 f (x )=1+cos ⎝⎛⎭⎫2x -π32-cos 2x =12+12⎝⎛⎭⎫12cos 2x +32sin 2x -cos 2x =34sin 2x -34cos 2x +12=32sin ⎝⎛⎭⎫2x -π3+12, 则f (x )的最大值为1+32,A 错误; 易知f (x )图象的对称中心的纵坐标为12, B 错误;令2x -π3=π2+k π(k ∈Z ), 得x =5π12+k π2(k ∈Z ), 此即f (x )图象的对称轴方程,C 正确;由f (x )=32sin ⎝⎛⎭⎫2x -π3+12=0, 得sin ⎝⎛⎭⎫2x -π3=-33, 当x ∈[0,2π]时,2x -π3∈⎣⎡⎦⎤-π3,11π3, 作出函数y =sin x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π3,11π3的图象,如图所示.所以方程sin ⎝⎛⎭⎫2x -π3=-33在[0,2π]上有4个不同的实根, 即f (x )在[0,2π]上有4个零点,D 错误.13.(2022·绵阳中学实验学校模拟)已知sin x +cos y =14,则sin x -sin 2y 的最大值为______. 答案 916解析 ∵sin x +cos y =14,sin x ∈[-1,1], ∴sin x =14-cos y ∈[-1,1], ∴cos y ∈⎣⎡⎦⎤-34,54, 即cos y ∈⎣⎡⎦⎤-34,1, ∵sin x -sin 2y =14-cos y -(1-cos 2y ) =cos 2y -cos y -34=⎝⎛⎭⎫cos y -122-1, 又cos y ∈⎣⎡⎦⎤-34,1,利用二次函数的性质知,当cos y =-34时, (sin x -sin 2y )max =⎝⎛⎭⎫-34-122-1=916. 14.(2022·苏州八校联盟检测)已知f (x )=sin x +cos x ,若y =f (x +θ)是偶函数,则cos θ=________.答案 ±22解析 因为f (x )=2sin ⎝⎛⎭⎫x +π4, 所以f (x +θ)=2sin ⎝⎛⎭⎫x +θ+π4, 又因为y =f (x +θ)是偶函数,所以θ+π4=π2+k π,k ∈Z , 即θ=π4+k π,k ∈Z , 所以cos θ=cos ⎝⎛⎭⎫π4+k π=±22.15.(2022·江西九江一中模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),若方程f (x )=0在[0,2π]上有且仅有6个根,则实数ω的值可能为( )A .2B .3C .4D .5答案 B解析 令f (x )=sin ⎝⎛⎭⎫ωx +π3=0, 则ωx +π3=k π,k ∈Z , 所以x =-π3ω+k πω,k ∈Z , 所以当x ≥0时,函数f (x )的第一个零点为x 1=-π3ω+πω=2π3ω,第六个零点为x 6=-π3ω+6πω=17π3ω,第七个零点为x 7=-π3ω+7πω=20π3ω, 因为方程f (x )=0在[0,2π]上有且仅有6个根等价于函数y =f (x )在[0,2π]上有且仅有6个零点,所以17π3ω≤2π<20π3ω, 所以176≤ω<103. 16.已知f (x )=sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4-12. (1)求f (x )的单调递增区间;(2)若函数y =|f (x )|-m 在区间⎣⎡⎦⎤-5π24,3π8上恰有两个零点x 1,x 2. ①求m 的取值范围;②求sin(x 1+x 2)的值.解 (1)f (x )=sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π4·cos ⎝⎛⎭⎫x +π4-12=1-cos ⎝⎛⎭⎫2x +π42+22sin ⎝⎛⎭⎫2x +π2-12 =12-24cos 2x +24sin 2x +22cos 2x -12=24sin 2x +24cos 2x =12sin ⎝⎛⎭⎫2x +π4, 结合正弦函数的图象与性质, 可得当-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 即-3π8+k π≤x ≤π8+k π(k ∈Z )时,函数单调递增, ∴函数y =f (x )的单调递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ). (2)①令t =2x +π4,当x ∈⎣⎡⎦⎤-5π24,3π8时,t ∈⎣⎡⎦⎤-π6,π,12sin t ∈⎣⎡⎦⎤-14,12, ∴y =⎪⎪⎪⎪12sin t ∈⎣⎡⎦⎤0,12(如图).