电缆故障测试方法及技巧

合集下载

电力电缆故障的检测方法

电力电缆故障的检测方法

电力电缆故障的检测方法电缆故障的主要种类是并联故障和串联故障。

串联故障指的是电缆当中的多个或者是一个导体存在断开情况,通常的时候,串联当中断开一个导体之前,较难发现串联的故障,只有真正出现短路情况的时候才容易发现串联故障。

并联故障是因为电缆长期超负荷运行而导致外绝缘的老化现象,进而在局部发生放电情况,导致并联故障。

而结合电缆故障被击穿的长度差异和电阻不同,能够划分电缆故障为高阻故障、低阻故障、开路故障。

1.电桥法电桥法是一种传统的电缆故障检测方法,其可以实现非常理想的效果。

这种检测方法十分便捷,有着非常高的检测精度,属于一种经常应用的电缆故障检测方法。

可是,也存在一些缺陷,因为电桥电压差和检流计不够灵敏,所以仅仅适宜对电阻较低的电缆故障开展检测。

而对于电阻较高的设备和断路故障的电缆问题难以借助这样的方法来检测。

2.高压电桥法在电缆检测当中,高压电桥法属于一种经常应用的故障检测方法。

其检测原理是,对于高压电桥当中恒流电源刺穿造成的电缆故障的地方,从一定程度上确保流动比较大的电桥电流,进而在电桥整体线路的两边形成一定的电位差,在协调电桥平衡的根底上统计故障地方的差距。

