苏教版必修一:第二章 函数 2.2.2

合集下载

高中数学苏教版必修一 第2章 2.2 2.2.1 第1课时 函数的单调性

高中数学苏教版必修一 第2章 2.2 2.2.1 第1课时 函数的单调性

2.2函数的简单性质2.2.1函数的单调性第1课时函数的单调性学习目标:1.理解并掌握单调增(减)函数的定义及其几何意义.(重点)2.会用单调性的定义证明函数的单调性.(重点、难点)3.会求函数的单调区间.(重点、难点)[自主预习·探新知]1.单调增(减)函数的概念设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I内的任意两个值x1,x2.当x1<x2时,都有(1)f(x1)<f(x2)①称y=f(x)在I上为单调增函数.②I称为y=f(x)的单调增区间.(2)f(x1)>f(x2)①称y=f(x)在I上为单调减函数.②I称为y=f(x)的单调减区间.2.函数的单调性与单调区间如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在这一区间I上具有单调性,单调增区间和单调减区间统称为单调区间.思考:在增、减函数定义中,能否把“任意两个值x1,x2”改为“存在两个值x1,x2”?[提示]不能.如图所示,虽是f(-1)<f(2),但f(x)在[-1,2]上并不是单调的.[基础自测]1.思考辨析(1)所有函数在定义域上都具有单调性.()(2)增、减函数定义中的“任意x1,x2∈D”可以改为“存在x1,x2∈D”.()(3)若函数f(x)在实数集R上是减函数,则f(0)>f(1).()[解析](1)×.比如二次函数y=x2在R上不具有单调性.(2)×.必须对所有的都成立才能说明单调.(3)√.减函数中自变量越小函数值越大.[答案](1)×(2)×(3)√2.函数f(x)的图象如图2-2-1所示,则函数的单调递增区间是____________________.图2-2-1[解析]在区间[-1,2]上,函数f(x)的图象由左至右“上升”,即在区间[-1,2]上,f(x)随着x的增大而增大,∴为增函数.[答案][-1,2]3.若函数f(x)在R上是减函数,且f(a)>f(b),则a与b的大小关系是__________.【导学号:48612078】[解析]由减函数的定义知a<b.[答案]a<b[合作探究·攻重难](1)y =x 2-4;(2)y =-2x ;(3)f (x )=⎩⎨⎧(x -2)2,x ≥0,x +4,x <0.[思路探究] 在图象上看从左向右上升的部分即递增,从左向右下降的部分即递减.[解] 三个函数图象如图(1)(2)(3).(1) (2) (3)(1)y =x 2-4的单调递减区间为(-∞,0),递增区间为(0,+∞). (2)y =-2x 的单调增区间为(-∞,0),(0,+∞),无递减区间. (3)f (x )的单调增区间为(-∞,0),(2,+∞),递减区间为(0,2).1.函数f (x )=-x 2+|x |(x ∈R )的单调递增区间为________.【导学号:48612079】[解析] (1)f (x )=-x 2+|x |=⎩⎪⎨⎪⎧-x 2+x ,x >0,-x 2-x ,x ≤0,图象如图所示:∴f (x )的单调增区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.[答案] ⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12用定义证明函数f (x )=x +2x +1在(-1,+∞)上是减函数. [思路探究] 解答本题可直接利用函数单调性的定义来判断.[解] 证明:设x 1,x 2是区间(-1,+∞)上任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1).∵-1<x 1<x 2,∴x 2-x 1>0,x 1+1>0,x 2+1>0, ∴x 2-x 1(x 1+1)(x 2+1)>0,即f (x 1)>f (x 2),∴y =x +2x +1在(-1,+∞)上是减函数.2.证明函数f(x)=x2+1x在(1,+∞)上单调递增.[证明]任取x1,x2∈(1,+∞),且x1<x2,f(x1)-f(x2)=x21+1x1-x22+1x2=⎝⎛⎭⎪⎫x1+1x1-⎝⎛⎭⎪⎫x2+1x2=(x1-x2)+x2-x1x1x2=(x1-x2)⎝⎛⎭⎪⎫x1x2-1x1x2.∵x1,x2>1,∴x1x2>1,∴x1x2-1>0.又x1<x2,∴x1-x2<0,∴f(x1)<f(x2),∴f(x)在(1,+∞)上单调递增.[1.如何利用函数的单调性比较两个函数值的大小?[提示]先判断函数f(x)在区间D上的单调性,如果函数f(x)在D上是增函数,当x1<x2时,则f(x1)<f(x2),如果f(x)在D上是减函数,结论则相反.2.如果已知函数的单调性和函数值的大小,能否判断对应自变量的大小?[提示]能.利用函数单调性,将函数值的大小关系转化为自变量的大小关系,即脱去f符号,转化为自变量的大小关系.已知函数f (x )是定义在[-2,2]上的增函数,且f (x -2)<f (1-x ),则x的取值范围为________.[思路探究] 根据单调性可以去掉f ,还应考虑定义域. [解] ∵f (x )是定义在[-2,2]上的增函数,且f (x -2)<f (1-x ), ∴x -2<1-x ,∴x <32.又f (x )的定义域为[-2,2],∴⎩⎪⎨⎪⎧-2≤x -2≤2,-2≤1-x ≤2,∴⎩⎪⎨⎪⎧0≤x ≤4,-1≤x ≤3,∴0≤x ≤3,综上,0≤x <32. [答案] ⎣⎢⎡⎭⎪⎫0,323.已知f (x )在R 上为减函数且f (2m )≥f (9-m ),则m 的取值范围是________.【导学号:48612080】[解析] 由题意可得2m ≤9-m , ∴m ≤3.[答案] m ≤3[当 堂 达 标·固 双 基]1.已知函数f (x )的图象如图2-2-2所示,则f (x )的单调减区间为________.【导学号:48612081】图2-2-2[解析] 由题图知,f (x )在⎝ ⎛⎭⎪⎫12,2上图象呈下降趋势,∴单调减区间为⎝ ⎛⎭⎪⎫12,2.[答案] ⎝ ⎛⎭⎪⎫12,22.下列四个函数中,在(0,+∞)上是增函数的是________. (1)f (x )=-1x +1;(2)f (x )=x 2-3x ; (3)f (x )=3-x ;(4)f (x )=-|x |. [解析] 函数f (x )=-1x +1的单调递增区间是(-∞,-1),(-1,+∞),显然在(0,+∞)上是增函数;函数f (x )=x 2-3x 在⎝ ⎛⎭⎪⎫0,32上单调递减,在⎝ ⎛⎭⎪⎫32,+∞上单调递增;函数f (x )=3-x 在(0,+∞)上是减函数;函数f (x )=-|x |在(0,+∞)上是减函数,故(2)(3)(4)错误.[答案] (1)3.若函数f (x )=(k -2)x +b 在R 上是减函数,则k 的取值范围为________.【导学号:48612082】[解析] ∵f (x )=(k -2)x +b 在R 上是减函数, ∴k -2<0,∴k <2. [答案] k <24.已知函数f (x )=⎩⎨⎧3x -5,x ≥1,-2x ,-1<x <1,x +2,x ≤-1,则f (x )的单调增区间为________.[解析] f (x )为分段函数,当x ≥1时,f (x )单调递增,当x ∈(-1,1)时,f (x )单调递减,当x ≤-1时,f (x )单调递增.[答案] [1,+∞),(-∞,-1]5.已知函数f (x )=x +12x +2,x ∈[1,+∞). (1)判断函数f (x )在区间[1,+∞)上的单调性; (2)解不等式:f ⎝ ⎛⎭⎪⎫2x -12<f (x +1 008). 【导学号:48612083】[解] (1)设1≤x 1<x 2, f (x 1)-f (x 2)=x 1+12x 1-x 2-12x 2=(x 1-x 2)+x 2-x 12x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-12x 1x 2 =(x 1-x 2)·2x 1x 2-12x 1x 2.由1≤x 1<x 2得 x 1-x 2<0,x 1x 2>1, ∴2x 1x 2-1>0, ∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )在[1,+∞)上为增函数. (2)∵f (x )在[1,+∞)上为增函数, ∴f ⎝ ⎛⎭⎪⎫2x -12<f (x +1 008) ⇒⎩⎪⎨⎪⎧2x -12≥1,2x -12<x +1 008,解得34≤x <2 0172,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪34≤x <2 0172.。