∴要使y =|f (x )|-m 在区间⎣⎡⎦⎤-5π24,3π8上恰有两个零点,m 的取值范围为14<m <12或m =0. ②设t 1,t 2是函数y =⎪⎪⎪⎪12sin t -m 的两个零点⎝⎛⎭⎫即t 1=2x 1+π4,t 2=2x 2+π4, 由正弦函数图象性质可知t 1+t 2=π,即2x 1+π4+2x 2+π4=π. ∴x 1+x 2=π4,∴sin(x 1+x 2)=22.。
2022版高考数学一轮复习第3章三角函数解三角形36正弦定理和余
2022版高考数学一轮复习第3章三角函数解三角形36正弦定理和余3.6正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a,b和A时,三角形解的情况3.三角形中常用的面积公式1(1)S=ah(h表示边a上的高).2111(2)S=bcinA=acinB=abinC.222(3)S=r(a+b+c)(r为三角形的内切圆半径).24.在△ABC中,常有的结论(1)∠A+∠B+∠C=π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.[诊断自测]1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.()aa+b-c(2)在△ABC中,=.()inAinA+inB-inC(3)若a,b,c是△ABC的三边,当b+c-a>0时,△ABC为锐角三角形;当b+c-22222a2=0时,△ABC为直角三角形;当b2+c2-a2<0时,△ABC为钝角三角形.()(4)在△ABC中,若inAinBin2A(1)(必修A5P10A组T4)在△ABC中,a=4,b=5,c=6,则=________.inC答案1解析由正弦定理得inA∶inB∶inC=a∶b∶c=4∶5∶6,又由余弦定理知coA=b2+c2-a225+36-163in2A2inAcoA43==,所以==2某某=1.2bc2某5某64inCinC64(2)(必修A5P20A组T11)若锐角△ABC的面积为103,且AB=5,AC=8,则BC等于________.答案711解析因为△ABC的面积S△ABC=AB·ACinA,所以103=某5某8inA,解得inA=223122222,因为角A为锐角,所以coA=.根据余弦定理,得BC=5+8-2某5某8coA=5+8221-2某5某8某=49,所以BC=7.23.小题热身(1)(2022·天津高考)在△ABC中,若AB=13,BC=3,∠C=120°,则AC=()A.1B.2C.3D.4答案A解析在△ABC中,设A,B,C所对的边分别为a,b,c,则由c=a+b-2abcoC,222122得13=9+b-2某3b某-,即b+3b-4=0,解得b=1(负值舍去),即AC=1.故选A.24(2)(2022·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,若coA=,coC55=,a=1,则b=________.13答案21133123541263inAinB3135题型1利用正、余弦定理解三角形b(2022·郑州预测)在△ABC中,角A,B,C所对的边分别为a,b,c,若典例13coB=,则coB=()inA1133A.-B.C.-D.2222a边角互化法.答案B解析由正弦定理知inBinAπ==1,即tanB=3,由B∈(0,π),所以B=,33coBinAπ1所以coB=co=.故选B.32典例2(2022·重庆期末)在△ABC中,已知AB=43,AC=4,∠B=30°,则△ABC的面积是()A.43B.83C.43或83D.3注意本题的多解性.答案C解析在△ABC中,由余弦定理可得AC=4=(43)+BC-2某43BCco30°,解得BC=4或BC=8.当BC=4时,AC=BC,∠B=∠A=30°,△ABC为等腰三角形,∠C=120°,111△ABC的面积为AB·BCinB=某43某4某=43.222111当BC=8时,△ABC的面积为AB·BCinB=某43某8某=83.