对于应用高压恒流电源而言,可以有效拓展电桥高阻检测的区域,相对来讲,其可以对结果开展尤为便捷和准确检测。

并且,对于电桥法的研究理论来讲,即电缆中心线路电阻与整体线路根据比率开展分配的特点可以促进电桥检测体系的形成。

3.冲击高压闪络法在对电缆故障开展检测的一些方法当中,施工人员应用十分广泛的一种方法是冲击高压闪络法。

这种方法的检测原理是在故障电缆的开端地方施加冲击高压,从而对发生故障的地方开展十分迅速的击穿,以及记录下故障地方一刹那电压突跳的数据信息。

在仔细研究电缆故障地方与电缆始末数据信息消耗时间的根底上对时间距离开展测试,从而得到故障的地方,以及执行解决对策。

4,低压脉冲反射法在电缆故障检测中应用低压脉冲发射的方法应当在损坏的线路当中注入低压脉冲。

电缆故障查找方法

电缆故障查找方法

电缆故障查找方法电缆故障是电力系统中常见的问题,一旦出现故障,不仅会影响正常的用电,还可能造成安全隐患。

因此,及时准确地查找电缆故障并进行修复至关重要。

下面将介绍几种常用的电缆故障查找方法。

首先,最常用的方法是使用绝缘电阻测试仪进行测试。

在使用测试仪之前,需要先将电缆的两端分别接地,然后将测试仪的两个探头分别接触电缆的两端,记录下测试仪显示的绝缘电阻数值。

如果绝缘电阻数值低于正常范围,就说明电缆存在绝缘故障。

通过这种方法可以快速定位故障位置,有针对性地进行修复。

其次,可以利用局放检测仪进行故障查找。

局放检测仪能够检测电缆局部放电现象,通过分析局放信号的特点,可以判断出电缆是否存在故障。

在使用局放检测仪时,需要注意选择合适的检测频率和增益,以确保能够准确地捕捉到局放信号。

通过这种方法,可以有效地排除电缆的局部故障,提高查找故障的效率。

另外,还可以借助红外热像仪进行故障查找。

红外热像仪能够将电缆表面的热量分布显示出来,通过观察热像图可以发现电缆存在的热点,从而判断出故障位置。

在使用红外热像仪时,需要注意选择合适的拍摄距离和角度,以确保能够准确地捕捉到热像图像。

通过这种方法,可以快速定位电缆的热故障,有针对性地进行修复。

最后,还可以利用无损检测技术进行故障查找。

无损检测技术能够在不破坏电缆表面的情况下,通过电磁、超声波等方法检测电缆内部的故障。

这种方法不仅能够准确地查找出电缆的故障位置,还能够保护电缆表面的完整性,减少对电缆的损坏。

通过这种方法,可以全面地了解电缆的故障情况,有针对性地进行修复。

综上所述,电缆故障的查找方法有多种,每种方法都有其适用的场景和特点。

在实际操作中,可以根据具体情况选择合适的方法进行故障查找,以确保能够及时准确地排除电缆故障,保障电力系统的正常运行。

电缆故障的测试原理及方法

电缆故障的测试原理及方法

2、跨步电压法:采用跨步电压法定点,主要针对对电缆外护套绝缘有要求的外护套接地故障定点,现在对部分直埋的无铠装的低压电缆、电线接地故障、也可以采用跨步电压法定点。
3、电磁法及音频法:用电磁波定点或采用音频法定点,从原理上讲是可行的。但从目前情况看,还没有性能可靠的,能实际应用的定点仪。或者说,采用电磁波定点的定点仪仍旧在各科研机构研发之中,还需实践中进一步验证提高,达到实际应用水平。
应用脉冲反射法(也有叫冲闪法)的智能型闪测仪,是目前应用范围最广,市场保有量最大的电缆故障粗测仪器。例如北京供电系统,由于地埋电缆使用时间长,电缆铺设量大,应用电缆故障测试仪的历史也较长,从1993年后10年间,购买的单片机控制的、DTC系列探测仪的早期产品、TC系列大屏幕液晶显示的电缆故障测试仪有50余套,几乎每个供电部门都使用。并且在有些供电部门,把该类电缆故障测试仪的使用,作为电缆测试工种高级工考试必须掌握的技能,笔者曾多次对北京供电系统进行过脉冲反射法电缆故障测试仪的技术培训。由于该类仪器应用时间长,对该类型的闪测仪的使用知识和使用经验的培训资料及专著种类较多,有利于用户及时掌握仪器的使用技巧。
三、电缆路径探测方法介绍:
采用电磁波进行路径探测,是一种很成熟的方法,实际应用效果也很好。区别在于探测的电缆长度、探测深度,信号频率等各不相同。现在流行的路径仪,探测电缆长度大于10KM,探测电缆深度大于2m,电磁波频率10KHZ-20KHZ。
四、中低压电缆检测仪(电桥测试仪)介绍:
现在市场上流通的中低压电缆检测仪,大部分是完成电缆故障粗测功能。其原理一般是采用电桥法,只不过是现在已经采用了计算机技术,采用的是智能电桥。有低压电桥、高压电桥等等。有些仪器还采用了超高压数字电桥原理。给故障点加的电压一般为200V以上,最高可以加到20KV。对于故障电阻较低的(电阻小于600MΩ)电缆故障。用中低压电缆检测仪可以粗测故障距离。

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法
电力电缆是输送电能的重要组成部分,若出现故障则会导致供电中断、损失等问题,因此对电力电缆的故障分析及检测十分必要。