化学苏教版必修ⅰ课件:2.2.2碳酸钠的性质与应用.

化学苏教版必修ⅰ课件:2.2.2碳酸钠的性质与应用.

A.H2O
B.CO2
C.H2SO4
D.Ca(OH)2
【解析】选C。NaOH、Na2CO3、NaHCO3和水都不能反应, NaHCO3和CO2不能反应,NaOH和Ca(OH)2不能反应,H2SO4
和这六种物质都能反应生成Na2SO4。
2.如图是某学生设计的加热碳酸氢钠的实验装置图,其 中错误的地方共有( )
【解析】选C。碳酸氢钠受热可分解成Na2CO3、CO2和H2O。
2.下列物质中,有一种物质的颜色与其他三种物质的颜
色不同,这种物质是( A.NaOH B.Na2O ) C.Na2O2 D.NaHCO3
【解析】选C。过氧化钠是淡黄色固体,其余的都是白色
固体。
3.106 g Na2CO3和84 g NaHCO3分别与同浓度的过量的稀硫 酸反应,下列叙述正确的是( )
7.(10分)实验室利用如图所示装置进行NaHCO3的受热分解杯中观察到的实验现象 是
__________________。
(2)实验结束时的正确操作是_______(填字母); A.先将导管从液体中移出,再熄灭酒精灯 B.先熄灭酒精灯,再将导管从液体中移出 否则会引起_______________________。 (3)NaHCO3受热分解的化学方程式为____________。
【解析】选C。因为盐酸容易挥发,若选用盐酸,则所得 的CO2中含有HCl气体,最好选用难挥发的硫酸,因为CO2 溶于水不溶于饱和NaHCO3溶液,所以应用排饱和NaHCO3溶 液法来测量CO2的体积,排液装置导气管口应是“短进长 出”,以保证液体顺利排出。
5.将10 g Na2CO3和NaHCO3的混合物充分加热后,固体质量减 少3.1 g,则原混合物中Na2CO3的质量分数是( A.84% B.16%

