算法设计实验报告一(简单算法设计)
算法实验报告

实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。
2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。
3.学会利用分治算法解决实际问题。
二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。
假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。
并对自己的程序进行复杂性分析。
三.问题分析:一般思路:假设袋中有n 个金块。
可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。
找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。
这样,比较的总次数为2n-3。
分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。
当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。
第二步,分别找出在A和B中最重和最轻的金块。
设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。
第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。
在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。
该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。
当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。
首先处理n≤1的情况。
若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。
当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。
算法实验报告

算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
现代密码算法实验报告(3篇)

第1篇一、实验目的1. 了解现代密码学的基本原理和数论基础知识;2. 掌握非对称密码体制的著名代表RSA加密算法的工作原理和流程;3. 设计实现一个简单的密钥系统;4. 掌握常用加密算法AES和DES的原理及实现。
二、实验内容1. RSA加密算法实验2. AES加密算法实验3. DES加密算法实验三、实验原理1. RSA加密算法RSA算法是一种非对称加密算法,由罗纳德·李维斯特、阿迪·沙米尔和伦纳德·阿德曼三位密码学家于1977年提出。
其基本原理是选择两个大质数p和q,计算它们的乘积n=pq,并计算欧拉函数φ(n)=(p-1)(q-1)。
选择一个整数e,满足1<e<φ(n)且e与φ(n)互质。
计算e关于φ(n)的模逆元d。
公开密钥为(e,n),私有密钥为(d,n)。
加密过程为C=Me mod n,解密过程为M=Cd mod n。
2. AES加密算法AES(Advanced Encryption Standard)是一种分组加密算法,采用128位分组大小和128、192或256位密钥长度。
AES算法主要分为四个阶段:初始轮、密钥扩展、中间轮和最终轮。
每个轮包括字节替换、行移位、列混淆和轮密钥加。
3. DES加密算法DES(Data Encryption Standard)是一种分组加密算法,采用64位分组大小和56位密钥长度。
DES算法主要分为16轮,每轮包括置换、置换-置换、S盒替换和密钥加。
四、实验步骤及内容1. RSA加密算法实验(1)选择两个大质数p和q,计算n=pq和φ(n)=(p-1)(q-1);(2)选择一个整数e,满足1<e<φ(n)且e与φ(n)互质,计算e关于φ(n)的模逆元d;(3)生成公开密钥(e,n)和私有密钥(d,n);(4)用公钥对明文进行加密,用私钥对密文进行解密。
2. AES加密算法实验(1)选择一个128、192或256位密钥;(2)初始化初始轮密钥;(3)进行16轮加密操作,包括字节替换、行移位、列混淆和轮密钥加;(4)输出加密后的密文。
算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
数字整型算法实验报告(3篇)

第1篇一、实验目的1. 理解数字整型算法的基本原理和方法。
2. 掌握常用的数字整型算法,如整数乘法、除法、取余、排序等。
3. 培养算法设计与分析能力,提高编程实践能力。
二、实验内容1. 整数乘法算法2. 整数除法算法3. 整数取余算法4. 快速排序算法5. 堆排序算法三、实验原理1. 整数乘法算法:利用位运算,将两个整数进行逐位相乘,然后求和得到最终结果。
2. 整数除法算法:利用长除法原理,将除数逐步减去被除数的倍数,直到余数小于除数,此时商即为最终结果。
3. 整数取余算法:与整数除法类似,只需取除法的余数即可。
4. 快速排序算法:采用分治策略,将待排序的序列分为两部分,一部分大于等于基准值,另一部分小于基准值,然后递归地对这两部分进行排序。
5. 堆排序算法:利用堆这种数据结构,通过调整堆的性质来实现排序。
四、实验步骤1. 整数乘法算法实现```cint multiply(int a, int b) {int result = 0;while (b != 0) {if (b & 1) {result += a;}a <<= 1;b >>= 1;}return result;}```2. 整数除法算法实现```cint divide(int a, int b) {if (a == 0) return 0;int sign = (a > 0) ^ (b > 0) ? -1 : 1;long long dividend = abs((long long)a), divisor = abs((long long)b); long long quotient = 0;while (dividend >= divisor) {dividend -= divisor;quotient++;}return sign (int)quotient;}```3. 整数取余算法实现```cint remainder(int a, int b) {return a % b;}```4. 快速排序算法实现```cvoid quickSort(int arr[], int low, int high) { if (low < high) {int pivot = partition(arr, low, high); quickSort(arr, low, pivot - 1);quickSort(arr, pivot + 1, high);}}int partition(int arr[], int low, int high) { int pivot = arr[high];int i = low - 1;for (int j = low; j < high; j++) {if (arr[j] <= pivot) {i++;swap(&arr[i], &arr[j]);}}swap(&arr[i + 1], &arr[high]);return i + 1;}```5. 堆排序算法实现```cvoid heapify(int arr[], int n, int i) {int largest = i;int left = 2 i + 1;int right = 2 i + 2;if (left < n && arr[left] > arr[largest]) { largest = left;}if (right < n && arr[right] > arr[largest]) { largest = right;}if (largest != i) {swap(&arr[i], &arr[largest]);heapify(arr, n, largest);}}void heapSort(int arr[], int n) {for (int i = n / 2 - 1; i >= 0; i--) {heapify(arr, n, i);}for (int i = n - 1; i > 0; i--) {swap(&arr[0], &arr[i]);heapify(arr, i, 0);}}```五、实验结果与分析1. 整数乘法算法:通过位运算实现,效率较高,适用于大整数乘法运算。
算法设计实训报告