故选C.222方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a=2RinA,b=2RinB,c=2RinC能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2022·河西五市联考)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(b-a)inA=(b-c)·(inB+inC),则角C等于() A.πππ2πB.C.D.36432222答案Aa2+b2-c21解析由题意,得(b-a)a=(b-c)(b+c),∴ab=a+b-c,∴coC==,2ab2222π∴C=.故选A.32.(2022·山东师大附中模拟)在△ABC中,角A,B,C的对边分别是a,b,c,已知1co2A=-,c=3,inA=6inC.3(1)求a的值;(2)若角A为锐角,求b的值及△ABC的面积.解(1)在△ABC中,c=3,inA=6inC,由正弦定理=,得a=6c=6inAinC某3=32.12π622(2)由co2A=1-2inA=-得,inA=,由03323则coA=1-inA=2222ac3.3由余弦定理a=b+c-2bccoA,化简,得b-2b-15=0,解得b=5(b=-3舍去).11652所以S△ABC=bcinA=某5某3某=.22322题型2利用正、余弦定理判断三角形的形状典例(2022·陕西模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcoC+ccoB=ainA,则△ABC的形状为()A.锐角三角形C.钝角三角形B.直角三角形D.不确定用边角互化法.答案B解析∵bcoC+ccoB=ainA,由正弦定理得inBcoC+inCcoB=inA,∴in(Bπ22+C)=inA,即inA=inA.又inA>0,∴inA=1,∴A=,故△ABC为直角三角形.故2选B.[条件探究1]将本典例条件变为“若2inAcoB=inC”,那么△ABC一定是()A.直角三角形C.等腰直角三角形B.等腰三角形D.等边三角形2答案B解析解法一:由已知得2inAcoB=inC=in(A+B)=inAcoB+coAinB,即in(A-B)=0,因为-πa2+c2-b222由余弦定理得2a·=ca=ba=b.故选B.2ac[条件探究2]将本典例条件变为“若△ABC的三个内角满足inA∶inB∶inC=5∶11∶13”,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形答案C解析在△ABC中,inA∶inB∶inC=5∶11∶13,∴a∶b∶c=5∶11∶13,故设a=5k,b=11k,c=13k(k>0),由余弦定理可得a2+b2-c225k2+121k2-169k223coC===-<0,22ab2某5某11k110π又∵C∈(0,π),∴C∈,π,2∴△ABC为钝角三角形.故选C.[条件探究3]将本典例条件变为“若bcoB+ccoC=acoA”,试判断三角形的形状.解由已知得a2+c2-b2a2+b2-c2b2+c2-a2b·+c·=a·,2ac2ab2bc∴b(a+c-b)+c(a+b-c)=a(b+c-a).∴(a+c-b)(b +a-c)=0.ππ222222∴a+c=b或b+a=c,即B=或C=.22∴△ABC为直角三角形.方法技巧判定三角形形状的两种常用途径222222222222222222提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后答案B解析解法一:由已知得2inAcoB=inC=in(A+B)=inAcoB+coAinB,即in(A-B)=0,因为-πa2+c2-b222由余弦定理得2a·=ca=ba=b.故选B.2ac[条件探究2]将本典例条件变为“若△ABC的三个内角满足inA∶inB∶inC=5∶11∶13”,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形答案C解析在△ABC中,inA∶inB∶inC=5∶11∶13,∴a∶b∶c=5∶11∶13,故设a=5k,b=11k,c=13k(k>0),由余弦定理可得a2+b2-c225k2+121k2-169k223coC===-<0,22ab2某5某11k110π又∵C∈(0,π),∴C∈,π,2∴△ABC为钝角三角形.故选C.[条件探究3]将本典例条件变为“若bcoB+ccoC=acoA”,试判断三角形的形状.解由已知得a2+c2-b2a2+b2-c2b2+c2-a2b·+c·=a·,2ac2ab2bc∴b(a+c-b)+c(a+b-c)=a(b+c-a).∴(a+c-b)(b +a-c)=0.ππ222222∴a+c=b或b+a=c,即B=或C=.22∴△ABC为直角三角形.方法技巧判定三角形形状的两种常用途径222222222222222222提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后。