高中数学苏教版必修一《2.2.2函数的奇偶性》课件

高中数学苏教版必修一《2.2.2函数的奇偶性》课件
15
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式
• 第二级
• 5第、三如级 果函数
f (x) x3 bx2 5x d
• 第四级
是•奇第五函级数,求 b, d
16
单击此处编辑母版标题样式
• 单击此处编辑母版文本样式y
• 第二级
(-a,b)
• 第三级
• 第四级
• 第五级
0
(a,b)
x
• 偶第三函级数,若满足则进入(2)
• 第四级
(2) 再•判第五断级f(x)与f(x)的关系
(3) 下结论:如果对定义域中的任意x都有:f(x)=f(x)则为偶
函数; f(x)=-f(x)则为奇函数,否则为非奇非偶函数
13
单击此处编辑母版标题样式
●函数按奇偶性可分为: • 单击此处①编奇辑函母数版文本样式②偶函数
• 单击此处编辑母版文本样式 y
• 第二级
• 第三级
• 第四级
• 第五级
0
x
19
单击横坐此标处互为编相反辑数母,纵版坐标标也题互为样相式反数的两点关于原
点对称
• 单击此处编辑母版文本样式
• 第二级
y
• 第三级
• 第四级
• 第五级
0
x
20
单击下此列处函数编具辑有奇母偶版性标吗?题样式
• 单击此处编辑y母版文本样式 y
C
关于y轴对称的两点横坐标互为相反数,纵坐标相等
17
单击此处编辑母版标y题样式
(-a,b)
• 单击此处编辑母版文本样式
• 第二级
• 第三级
0
• 第四级
• 第五级
(a,b)

高中数学苏教版教材目录(必修+选修)

高中数学苏教版教材目录(必修+选修)

高中数学苏教版教材目录(必修+选修)苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章 解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n 项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2----------------------------------- 第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)------------------------------------------------------------------------------------------------------------。

高中数学必修一苏教版课件第2章2.2-2.2.2函数的奇偶性精选ppt课件

高中数学必修一苏教版课件第2章2.2-2.2.2函数的奇偶性精选ppt课件
2x+1,x<0.
规律方法 1.当函数的解析式中含有参数时,根据函数奇偶性 定义列出等式 f(-x)=-f(x)或(f(-x)=f(x)),由等式求出 参数的值.有时也可由特殊值或由函数的性质直接分析求 解.
2.(1)第(2)小题忽视定义域为 R 的条件,漏掉 x=0 的情形.若函数 f(x)的定义域内含 0 且为奇函数,则必有 f(0)=0.
(4)因为 f(x)的定义域是(-∞,0)∪(0,+∞),关于 原点对称,
当 x>0 时,-x<0, f(-x)=1-(-x)=1+x=f(x);
当 x<0 时,-x>0, f(-x)=1+(-x)=1-x=f(x). 综上可知,对于 x∈(-∞,0)∪(0,+∞),都有 f(- x)=f(x), f(x)为偶函数.
[即时演练] 2.设偶函数 f(x)的定义域为[-5,5],若 当 x∈[0,5]时,f(x)的图象如图所示,则不等式 f(x)<0 的解集是________________.
解析:由于偶函数的图象关于 y 轴对称,所以可根据 对称性确定不等式 f(x)<0 的解.
因为当 x∈[0,5]时,f(x)<0 的解为 2<x≤5, 所以当 x∈[-5,0]时,f(x)<0 的解为-5≤x<-2. 所以 f(x)<0 的解是-5≤x<-2 或 2<x≤5. 答案:{x|-5≤x<-2 或 2<x≤5}
[例 1] 判断下列函数的奇偶性: (1)f(x)=2-|x|; (2)f(x)= x2-1+ 1-x2; (3)f(x)=x-x 1; (4)f(x)=-x+x+1,1,x>x<0,0.
解:(1)因为函数 f(x)的定义域为 R,关于原点对称, 又 f(-x)=2-|-x|=2-|x|=f(x),
f(x)=x2-2x,则函数 f(x)在 R 上的解析式是( ) A.f(x)=-x(x-2) B.f(x)=x(|x|-2) C.f(x)=|x|(x-2) D.f(x)=|x|(|x|-2)