下面介绍电力电缆故障的分类及常用的检测方法。

一、故障分类
1.绝缘故障:电缆的绝缘材料损坏或老化,导致电力泄漏、短路等问题。

2.导体故障:电缆中导体损坏、接触不良、电阻过大等问题。

3.接头故障:电缆接头制作不良、防水措施不够、温升过高等问题。

二、常用检测方法
1.局部放电检测:通过检测电缆运行过程中的局部放电信号,判断电缆的绝缘状态,以便及早判断绝缘缺陷的出现。

2.介质损耗测试:通过测试电缆内介质的损耗,判断电缆绝缘状态的好坏。

3.电容测试:通过量取电缆母线、引出线之间的电容值,推算电缆电容率,以判断电缆绝缘状态。

4.高压测试:通过施加高电压测试电缆的绝缘强度,以便检测电缆的耐压性能。

5.电缆局部放电测量:通过检测电缆中存在的局部放电,判断导体两相之间或绝缘层内存在的故障。

6.时域反射法:通过测试电缆上电磁波信号的传输速度,以检测电缆上的绝缘故障的位置。

7.绝缘电阻测量:通过测试电缆的绝缘电阻变化情况,判断电缆的绝缘状况。

总的来说,电力电缆的故障分析及检测需要多种技术手段的综合运用,只有掌握了各种故障的原因和检测方法,才能及时发现问题,保障供电的连续性和稳定性。

说说使用电缆故障测试仪的测试方法

说说使用电缆故障测试仪的测试方法

说说使用电缆故障测试仪的测试方法仪器在测定电缆故障之间,测试人员除掌握本机性能与操作方法之外,必须首先确定电缆故障的性质,以便采用适当的工作方法与测试方法。

首先用兆欧或万用表在电缆一端测量各相对地及相之间的绝缘电阻,根据阻值高低确定是低阻短路或断线开路,或者是高阻闪络性故障。

操作方法1、当阻值低于200〜300欧姆为低阻故障,。

〜几十欧为短路故障,阻值极高到无限大为开路或断线故障。

是否断线,还可以将电缆终端相连用表在始端测量被短路接两相的阻值加以确认。

此类故障可用低脉冲法直接测定。

2、当阻值很高(数百兆和千兆)且在作高压实验时有瞬间放电现象,此类故障一般称为闪络性故障,可采用直流高压闪测法确定。

3、高阻故障:阻值高于低阻故障,且在作高压试验时直流高压闪测法确定。

4、按一定方式粗略测试之后再进行确定点,必要时需找电缆路径,丈量电缆长度或距离。

主要特点1、功能齐全,测试故障安全、迅速、准确。

仪器采用低压脉冲法和高压闪络法进行探测,可测试电缆的各种故障,对电力电缆的闪络及高阻故障无需烧穿而直接测试。

如配备声点仪,可准确测定故障点的位置2、测试精度高。

仪器采用高速数据采样技术,读取分辨率标。

智能化程度高。

测试结果以小型及数据自动显示在大屏幕液晶显示屏上,判断故障直观。

并配有菜单显示操作功能,无需对操作人员作专门的训练。

3、具有波开及参数存储、调出功能。

采用非易失性器件,关机后波形、数据不易失。

4、具有双踪显示功能。

可将故障电缆的测试波形与正常波形进行对比,有利于对故障的进一步判断。

5、具有波形扩展比例功能。

改变波形比例,可扩展波形进行精确测试。

6、控制测量光标,可自动沿线搜索,并在故障波形的拐点处自动停下。

7、可任意改变双光标的位置,直接显示故障点与测试点的直接距离或相对距离。

8、具有打印功能。

将测试的结果打印存档。

技术参数1.测试距离不小于10公里。

2.故障点定位误差小于0.5米。

3.电缆路径探测不小于10公里。

电缆故障检查方法

电缆故障检查方法

电缆故障检查方法
1. 外观检查:检查电缆外观是否有明显的物理损伤,如切割、磨损、挤压等。

还要检查是否有局部渗漏或电缆绝缘物质的腐蚀等问题。

2. 局部电压测试:使用电压测试仪器检测电缆的局部电压值,观察是否存在异常。

若存在异常电压,可能表明电缆存在故障。

3. 绝缘电阻测试:使用绝缘电阻测试仪器对电缆绝缘进行测试,观察绝缘电阻是否达到标准要求。

如果绝缘电阻过低,可能表示电缆有绝缘损坏。

4. 电阻测试:使用万用表等测试仪器对电缆的电阻进行测试,观察电阻值是否符合设定范围。

过高或过低的电阻值可能表示电缆存在问题。

5. 示波器测试:使用示波器检测电缆上的信号波形,观察波形是否正常。