2024届高三数学一轮复习-三角函数与解三角形 第2练 同角三角函数的基本关系及诱导公式(解析版)
第2练同角三角函数的基本关系及诱导公式一、单选题
二、多选题
A.()f x 的值域为2,2⎡⎤-⎣⎦
B.()f x 的最小正周期为πC.π
6
ϕ=
D.将函数f (x )的图象向左平移14.(2023·全国·高三专题练习)2022的形成需要两股涌潮,一股是波状涌潮,鱼鳞一样的涌潮.若波状涌潮的图象近似函数而破碎的涌潮的图象近似()f x '(两潮有一个交叉点,且破碎的涌潮的波谷为A.2
ω=C.π4f x ⎛
⎫'+ ⎪⎝
⎭的图象关于原点对称
三、填空题
15.(2023·全国·高三专题练习)已知16.(2023·湖南衡阳·衡阳市八中校考模拟预测)已知π
四、解答题
(1)若AM BM =,求
AC
AM
的值;(2)若AM 为BAC ∠的平分线,且20.(2023·全国·高三专题练习)a c <,且ππsin cos 36A ⎛⎫⎛- ⎪ ⎝⎭⎝(1)求A 的大小;
(2)若sin sin 43sin a A c C +=
参考答案:。
高考数学一轮复习第四篇三角函数解三角形第1讲 任意角弧度制及任意角
卜人入州八九几市潮王学校第1讲任意角、弧度制及任意角的三角函数【2021年高考会这样考】1.考察三角函数的定义及应用.2.考察三角函数值符号确实定.【复习指导】从近几年的高考试题看,这局部的高考试题大多为教材例题或者习题的变形与创新,因此学习中要立足根底,抓好对局部概念的理解.根底梳理1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边一样的角终边与角α一样的角可写成α+k·360°(k∈Z).(3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=,l是以角α作为圆心角时所对圆弧的长,r为半径.③用“弧度〞做单位来度量角的制度叫做弧度制,比值与所取的r的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度.⑤弧长公式:l=|α|r,扇形面积公式:S扇形=lr=|α|r2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x,y),它与原点的间隔为r(r>0),那么角α的正弦、余弦、正切分别是:sinα=,cosα=,tanα=,它们都是以角为自变量,以比值为函数值的函数.3.三角函数线设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M,那么点M是点P在x 轴上的正射影.由三角函数的定义知,点P的坐标为(cos_α,sin_α),即P(cos_α,sin_α),其中cosα=OM,sinα=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或者其反向延长线相交于点T,那么tanα=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.(2)终边落在x轴上的角的集合{β|β=kπ,k∈Z};终边落在y轴上的角的集合;终边落在坐标轴上的角的集合可以表示为.两个技巧(1)在利用三角函数定义时,点P可取终边上任一点,如有可能那么取终边与单位圆的交点,|OP|=r一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=πrad进展互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(A教材习题改编)以下与的终边一样的角的表达式中正确的选项是().A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)解析与的终边一样的角可以写成2kπ+π(k∈Z),但是角度制与弧度制不能混用,所以只有答案C正确.答案C2.假设α=k·180°+45°(k∈Z),那么α在().A.第一或者第三象限B.第一或者第二象限C.第二或者第四象限D.