苏教版数学必修1:第2章2.2.2第一课时知能演练轻松闯关

苏教版数学必修1:第2章2.2.2第一课时知能演练轻松闯关

1.下列函数中指数函数的个数为________.①y =(13)x ;②y =(13)x -1;③y =2·3x ;④y =1x;⑤y =(132x -1;⑥y =x 12.解析:只有①是指数函数. 答案:12.函数f (x )=(13)1x 的定义域,值域依次是____________.解析:由函数f (x )=(13)1x 的表达式得x ≠0为其有意义的取值范围,1x ≠0.∴(13)1x≠1且(13)1x >0.于是函数定义域为{x |x ≠0,x ∈R},值域为{y |y >0且y ≠1}. 答案:{x |x ≠0,x ∈R},{y |y >0且y ≠1} 3.根据条件写出正数a 的取值范围.(1)若a -0.3<a 0.2,则a ∈________;(2)若a 7.5<a 4.9,则a ∈________; (3)若a 74<1,则a ∈________;(4)若a 23<a ,则a ∈________.解析:(1)∵-0.3<0.2,a -0.3<a 0.2,∴函数y =a x 是增函数,故a ∈(1,+∞).(2)∵7.5>4.9,a 7.5<a 4.9,∴函数y =a x 是减函数,故a ∈(0,1).(3)∵a 74<1=a 0,74>0,∴函数y =a x是减函数,故a ∈(0,1).(4)∵23<1,a 23<a 1,∴函数y =a x 是增函数,故a ∈(1,+∞). 答案:(1,+∞) (0,1) (0,1) (1,+∞)4.函数y =a 2x -1(a >0且a ≠1)的图象必过定点________.解析:令2x -1=0,∴x =12.∴定点为(12,1).答案:(12,1)5.右图所示的曲线是指数函数y =a x 的图象.已知a 的值取54,43,310,15,则相应于曲线C 1,C 2,C 3,C 4的a 值依次为______________.解析:作直线x =1分别交曲线C 1,C 2,C 3,C 4于(1,a 1),(1,a 2),(1,a 3),(1,a 4),则a 1,a 2,a 3,a 4分别为C 1,C 2,C 3,C 4的函数式中的底数a ,结合图形可知a 1<a 2<a 3<a 4,而15<310<54<43,故a 的值依次为15,310,54,43答案:15,310,54,43[A 级 基础达标]1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时这种细菌由1个可繁殖为________个.解析:经过3小时这种细菌分裂9次,共有29=512(个). 答案:5122.函数y =2x 与y =2x +1的图象的交点个数是________.解析:作出y =2x与y =2x +1的图象(如图)即可得交点个数是2个. 答案:23.将30.9,90.3,(13)-0.2,2-0.2用“<”连接起来为________.解析:2-0.2<1<30.2<30.6<30.9.答案:2-0.2<(13)-0.2<90.3<30.94.如图所示,在同一坐标系中画出指数函数y =2x ,y =3x,y =(13)x 的图象,则①是函数________的图象;②是函数________的图象;③是函数________的图象.解析:图象①对应的指数函数是减函数,底数小于1,故①是函数y =(13)x 的图象;指数函数y =2x ,y =3x 都是增函数,且当x =1时,21<31,直线x =1与函数y =2x 图象的交点在与函数y =3x 图象的交点下方,所以②是函数y =3x 的图象,③是函数y =2x 的图象.答案:y =(13x y =3x y =2x5.根据图象解得方程2x -x =1的解集是________.解析:由图象(图略)可知方程有两解,再由观察及赋值可得. 答案:{0,1}6.比较下列各组数中两个值的大小:(1)0.2-1.5和0.2-1.7;(2)(14)13和(14)23;(3)2-1.5和30.2.解:(1)考察函数y =0.2x .因为0<0.2<1,所以函数y =0.2x 在实数集R 上是单调减函数.又因为-1.5>-1.7,所以0.2-1.5<0.2-1.7.(2)考察函数y =(14)x .因为0<14<1,所以函数y =(14)x 在实数集R 上是单调减函数.又因为13<23,所以(14)13>(14)23.(3)2-1.5<20,即2-1.5<1;30<30.2,即1<30.2,所以2-1.5<30.2.7.已知函数f (x )=a x在x ∈[-2,2]上恒有f (x )<2,求实数a 的取值范围. 解:当a >1时,f (x )=a x 在[-2,2]上为增函数, ∴f (x )max =f (2),又∵x ∈[-2,2]时,f (x )<2恒成立, ∴⎩⎨⎧a >1f (2)<2,即⎩⎨⎧a >1a 2<2, 解得1<a < 2.同理,当0<a <1时, ⎩⎨⎧0<a <1f (x )m ax =f (-2)<2, 解得22<a <1.综上所述,a 的取值范围为(22,1)∪(1,2).[B 级 能力提升]8.以下关于函数值域的结论,其中正确的个数是________.①函数y =35x -1的值域是(0,+∞);②函数y =(12)12x -1的值域是(0,1)∪(1,+∞);③函数y =2x 2-2x 的值域是⎣⎡⎭⎫12,+∞;④函数y =(13)x +2的值域是(0,+∞). 解析:∵5x -1≥0,∴y ≥1,故①错,②③④正确. 答案:39.设23-2x ≤(0.5)3x -4,则x 的取值范围为________. 解析:∵(0.5)3x -4=24-3x 且2>1,∵23-2x ≤24-3x ,∴3-2x ≤4-3x ,∴x ≤1. 故x 的取值范围为(-∞,1]. 答案:(-∞,1]10.根据下列条件,求x 的值:(1)4×4x -5×2x -6=0; (2)9x +6x =22x +1.解:(1)令2x =t ,则t>0,原方程可化为4t 2-5t -6=0,解得t 1=2,t 2=-34(舍).由2x =2得x =1.(2)将方程两边同除以4x,得(32)2x +(32)x -2=0,即[(32)x -1][(32)x +2]=0.因为(32)x +2>0,所以(32)x =1,所以x =0.11.(创新题)已知函数f (x )=12(a x +a -x)(a >0,且a ≠1)的图象经过点(2,419).(1)求f (x )的解析式;(2)证明:f (x )在[0,+∞)上是增函数.解:(1)∵函数f (x )的图象过点(2,419),∴12(a 2+a -2)=419, 整理得9a 4-82a 2+9=0,解得a 2=9或a 2=19.又a >0,且a ≠1,∴a =3或a =13.当a =3时,f (x )=12(3x +3-x );当a =13时,f (x )=12[(13)x +(13)-x ]=12(3x +3-x ).综上可知,所求解析式为f (x )=12(3x +3-x ).(2)证明:设x 1,x 2∈[0,+∞),且x 1<x 2, 则f (x 1)-f (x 2) =12(3x 1+3-x 1)-12(3x 2+3-x 2) =12(3x 1-3x 2+13x 1-13x 2) =12[(3x 1-3x 2)+3x 2-3x 13x 1·3x 2] =12(3x 1-3x 2)(1-13x 1+x 2) =12(3x 1-3x 2)·3x 1+x 2-13x 1+x 2. ∵0≤x 1<x 2,∴3x 1-3x 2<0,且3x 1+x 2>1. ∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )在[0,+∞)上是增函数.。