如波形出现幅度变化、失真等情况,可能表明电缆存在故障。

6. 故障定位:使用电缆故障定位仪等设备,结合反射法或时域法等方法,对电缆故障进行精确定位,以便进行修复。

7. 热红外检测:使用红外热像仪对电缆进行红外热检测,观察电缆表面的温度分布情况,发现温度异常的部位,可能存在故障。

8. 声音检测:使用听诊器等工具对电缆进行声音检测,观察是否存在漏电声、放电声等异常的声音,以判断是否存在故障。

以上是常见的电缆故障检查方法,具体选用哪种方法需要根据实际情况和设备条件来决定。

在进行电缆故障检查时,应根据具体设备要求和安全规范进行操作,以确保安全可靠。

电力电缆检测及方法

电力电缆检测及方法

电力电缆检测及方法概述电力电缆是电力传输和分配的重要组成部分。

为了确保电力系统的安全和可靠运行,对电力电缆进行定期的检测是非常重要的。

本文档旨在介绍电力电缆检测的常见方法和步骤。

电力电缆检测方法1. 直流电阻测量直流电阻测量是一种常见的电力电缆检测方法。

通过测量电缆导体的电阻值,可以判断电缆的导体是否完好,并且可以检测是否存在接触不良或电缆绝缘破损等问题。

2. 介电强度测试介电强度测试是对电力电缆绝缘能力的评估。

通过施加高电压并观察电缆是否能够承受该电压而不发生击穿,可以判断电缆绝缘是否良好。

这种测试可以帮助检测电缆绝缘老化、破损或绝缘材料不合格等问题。

3. 局部放电检测局部放电检测可以用于发现电缆终端或接头存在的潜在故障。

通过检测终端或接头周围的局部放电信号,可以判断是否存在电缆绝缘故障或接头材料不良等问题。

4. 热红外检测热红外检测利用红外热像仪来检测电缆故障。

通过检测电缆表面的温度变化,可以找出导体接触不良、绝缘老化或电缆过载等问题。

这种非接触式检测方法可以快速定位电缆故障点,并有效地指导维修工作。

5. 测距技术测距技术可以用于检测电缆损坏和故障的位置。

通过发送电脉冲到电缆上,并根据信号的反射时间计算出电缆上的损坏位置。

这种方法可以帮助快速定位电缆老化、断线或其他物理损坏问题。

结论定期的电力电缆检测是确保电力系统安全运行的关键步骤。

通过采用直流电阻测量、介电强度测试、局部放电检测、热红外检测和测距技术等方法,可以及时发现电力电缆的潜在故障,并采取相应的维修措施,以确保电力系统的可靠性和稳定性。

电力电缆故障点测试的几种方法

电力电缆故障点测试的几种方法

电力电缆故障点测试的几种方法,华天电力是电缆故障测试仪的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找电缆故障测试仪,就选华天电力。

电缆故障测试仪是通信、电力电缆施工和维护工作中的常用仪器,可以测定地下电缆及金属管线的准确位置和埋设深度,或测定架空电缆芯线障碍的准确部位。

为电缆、管线的改建扩建维修提供了方便,可减少开控地面,节省人力、物力和时间,因此是各邮电局和工矿企业必备的仪器。

电力电缆故障点测试一般包括脉冲法测试、闪络法测试、直闪法、冲闪法测试等几种方法。

电缆故障点测试注意事项:
一、脉冲法测试时,注意要甩掉局内所有设备,在最外线上进行测量。

二、使用闪络法测试时,必须将触发工作方式开关置于“闪络”位置。

三、在使用直闪法或冲闪法测试时,要注意人身安全及设备安全。

必须接好地线。

四、在闪络法测试结束后,切断电源,拆除本仪器与高压测试装置的连接线,再对高压电容器和电缆的所贮电荷进行放电。

放电时,应先加限流电阻R限制放电电流以使电流缓慢放电,待电容器上电压降低后,再直接对地放电电路中电阻为零,瞬间放电电流可高达几百安培,将发生严重的设备或人身事故。

五、在直闪法测试过程中,必须承受时注意监视故障的泄漏电流若电流突然增大,故障闪络现象未曾出现,应立即降低试验电压,改用冲闪法测试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电缆故障测试方法及技巧
随着城市的进展扩大,城市电网的改造,电力电缆获得了越来越广泛的应用。