第三或者第四象限解析当k=2m+1(m∈Z)时,α=2m·180°+225°=m·360°+225°,故α为第三象限角;当k=2m(m∈Z)时,α=m·360°+45°,故α为第一象限角.答案A3.假设sinα<0且tanα>0,那么α是().A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析由sinα<0知α是第三、四象限或者y轴非正半轴上的角,由tanα>0知α是第一、三象限角.∴α是第三象限角.答案C4.角α的终边过点(-1,2),那么cosα的值是().A.-B.C.-D.-解析由三角函数的定义可知,r=,cosα==-.答案A5.(2021·)角θ的顶点为坐标原点,始边为x轴非负半轴,假设P(4,y)是角θ终边上一点,且sinθ=-,那么y=________.解析根据正弦值为负数且不为-1,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角,∴y<0,sinθ==-⇒y=-8.答案-8考向一角的集合表示及象限角的断定【例1】►(1)写出终边在直线y=x上的角的集合;(2)假设角θ的终边与角的终边一样,求在[0,2π)内终边与角的终边一样的角;(3)角α是第二象限角,试确定2α、所在的象限.[审题视点]利用终边一样的角进展表示及判断.解(1)在(0,π)内终边在直线y=x上的角是,∴终边在直线y=x上的角的集合为.(2)∵θ=+2kπ(k∈Z),∴=+(k∈Z).依题意0≤+<2π⇒-≤k<,k∈Z.∴k=0,1,2,即在[0,2π)内终边与一样的角为,,.(3)∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z.∴2k·360°+180°<2α<2k·360°+360°,k∈Z.∴2α是第三、第四象限角或者角的终边在y轴非正半轴上.∵k·180°+45°<<k·180°+90°,k∈Z,当k=2m(m∈Z)时,m·360°+45°<<m·360°+90°;当k=2m+1(m∈Z)时,m·360°+225°<<m·360°+270°;∴为第一或者第三象限角.(1)相等的角终边一定一样,但终边一样的角却不一定相等,终边一样的角有无数个,它们之间相差360°的整数倍.(2)角的集合的表示形式不是唯一的,如:终边在y轴非正半轴上的角的集合可以表示为,也可以表示为.【训练1】角α与角β的终边互为反向延长线,那么().A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D.α=k·360°±180°+β(k∈Z)解析对于角α与角β的终边互为反向延长线,那么α-β=k·360°±180°(k∈Z).∴α=k·360°±180°+β(k∈Z).答案D考向二三角函数的定义【例2】►角θ的终边经过点P(-,m)(m≠0)且sinθ=m,试判断角θ所在的象限,并求cosθ和tanθ的值.[审题视点]根据三角函数定义求m,再求cosθ和tanθ.解由题意得,r=,∴=m,∵m≠0,∴m=±,故角θ是第二或者第三象限角.当m=时,r=2,点P的坐标为(-,),角θ是第二象限角,∴cosθ===-,tanθ===-.当m=-时,r=2,点P的坐标为(-,-),角θ是第三象限角.∴cosθ===-,tan===.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P的位置无关.假设角α已经给出,那么无论点P选择在α终边上的什么位置,角α的三角函数值都是确定的.【训练2】(2021·课标全国)角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=2x上,那么cos2θ=().A.-B.-C.D.解析取终边上一点(a,2a),a≠0,根据任意角的三角函数定义,可得cosθ=±,故cos2θ=2cos2θ-1=-.答案B考向三弧度制的应用【例3】►半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.[审题视点](1)由条件可得△AOB是等边三角形,可得圆心角α的值;(2)利用弧长公式可求得弧长,再利用扇形面积公式可得扇形面积,从而可求弓形的面积.解(1)由⊙O的半径r=10=AB,知△AOB是等边三角形,∴α=∠AOB=60°=.(2)由(1)可知α=,r=10,∴弧长l=α·r=×10=,∴S扇形=lr=××10=,而S△AOB=·AB·=×10×=,∴S=S扇形-S△AOB=50.弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要纯熟地掌握弧度制下扇形的弧长与面积公式.【训练3】扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?解设圆心角是θ,半径是r,那么2r+rθ=40,S=lr=r(40-2r)=r(20-r)≤2=100.当且仅当r=20-r,即r=10时,S max=100.∴当r=10,θ=2时,扇形面积最大,即半径为10,圆心角为2弧度时,扇形面积最大.考向四三角函数线及其应用【例4】►在单位圆中画出适宜以下条件的角α的终边的范围.并由此写出角α的集合:(1)sinα≥;(2)cosα≤-.[审题视点]作出满足sinα=,cosα=-的角的终边,然后根据条件确定角α终边的范围.解(1)作直线y=交单位圆于A、B两点,连接OA、OB,那么OA与OB围成的区域(图中阴影局部)即为角α的终边的范围,故满足条件的角α的集合为.(2)作直线x=-交单位圆于C、D两点,连接OC、OD,那么OC与OD围成的区域(图中阴影局部)即为角α终边的范围,故满足条件的角α的集合为.利用单位圆解三角不等式(组)的一般步骤是:(1)用边界值定出角的终边位置;(2)根据不等式(组)定出角的范围;(3)求交集,找单位圆中公一共的局部;(4)写出角的表达式.【训练4】求以下函数的定义域:(1)y=;(2)y=lg(3-4sin2x).解(1)∵2cos x-1≥0,∴cos x≥.由三角函数线画出x满足条件的终边范围(如图阴影局部所示).∴定义域为(k∈Z).(2)∵3-4sin2x>0,∴sin2x<,∴-<sin x<.利用三角函数线画出x满足条件的终边范围(如图阴影局部所示),∴定义域为(k∈Z).标准解答7——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P(不与原点重合)的坐标为(x,y),它到原点的间隔是r(r=>0),那么sinα=、cosα=、tanα=分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x,y的符号由α终边所在象限确定,r的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x,y,r的值;然后对于含参数问题要注意分类讨论.【例如】►(此题总分值是12分)(2021·月考)角α终边经过点P(x,-)(x≠0),且cosα=x,求sinα、tanα的值.只要确定了r的值即可确定角α经过的点P的坐标,即确定角α所在的象限,并可以根据三角函数的定义求出所要求的值.[解答示范]∵P(x,-)(x≠0),∴P到原点的间隔r=,(2分)又cosα=x,∴cosα==x,∵x≠0,∴x=±,∴r=2.(6分)当x=时,P点坐标为(,-),由三角函数定义,有sinα=-,tanα=-;(9分)当x=-时,P点坐标为(-,-),∴sinα=-,tanα=.(12分)当角的终边经过的点不固定时,需要进展分类讨论,特别是当角的终边在过坐标原点的一条直线上时,在根据三角函数定义求解三角函数值时,就要把这条直线看做两条射线,分别求解,实际上这时求的是两个角的三角函数值,这两个角相差2kπ+π(k∈Z),当求出了一种情况后也可以根据诱导公式求另一种情况.【试一试】角α的终边在直线3x+4y=0上,求sinα+cosα+tanα.[尝试解答]取直线3x+4y=0上的点P1(4,-3),那么|OP1|=5,那么sinα=-,cosα=,tanα=-,故sinα+cosα+tanα=-++×=-;取直线3x+4y=0上的点P2(-4,3),那么sinα=,cosα=-,tanα=-.故sinα+cosα+tanα=-+×=-.综上,sinα+cosα+tanα的值是-或者-.。
2022届高考一轮复习第3章三角函数解三角形第2节同角三角函数的基本关系及诱导公式
∴cos2 α+12sin 2α=coss2iαn+2αs+incαosc2αos α=11++ttaann2αα=35.
[答案] A
(2)已知 tan α=-43,求 2sin2α+sin αcos α-3cos2α 的值. [解析] ∵sin2α+cos2α=1,cos α≠0, ∴原式=2sin2α+sisnin2αα+cocsosα2-α 3cos2α=2tant2aαn+2αta+n1α-3
(2)sin21°+sin22°+…+sin289°=________.