苏教版高中数学必修一课件2.2.2 函数的奇偶性ppt版本

苏教版高中数学必修一课件2.2.2 函数的奇偶性ppt版本

当a=-1,b=1时,经检验知f(x)为奇函数, 故a+b=0.
解析
答案
当堂训练
1.函数f(x)=0(x∈R)的奇偶性是_既__是__奇__函__数__又__是__偶__函__数_.
12345
答案
2.函数f(x)=x(-1<x≤1)的奇偶性是__既__不__是__奇_函__数__又__不__是__偶__函__数___.
解答
反思与感悟
函数奇偶性的定义有两处常用 (1)定义域关于原点对称. (2)对定义域内任意x,恒有f(-x)=f(x)(或-f(x))成立,常用这一特点得 一个恒成立的等式,或对其中的x进行赋值.
跟踪训练 5 已知函数 f(x)=xa2x+2+x,bxx,≤x0>,0 为奇函数,则 a+b=_0__. 解析 由题意知ff((21))= =- -ff((- -21)), , 则4aa++b2=b= 0,-2, 解得ab= =1-. 1,
解答
反思与感悟
利用基本的奇(偶)函数,通过加减乘除、复合,可以得到新的函数, 判断这些新函数的奇偶性,主要是代入-x,看总的结果.
跟踪训练3 设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶 函数,则下列结论中正确的是_①__③__④___.(填序号) ①f(x)g(x)是奇函数; ②f(x)g(x)是偶函数; ③|f(x)|g(x)是偶函数; ④f(x)|g(x)|是奇函数.
证明
反思与感悟
利用定义法判断函数是否具有奇偶性时,首先应看函数定义域是否关于 原点对称,即对于定义域内的任意一个x,则-x也一定属于定义域.
跟踪训练1 (1)证明 f(x)=(x-2)
2+x 2-x 既非奇函数又非偶函数;

江苏省南京师范大学附属中学高中数学苏教版必修一课件:2.2.2指数函数 (共18张PPT)

江苏省南京师范大学附属中学高中数学苏教版必修一课件:2.2.2指数函数 (共18张PPT)