一、实训背景随着计算机科学技术的飞速发展,算法作为计算机科学的核心,其设计与应用越来越受到重视。
为了提高我们的算法设计能力,培养解决实际问题的能力,我们开展了为期一个月的算法设计实训。
本次实训以《算法设计与分析》课程为基础,通过理论学习、实验操作和实践应用,使我们深入理解了算法的基本概念、设计方法和分析技巧。
二、实训内容1. 理论学习(1)回顾了算法的基本概念,包括算法、算法复杂度、时间复杂度和空间复杂度等。
(2)学习了常用的算法设计方法,如分治法、动态规划、贪心算法、回溯法等。
(3)了解了不同算法的应用场景和适用范围。
2. 实验操作(1)使用C++语言实现了多种算法,如快速排序、归并排序、二分查找、插入排序等。
(2)针对实际问题,设计了相应的算法,如矩阵链相乘、背包问题、最小生成树等。
(3)对实验结果进行了分析,对比了不同算法的性能。
3. 实践应用(1)以小组为单位,针对实际问题进行算法设计,如数字三角形、投资问题等。
(2)编写程序代码,实现所设计的算法。
(3)对程序进行调试和优化,提高算法效率。
三、实训成果1. 提高了算法设计能力:通过实训,我们掌握了多种算法设计方法,能够根据实际问题选择合适的算法。
2. 增强了编程能力:实训过程中,我们熟练掌握了C++编程语言,提高了编程技巧。
3. 深化了算法分析能力:通过对算法复杂度的分析,我们能够更好地理解算法性能。
4. 培养了团队合作精神:在实训过程中,我们学会了与他人沟通、协作,共同完成任务。
四、实训总结1. 实训过程中,我们遇到了许多困难,如算法设计思路不明确、编程错误等。
通过查阅资料、请教老师和同学,我们逐步克服了这些问题。
2. 实训过程中,我们认识到算法设计的重要性。
一个好的算法可以显著提高程序运行效率,解决实际问题。
3. 实训过程中,我们学会了如何将实际问题转化为数学模型,并设计相应的算法。
4. 实训过程中,我们提高了自己的自学能力和解决问题的能力。
算法冒泡排序实验报告(3篇)