[解析] 因为 sin 1°=cos 89°,所以 sin21°+sin289°=cos289°+sin289°=1,同理 sin22°+sin288°=1,…,sin244°+sin246°=1,而 sin245°=12,故原式=44+12=4412. [答案] 4412
(3)在平面直角坐标系 xOy 中,角 α 与角 β 均以 Ox 为始边,它们的终边关于 y 轴
对称,若 sin α=13,则 sin β=________.
[解析] α 与 β 的终边关于 y 轴对称,则 α+β=π+2kπ,k∈Z.
∴β=π-α+2kπ,k∈Z.
∴sin β=sin(π-α+2kπ)=sin α=13.
(2)已知θ是第四象限角,且 sinθ+π4=35,则 tanθ-π4=__________.
[解析] 因为 θ 是第四象限角, 且 sinθ+π4=35, 所以 θ+π4为第一象限角, 所以 cosθ+π4=45,
所以 tanθ-π4=csionsθθ--π4π4 =-sicnosπ2+π2+θ-θ-π4 π4 =-csoinsθθ++π4π4=-43. [答案] -43
次幂 子化为完全平方式,根据二次根式的性质化简或求 出现根号或高次
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学讲义之三角函数、解三角形【主干内容】 1. 弧长公式:r l⋅=||α. 扇形面积公式:211||22s lr r α==⋅扇形 2. 三角函数的定义域:3.正弦、余弦、正切、余切函数的图象的性质:4. 同角三角函数的基本关系式:ααtan cos = 1cos sin 22=+αα 5. 诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”。
重要公式:βαβαβαsin sin cos cos )cos(+=-6.三角函数图象的作法:描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正切曲线). 【注意!!!】本专题主要思想方法1.等价变换。
熟练运用公式对问题进行转化,化归为熟悉的基本问题;2.数形结合。
充分利用单位圆中的三角函数线及三角函数图象帮助解题;3.分类讨论。
【题型分类】题型一:三角运算,要求熟练使用各种诱导公式、倍角公式等。
〖例1〗(10全国卷Ⅰ文)cos300︒=A .12 C.12C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒= 〖例2〗(10全国卷Ⅱ文)已知2sin 3α=,则cos(2)x α-=A.3-19- C.19D.3 【解析】B :本题考查了二倍角公式及诱导公式,∵ SINA=2/3, ∴21cos(2)cos 2(12sin )9πααα-=-=--=-〖例3〗(10福建文)计算12sin 22.5-的结果等于( )A.12B.2C.3D.2【答案】B【解析】原式=2cos 45=,故选B. 〖例4〗 (10浙江文)函数2()sin (2)4f x x π=-的最小正周期是 。
解析:对解析式进行降幂扩角,转化为()2124cos 21+⎪⎭⎫ ⎝⎛--=πx x f ,可知其最小正周期为2π,本题主要考察了二倍角余弦公式的灵活运用,属容易题。
题型二:三角函数的图象:三角函数图象从“形”上反应了三角函数的性质。
〖例1〗(10重庆文)下列函数中,周期为π,且在[,]42ππ上为减函数的是A.sin(2)2y x π=+ B.cos(2)2y x π=+ C.sin()2y x π=+ D.cos()2y x π=+ 【答案】A〖例2〗(09浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( )D〖例3〗为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin 2y x =的图象 A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A .〖例4〗 (10江西文)四位同学在同一个坐标系中分别选定了一个适当的区间,各自作出三个函数sin 2y x =,sin(),6y x π=+sin()3y x π=-的图像如下,结果发现恰有一位同学作出的图像有错误,那么有错误的图像是【答案】C【命题意图】考查三角函数的图像与性质.【解析】作出三个函数图像对比分析即可选择C 。
〖例5〗(09重庆文)设函数22()(sin cos )2cos (0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的最小正周期.(Ⅱ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到,求()y g x =的单调增区间.解:(Ⅰ)依题意得2223ππω=,故ω (Ⅱ)依题意得:由5232()242k x k k Z πππππ--+∈≤≤解得227()34312k x k k Z ππππ++∈≤≤\故()y g x =的单调增区间为〖例6〗(11浙江文)已知函数()sin ()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像,如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .(Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23PRQ π∠=,求A 的值.题型三:三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题。