进一步研究
不宜过早总结比较两个幂大小的方法,而应关注学生 是否认识到单调性是研究不等关系的工具.
谢谢!
在没找到重新开始的理由前,别给自己太多退却的借口。就在那一瞬间,我仿佛听见了全世界崩溃的声音。因为穷人很多,并且穷人没有钱,所以,他们才会在网络上聊 了答应自己要做的事情,别忘了答应自己要去的地方,无论有多难,有多远。分手后不可以做朋友,因为彼此伤害过;不可以做敌人,因为彼此深爱过,所以只好成了最 只有站在足够的高度才有资格被仰望。渐渐淡忘那些过去,不要把自己弄的那么压抑。往往原谅的人比道歉的人还需要勇气。因为爱,割舍爱,这种静默才是最深情的告 时光已成过往,是我再也回不去的远方。不要把自己的伤口揭开给别人看,世界上多的不是医师,多的是撒盐的人。这世界,比你不幸的人远远多过比你幸运的人,路要 的那一步很激动人心,但大部分的脚步是平凡甚至枯燥的,但没有这些脚步,或者耐不住这些平凡枯燥,你终归是无法迎来最后的'那些激动人心。一个人害怕的事,往往 都会有乐观的心态,每个人也会有悲观的现状,可事实往往我们只能看到乐观的一面,却又无视于悲观的真实。从来没有人喜欢过悲观,也没有人能够忍受悲观,这就是 就会缅怀过去,无论是幸福或是悲伤,苍白或是绚烂,都会咀嚼出新的滋味。要让事情改变,先改变我自己;要让事情变得更好,先让自己变得更好。当日子成为照片当 背对背行走的路人,沿着不同的方向,固执的一步步远离,再也没有回去的路。想要别人尊重你,首先就要学会尊重别人。所有的胜利,与征服自己的胜利比起来,都是 与失去自己的失败比起来,更是微不足道。生命不在于活得长与短,而在于顿悟的早与晚。既不回头,何必不忘。既然无缘,何须誓言。感谢上天我所拥有的,感谢上天 千万条,成功的人生也有千万种,选对适合自己的那条路,走好自己的每段人生路,你一定会是下一个幸福宠儿。活在别人的掌声中,是禁不起考验的人。每一次轻易的 笔。什么时候也不要放弃希望,越是险恶的环境越要燃起希望的意志。现实会告诉你,没有比记忆中更好的风景,所以最好的不要故地重游。有些记忆就算是忘不掉,也 满,现实很骨感。我落日般的忧伤就像惆怅的飞鸟,惆怅的飞鸟飞成我落日般的忧伤。舞台上要尽情表演,赛场上要尽力拼搏,工作中要任劳任怨,事业上要尽职尽责。 乐,今天的抗争为了明天的收获!积德为产业,强胜于美宅良田。爱情永远比婚姻圣洁,婚姻永远比爱情实惠。爱有两种,一种是抓住,你紧张他也紧张;一种是轻松拖 人无忧,智者常乐。并不是因为所爱的一切他都拥有了,而是所拥有的一切他都爱。原来爱情不是看见才相信,而是相信才看得见。磨难是化了妆的幸福。如果你明明知 者选择说出来,或者装作不知道,万不要欲言又止。有时候留给别人的伤害,选择沉默比选择坦白要痛多了。我爱自己的内心,慢慢通过它,慢慢抵达世界,或者,抵达 我忘记一切,时间不会改变痛,只会让我适应痛。人生不容许你任性,接受现实,好好努力。曾经以为爱情是甜蜜,幸福的,不知道它也会伤人,而且伤的很痛,很痛。 出的代价却是好些年的失败。时间几乎会愈合所有事情,请给时间一点时间。蚁穴虽小,溃之千里。多少人要离开这个世间时,都会说出同一句话,这世界真是无奈与凄 孵出来的却是失败。太完美的爱情,我不相信,途中聚聚散散难舍难分,终有一天会雨过天晴。我分不清东南西北,却依然固执的喜欢乱走。若是得手,便是随手可丢; 爱情不是寻找共同点,而是学会尊重不同点。总有一天我会从你身边默默地走开,不带任何声响。我错过了狠多,我总是一个人难过,3、戏路如流水,从始至终,点滴不 未变,终归大海。一步一戏,一转身一变脸,扑朔迷离。真心自然流露,举手投足都是风流戏。一旦天幕拉开,地上再无演员。 相信自己有福气,但不要刻意拥有;相信
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2函数的奇偶性学习目标 1.理解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函数图象的对称性解决简单问题.知识点一函数奇偶性的几何特征思考下列函数图象中,关于y轴对称的有哪些?关于原点对称的呢?★★答案★★①②关于y轴对称,③④关于原点对称.梳理图象关于y轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数.知识点二函数奇偶性的定义思考1为什么不直接用图象关于y轴(或原点)对称来定义函数的偶奇性?★★答案★★因为很多函数图象我们不知道,即使画出来,细微之处是否对称也难以精确判断.思考2利用点对称来刻画图象对称有什么好处?★★答案★★好处有两点:(1)等价:只要所有点均关于y轴(原点)对称,则图象关于y轴(原点)对称,反之亦然.(2)可操作:要判断点是否关于y轴(原点)对称,只要代入解析式验证即可.梳理设函数y=f(x)的定义域为A.如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数;如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性.知识点三奇(偶)函数的定义域特征思考如果一个函数f(x)的定义域是(-1,1],那这个函数f(x)还具有奇偶性吗?★★答案★★ 由函数奇偶性定义,对于定义域内任一元素x ,其相反数-x 必须也在定义域内,才能进一步判断f (-x )与f (x )的关系.而本问题中,1∈(-1,1],-1∉(-1,1],f (-1)无定义,自然也谈不上是否与f (1)相等了.所以该函数是既非奇函数,也非偶函数. 梳理 判断函数奇偶性要注意定义域优先原则,即首先要看定义域是否关于原点对称.类型一 证明函数的奇偶性命题角度1 已知函数解析式,证明奇偶性 例1 (1)证明f (x )=x 3-x 2x -1既非奇函数又非偶函数;(2)证明f (x )=(x +1)(x -1)是偶函数;(3)证明f (x )=1-x 2+x 2-1既是奇函数又是偶函数.证明 (1)因为它的定义域为{x |x ∈R 且x ≠1},所以对于定义域内的-1,其相反数1不在定义域内,故f (x )=x 3-x 2x -1既非奇函数又非偶函数.(2)函数的定义域为R ,因函数f (x )=(x +1)(x -1)=x 2-1,又因f (-x )=(-x )2-1=x 2-1=f (x ),所以函数为偶函数.(3)定义域为{-1,1},因为对定义域内的每一个x ,都有f (x )=0,所以f (-x )=f (x ),故函数f (x )=1-x 2+x 2-1为偶函数.又f (-x )=-f (x ),故函数f (x )=1-x 2+x 2-1为奇函数.即该函数既是奇函数又是偶函数.反思与感悟 利用定义法判断函数是否具有奇偶性时,首先应看函数定义域是否关于原点对称,即对于定义域内的任意一个x ,则-x 也一定属于定义域. 跟踪训练1 (1)证明f (x )=(x -2) 2+x2-x既非奇函数又非偶函数; (2)证明 f (x )=x |x |是奇函数.证明 (1)由2+x 2-x ≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数.(2)函数的定义域为R ,因f (-x )=(-x )|-x |=-x |x |=-f (x ),所以函数为奇函数. 命题角度2 证明分段函数的奇偶性例2 判断函数f (x )=⎩⎪⎨⎪⎧(x +5)2-4,x ∈(-6,-1],(x -5)2-4,x ∈[1,6)的奇偶性.