第1篇一、实验目的本次实验旨在通过实现冒泡排序算法,加深对排序算法原理的理解,掌握冒泡排序的基本操作,并分析其性能特点。
二、实验内容1. 冒泡排序原理冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
遍历数列的工作是重复地进行,直到没有再需要交换,也就是说该数列已经排序完成。
2. 实验步骤(1)设计一个冒泡排序函数,输入为待排序的数组,输出为排序后的数组。
(2)编写一个主函数,用于测试冒泡排序函数的正确性和性能。
(3)通过不同的数据规模和初始顺序,分析冒泡排序的性能特点。
3. 实验环境(1)编程语言:C语言(2)开发环境:Visual Studio Code(3)测试数据:随机生成的数组、有序数组、逆序数组三、实验过程1. 冒泡排序函数设计```cvoid bubbleSort(int arr[], int n) {int i, j, temp;for (i = 0; i < n - 1; i++) {for (j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```2. 主函数设计```cinclude <stdio.h>include <stdlib.h>include <time.h>int main() {int n;printf("请输入数组长度:");scanf("%d", &n);int arr = (int )malloc(n sizeof(int)); if (arr == NULL) {printf("内存分配失败\n");return 1;}// 生成随机数组srand((unsigned)time(NULL));for (int i = 0; i < n; i++) {arr[i] = rand() % 100;}// 冒泡排序bubbleSort(arr, n);// 打印排序结果printf("排序结果:\n");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");// 释放内存free(arr);return 0;}```3. 性能分析(1)对于随机生成的数组,冒泡排序的平均性能较好,时间复杂度为O(n^2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告一
课程C++ 实验名称简单算法设计第 1 页专业_数学与应用数学_ __ 班级__ 双师一班学号105012011056 姓名陈萌
实验日期:2013 年 3 月9 日报告退发(订正、重做)
一、实验目的
1. 理解算法设计与分析的基本概念,理解解决问题的算法设计与实现过程;
2. 掌握简单问题的算法设计与分析,能设计比较高效的算法;
3. 熟悉C/C++语言等的集成开发环境,掌握简单程序设计与实现的能力。
二、实验内容
(一)相等元素问题
1.问题描述
元素唯一性问题:给出一个整数集合,假定这些整数存储在数组A[1…n]中,确定它们中是否存在两个相等的元素。
请设计出一个有效算法来解决这个问题,你的算法的时间复杂性是多少?
2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1767题
输入:输入的第一行是一个正整数m,表示测试例个数。
接下来几行是m个测试例的数据,每个测试例的数据由两行组成,其中第一行为一个正整数n (n<=500),表示整数序列的长度,第二行给出整数序列,整数之间用一个空格隔开。
输出:对于每个测试例输出一行,若该组测试例中存在两个相等的元素则输出”Yes”,否则,输出”No”。
每个测试例的输出数据用一行表示。
3. 测试数据
输入:3
10
9 71 25 64 38 52 5 31 19 45
16
26 35 17 92 53 24 6 57 21 12 34 2 17 86 75 33
20
15 87 32 7 84 35 26 45 78 96 52 22 37 65 9 43 21 3 33 91
输出:No
Yes
No
(二) 整数集合分解
1.问题描述
设计算法把一个n个元素的整数集合(n为偶数)分成两个子集S1和S2,使得:每个新的集合中含有n/2个元素,且S1中的所有元素的和与S2中的所有元素的和的差最大。
2. 具体要求(若在ACM平台上提交程序,必须按此要求)――平台上1768题
输入的第一行是一个正整数m,表示测试例个数。
接下来几行是m个测试例的数据,每个测试例的数据由两行组成,其中第一行为一个正整数n (n为偶数,且n<=500),表示原整数集合的长度,第二行给出这n个整数序列,整数之间用一个空格隔开。
输出:对于每个测试例输出两行,分别表示新生成的整数集合。
其中,第一行是元素和比较小的整数集合,第二行是元素和比较大的整数集合,整数之间用一个空格隔开。
两个测
试例的输出数据之间用一个空行隔开,最后一个测试例后无空行
3. 测试数据
输入:
2
22
68 25 34 16 2 37 3 95 76 57 21 13 4 78 29 6 17 39 51 20 43 12
26
28 3 48 59 14 32 47 51 42 61 9 24 52 78 65 2 37 78 51 73 29 7 26 95 37 2
输出:
2 3 4 6 12 13 16 17 20 21 25
29 34 37 39 43 51 57 68 76 78 95
2 2
3 7 9 1
4 24 26 28 29 32 37 37
42 47 48 51 51 52 59 61 62 65 73 78 95
三、实验步骤
1.程序如下:
#include<stdio.h>
#define N 500
int main()
{
int i,j,m,n,t,k=0;
int a[N];
printf("请输入测试的数的个数:\n");
scanf("%d",&m);
for(t=0;t<m;t++)
{
printf("请输入序列的长度:\n");
scanf("%d",&n);
printf("请输入序列的数字:\n");
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
if(a[i]==a[j])
k=1;
if(k==1) printf("yes\n");
else printf("NO\n");
}
return 0;
}
2. 程序如下:
#include<stdio.h>
#define N 500
int main()
{
int a[N];
int n,k,t,j,i,b,m;
printf("请输入示例的个数:\n");
scanf("%d",&m);
for(b=0;b<m;b++)
{
printf("请输入数的个数:\n");
scanf("%d",&n);
printf("请输入该组数:\n");
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0;i<n;i++)
{
k=i;
for(j=i+1;j<n;j++)
if(a[k]>a[j]) k=j;
if(i!=k)
{
t=a[i];
a[i]=a[k];
a[k]=t;
}
}
for(i=0;i<n/2;i++)
printf("%3d",a[i]);
printf("\n");
for( ;i<n;i++)
printf("%3d",a[i]);
printf("\n");
}
return 0;
}
四、实验结果与讨论
(一)程序运行结果如下:
(二)程序运行结果如下:
五、总结
本次试验不是很难,感觉程序应多上机练习才会有较大提高,在编程过程中较为马虎,因此希望以后自己注意细节,争取做到高效编程。