〖例1〗若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-D .12+解析:由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤.又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.∴ D.点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决. 〖例2〗(09上海文)函数2()2cos sin 2f x x x =+的最小值是 。
解析:)42sin(212sin 2cos 12sin cos 22π++=++=+x x x x x ,〖例3〗(10江西文)函数2sin sin 1y x x =+-的值域为 A .[]1,1- B .5,14⎡⎤--⎢⎥⎣⎦ C .5,14⎡⎤-⎢⎥⎣⎦ D .51,,4⎡⎤-⎢⎥⎣⎦〖例4〗已知函数2()2sin cos 2cos f x a x x b x =+,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++. (1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+=(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值.点评: ()sin cos a b θθθϕ+=+题型四:正余弦定理的应用〖例1〗(11浙江文)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=A .12 B .12 C . -1 D . 1 〖例2〗(10上海文)若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =则△ABCA .一定是锐角三角形.B .一定是直角三角形.C .一定是钝角三角形.D .可能是锐角三角形,也可能是钝角三角形. 解析:由sin :sin :sin 5:11:13A B C =及正弦定理得a:b:c=5:11:13由余弦定理得0115213115cos 222<⨯⨯-+=c ,所以角C 为钝角 〖例3〗(2009浙江文)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足cos25A =,3AB AC ⋅=. (I )求ABC ∆的面积; (II )若1c =,求a 的值. 解析:(Ⅰ)531)552(212cos2cos 22=-⨯=-=A A 又),0(π∈A ,54cos 1sin 2=-=A A ,而353cos .===bc A ,所以5=bc ,所以ABC ∆(Ⅱ)由(Ⅰ)知5=bc ,而1=c ,所以5=b 所以5232125cos 222=⨯-+=-+=A bc c b a〖例4〗(2011届稽阳联考)如右图,在△ABC 中,D 为BC 边上一点,βα=∠=∠CAD BAD ,,10103cos ,552cos ==βα. (1)求BAC ∠的大小; (2)当中点为BC D 时,求ADAC的值. 解:(1) 由已知,55cos 1sin 2=-=αα …………………1分 1010cos 1sin 2=-=ββ…………………2分 βαβαβαsin sin cos cos )cos(cos -=+=∠BAC …………3分 2210105510103552=⋅-⋅=…………………5分 ∵),0(π∈∠BAC ∴4π=∠BAC .………………………… 7分(2)BADABD sin sin BD =∆α中,(1)…………………9分 BACABC sin )sin(BC =+∆βα中,(2)………………11分51022552)sin(sin 2sin )sin()1()2(21=⨯=+=⨯+==∴=βαααβαBD BC AD AC BC BD 14分〖例5〗(2010山东文)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2b =,sin cos B B +=则角A 的大小为 .【解析】由sin cos B B +=12sin cos 2B B +=,即sin 2B 1=,因为0<B<π,所以B=45,又因为a =2b =,所以在ABC ∆中,由正弦定理得:2=sin A sin 45,解得1sin A 2=,又<b a ,所以A<B=45, 【好题速递】1.(2010年高考宁夏卷文科16)在ABC 中,D 为BC 边上一点,3BC BD =,AD =135ADB ο∠=.若AC =,则BD=_____【答案】2+2.( 2010年高考全国Ⅰ卷文科14)已知α为第二象限的角,3sin 5a =,则tan 2α= . 247-【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能. 【解析】因为α为第二象限的角,又3sin 5α=, 所以4cos 5α=-,sin 3tan cos 4ααα==-,所22tan 24tan(2)1tan 7ααα==-- 3.(2010年高考全国卷Ⅱ文科13)已知α是第二象限的角,tan α=1/2,则cosα=__________【解析】:本题考查了同角三角函数的基础知识 ∵1tan 2α=-,∴cos 5α=-。