解 由题意可知f (x )的定义域为(-6,-1]∪[1,6), 关于原点对称,当x ∈(-6,-1]时,-x ∈[1,6),所以f (-x )=(-x -5)2-4=(x +5)2-4=f (x );当x ∈[1,6)时,-x ∈(-6,-1],所以f (-x )=(-x +5)2-4=(x -5)2-4=f (x ). 综上可知对于任意的x ∈(-6,-1]∪[1,6), 都有f (-x )=f (x ),所以f (x )=⎩⎪⎨⎪⎧(x +5)2-4,x ∈(-6,-1],(x -5)2-4,x ∈[1,6)是偶函数. 反思与感悟 分段函数也是函数,证明奇偶性也是抓住两点 (1)定义域是否关于原点对称.(2)对于定义域内的任意x ,是否都有f (-x )=f (x )(或-f (x )),只不过对于不同的x ,f (x )有不同的表达式,要逐段验证是否都有f (-x )=f (x )(或-f (x )).跟踪训练2 证明f (x )=⎩⎪⎨⎪⎧-x 2,x <0,x 2,x >0是奇函数.证明 定义域为{x |x ≠0}. 若x <0,则-x >0, ∴f (-x )=x 2,f (x )=-x 2, ∴f (-x )=-f (x ); 若x >0,则-x <0,∴f (-x )=-(-x )2=-x 2,f (x )=x 2, ∴f (-x )=-f (x );即对任意x ≠0,都有f (-x )=-f (x ). ∴f (x )为奇函数.命题角度3 证明抽象函数的奇偶性例3 f (x ),g (x )是定义在R 上的奇函数,试判断y =f (x )+g (x ),y =f (x )g (x ),y =f [g (x )]的奇偶性.解 ∵f (x ),g (x )是定义在R 上的奇函数,∴f (-x )+g (-x )=-f (x )-g (x )=-[f (x )+g (x )],y =f (x )+g (x )是奇函数. f (-x )g (-x )=[-f (x )][-g (x )]=f (x )g (x ),y =f (x )g (x )是偶函数. f [g (-x )]=f [-g (x )]=-f [g (x )],y =f [g (x )]是奇函数.反思与感悟 利用基本的奇(偶)函数,通过加减乘除、复合,可以得到新的函数,判断这些新函数的奇偶性,主要是代入-x ,看总的结果.跟踪训练3 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是________.(填序号) ①f (x )g (x )是奇函数; ②f (x )g (x )是偶函数;③|f(x)|g(x)是偶函数;④f(x)|g(x)|是奇函数.★★答案★★①③④解析①令h(x)=f(x)g(x),则h(-x)=f(-x)·g(-x)=-f(x)g(x)=-h(x),∴h(x)是奇函数,故①对,②不对;③令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,故③对;④令h(x)=f(x)|g(x)|,则h(-x)=f(-x)·|g(-x)|=-f(x)|g(x)|=-h(x),∴h(x)是奇函数,故④对.类型二奇偶性的应用命题角度1奇(偶)函数图象的对称性的应用例4定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.解(1)先描出(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),连线可得f(x)的图象如图.(2)xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).引申探究将本例中的“奇函数”改为“偶函数”,重做该题.解(1)f(x)的图象如图所示.(2)xf(x)>0的解集是(-∞,-2)∪(0,2).反思与感悟鉴于奇(偶)函数图象关于原点(y轴)对称,可以用这一特性去画图,求值,求解析式,研究单调性.跟踪训练4 已知奇函数f (x )的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象; (2)写出使f (x )<0的x 的取值集合.解 (1)如图,在[0,5]上的图象上选取5个关键点O ,A ,B ,C ,D .分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为(-2,0)∪(2,5). 命题角度2 利用函数奇偶性的定义求值例5 (1)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.★★答案★★ 13解析 ∵偶函数的定义域关于原点对称, ∴a -1=-2a ,解得a =13,f (x )=13x 2+bx +b +1.又f (x )为偶函数,∴f (-x )=13(-x )2+b (-x )+b +1=f (x )=13x 2+bx +b +1,对定义域内任意x 恒成立,即2bx =0对任意x ∈[-23,23]恒成立,∴b =0.综上,a =13,b =0.(2)函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求当x <0时f (x )的解析式. 解 设x <0,则-x >0,∴f (-x )=-(-x )+1=x +1, 又∵函数f (x )是定义域为R 的奇函数, ∴f (-x )=-f (x )=x +1, ∴当x <0时,f (x )=-x -1.反思与感悟 函数奇偶性的定义有两处常用 (1)定义域关于原点对称.(2)对定义域内任意x ,恒有f (-x )=f (x )(或-f (x ))成立,常用这一特点得一个恒成立的等式,或对其中的x 进行赋值.跟踪训练5 已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x >0为奇函数,则a +b =________.★★答案★★ 0解析 由题意知⎩⎪⎨⎪⎧f (2)=-f (-2),f (1)=-f (-1),则⎩⎪⎨⎪⎧ 4a +2b =-2,a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =1.当a =-1,b =1时,经检验知f (x )为奇函数, 故a +b =0.1.函数f (x )=0(x ∈R )的奇偶性是________. ★★答案★★ 既是奇函数又是偶函数2.函数f (x )=x (-1<x ≤1)的奇偶性是________. ★★答案★★ 既不是奇函数又不是偶函数3.已知函数y =f (x )+x 是偶函数,且f (2)=1,则f (-2)=________. ★★答案★★ 5解析 ∵函数y =f (x )+x 是偶函数, ∴x =±2时函数值相等.∴f (-2)-2=f (2)+2,∴f (-2)=5.4.若函数f (x )=(m -1)x 2+(m -2)x +m 2-7m +12为偶函数,则m 的值是________. ★★答案★★ 25.下列说法错误的是________.(填序号) ①图象关于原点对称的函数是奇函数; ②图象关于y 轴对称的函数是偶函数; ③奇函数的图象一定过原点;④偶函数的图象一定与y 轴相交. ★★答案★★ ③④1.两个定义:对于f (x )定义域内的任意一个x ,如果都有f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (x )为奇函数;如果都有f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (x )为偶函数.2.两个性质:函数为奇函数⇔它的图象关于原点对称;函数为偶函数⇔它的图象关于y 轴对称.3.证明一个函数是奇函数,必须对f (x )的定义域内任意一个x ,都有f (-x )=-f (x ).而证明一个函数不是奇函数,只要能举出一个反例就可以了.课时作业一、填空题1.如果函数f (x )=⎩⎪⎨⎪⎧2x -3,x >0,f (x ),x <0是奇函数,则f (-2)=________.★★答案★★ -1解析 f (-2)=-f (2)=-(2×2-3)=-1.2.已知y =f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -x 2,则当x ≤0时,y =f (x )的解析式为________. ★★答案★★ f (x )=x 2+2x解析 设x <0,则-x >0,因为f (x )是奇函数, 所以f (x )=-f (-x )=-[2(-x )-(-x )2]=2x +x 2. 因为y =f (x )是R 上的奇函数,所以f (0)=0. 所以f (x )=x 2+2x ,x ≤0.3.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是________.(填序号)①f (x )+|g (x )|是偶函数; ②f (x )-|g (x )|是奇函数; ③|f (x )|+g (x )是偶函数; ④|f (x )|-g (x )是奇函数. ★★答案★★ ①解析 由f (x )是偶函数,可得f (-x )=f (x ), 由g (x )是奇函数,可得g (-x )=-g (x ), 故|g (x )|为偶函数,∴f (x )+|g (x )|为偶函数.4.已知函数f (x )=ax 3+bx (a ≠0)满足f (-3)=3,则f (3)=________. ★★答案★★ -3解析 ∵f (-x )=a (-x )3+b (-x )=-(ax 3+bx )=-f (x ), ∴f (x )为奇函数, ∴f (3)=-f (-3)=-3.5.函数f (x )=|x +1|-|x -1|为________.(填“奇函数”或“偶函数”) ★★答案★★ 奇函数 解析 f (x )的定义域为R ,对于任意x ∈R ,f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1|=-f (x ), ∴f (x )为奇函数.又f (-1)=-2,f (1)=2,f (-1)≠f (1), ∴f (x )不是偶函数.6.已知函数y =f (x )为偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是________. ★★答案★★ 0解析 由于偶函数的图象关于y 轴对称,所以偶函数的图象与x 轴的交点也关于y 轴对称,因此,四个交点中,有两个在x 轴的负半轴上,另两个在x 轴的正半轴上,所以四个实根的和为0.7.设奇函数f (x )在(0,+∞)上为单调增函数,且f (3)=0,则不等式f (x )-f (-x )2>0的解集为________.★★答案★★ (-3,0)∪(3,+∞) 解析 ∵f (x )为奇函数,f (3)=0, ∴f (-3)=0.又∵f (x )在(0,+∞)上为增函数, ∴f (x )在(-∞,0)上也为增函数, ∴f (x )-f (-x )2=f (x )>0,①当x >0时,则f (x )>f (3)=0,∴x >3; ②当x <0时,则f (x )>f (-3)=0,∴-3<x <0, 综上可得,原不等式的解集为(-3,0)∪(3,+∞).8.若函数f (x )=x 2-1+a -x 2为偶函数且非奇函数,则实数a 的取值范围为________. ★★答案★★ (1,+∞)解析 ∵函数f (x )=x 2-1+a -x 2为偶函数且非奇函数, ∴f (-x )=f (x )且f (-x )≠-f (x ).又∵⎩⎪⎨⎪⎧x 2-1≥0,a -x 2≥0,∴a ≥1.当a =1时,函数f (x )=x 2-1+a -x 2为偶函数且为奇函数, 故a >1.9.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.★★答案★★ 43解析 根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.10.函数f (x )=⎩⎪⎨⎪⎧x (1-x ),x <0,x (1+x ),x >0为________.(填“奇函数”或“偶函数”)★★答案★★ 奇函数 解析 定义域关于原点对称,且f (-x )=⎩⎪⎨⎪⎧-x (1+x ),-x <0,-x (1-x ),-x >0=⎩⎪⎨⎪⎧-x (1+x ),x >0,-x (1-x ),x <0 =-f (x ),所以f (x )是奇函数. 二、解答题11.判断下列函数的奇偶性. (1)f (x )=x 3+x 5; (2)f (x )=|x +1|+|x -1|; (3)f (x )=2x 2+2x x +1.解 (1)函数的定义域为R .∵f (-x )=(-x )3+(-x )5=-(x 3+x 5)=-f (x ),∴f (x )是奇函数. (2)f (x )的定义域是R .∵f (-x )=|-x +1|+|-x -1|=|x -1|+|x +1|=f (x ),∴f (x )是偶函数. (3)函数f (x )的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f (x )是非奇非偶函数. 12.若函数f (x )=x 2-|x +a |为偶函数,求实数a 的值. 解 ∵函数f (x )=x 2-|x +a |为偶函数, ∴f (-x )=f (x ),即(-x )2-|-x +a |=x 2-|x +a |, ∴|-x +a |=|x +a |,即|x -a |=|x +a |,∴a =0.13.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上为单调增函数,求实数a 的取值范围. 解 (1)因为f (x )为奇函数,所以f (-1)=-f (1),即1-m =-(-1+2), 解得m =2.经检验m =2时函数f (x )是奇函数. 所以m =2.(2)要使f (x )在[-1,a -2]上为单调增函数,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3]. 三、探究与拓展14.设奇函数f (x )的定义域为[-6,6],当x ∈[0,6]时,f (x )的图象如图所示,不等式f (x )<0的解集用区间表示为________.★★答案★★ [-6,-3)∪(0,3)解析 由f (x )在[0,6]上的图象知,满足f (x )<0的不等式的解集为(0,3).又f (x )为奇函数,图象关于原点对称,所以在[-6,0)上,不等式f (x )<0的解集为[-6,-3).综上可知,不等式f (x )<0的解集为[-6,-3)∪(0,3).15.已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,求函数f (x )的解析式. 解 ∵f (x )是定义在(-1,1)上的奇函数, ∴f (0)=0,即b1+02=0,∴b =0. 又∵f ⎝⎛⎭⎫12=12a 1+14=25, ∴a =1,∴f (x )=x1+x 2.。

相关文档
最新文档