但另一方面,由于电缆处在地下,消失故障很难发觉其故障点位置所在,这对电网的平平稳定运行以及供电牢靠性都带来很大的困难。

对此,我们首先分析了电力电缆故障常见原因,在此基础上,进一步总结出电力电缆常用故障检测方法。

1.电力电缆故障产生的原因
(1)绝缘层老化变质:绝缘电缆长期在风吹日晒,在电的的作用下发生了老化,还要受到伴随电作用而来的化学、热和机械作用,从而使介质发生物理化学变化,使介质的绝缘性能下降。

(2)过热:电缆绝缘内部气隙游离造成局部过热,使绝缘炭化。

另外,电缆过负荷产生过热,安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆,穿于干燥管中的电缆及电缆与热力管道接近的部分等,都会因本身过热而使绝缘加速损坏。

(3)机械损伤:如挖掘等外力造成的损伤。

(4)护层的腐蚀:因受土壤内酸碱和杂散电流的影响,埋地电缆的铅或铝包将遭到腐蚀而损坏。

(5)绝缘受潮:中心接头或终端头在结构上不密封或安装质量不好而造成绝缘受潮。

(6)过电压:过电压重要指大气过电压和内过电压,很多户外终端接头的故障是由大气过电压引起的,电缆本身的缺陷也会导致在大气过电压的情形下发生故障。

(7)材料缺陷:电缆制造的问题,电缆附件制造上的缺陷和对绝缘材料的维护管理不善等都可能使电缆发生故障。

2.电力电缆故障性质类别的快速判别
2.1电力电缆的故障分类
电缆故障若按故障发生的直接原因可以分为两大类:一类为试验击穿故障;另一类为在运行中发生的故障。

若按故障性质来分,又可分为开路、低阻、高阻故障等。

开路故障:指电缆的甲端与乙端一相或者三相*断开。

低阻故障:若电缆相间或相对地绝缘电阻在100k以下的故障称为低阻故障。

高阻故障:若电缆相间或相对地故障电阻较大,以致不能接受电桥或低压脉冲法进行粗测的故障,通称为高阻故障。

它包括泄漏性高阻故障和闪络性高阻故障。

在试验过程中发生击穿的故障,其性质比较单纯,一般为一相接地,很少有三相同时在试验中接地或短路的情形,更不行能发生断线故障。

其另一个特点是故障电阻均比较高。

运行电缆故障的性质比试验击穿故障的性质简单,除发生接地或短路故障外,还有断线故障,因此在测寻时,还应作电缆导体连续性的检查,以确定是否发生断线故障。

2.2快速推断故障性质类别
电力电缆一旦发生故障,在故障测寻工作开头之前,精准明确
地确定电缆故障的性质具有特别紧要的意义。

接到电缆故障事故通知后,首先要认真询问变电站和电力调度值班人员故障现象,如事先有无接地信号,跳闸珍惜是过流继电器动作还是速断继电器动作,断路器如是多油或少油形式的,应询问或观看断路器绝缘油的颜色,电缆敷设方式是直埋、架空还是隧道敷设,有无电缆接头,系统内部有无其他电气事故发生等。

一般情形下,电缆故障以单相接地故障为多(在中性点不接地系统中),该情形应首先检查电缆户内头和中心接头。

假如是事故跳闸,交联聚乙烯电缆应首先怀疑是外力破坏,由于从该种电缆结构上可以看出,每一相芯线上,都包覆着一层金属铜屏蔽,理论上不会造成两相或三相芯线之间直接短路。

观看断路器绝缘油的颜色,假如很深,可依据阅历判定,短路故障点距离出线柜较近,反之,应当较远。

由于距离越近,放炮爆炸释放传输的能量损耗
越小,这可以通过绝缘油的颜色来推断。

当然,发生故障后,首先应测试电缆的绝缘数值,然后将测试的数据再结合上述阅历进行分析,往往会收到很好的效果。

3.电力电缆故障测试仪原理
电力电缆故障测距在原理上可分为两大类:行波法和阻抗法。

3.1行波法
行波故障测距是依据电压和电流行波在线路上有固定的传播速度电力电缆中波速为150m/s~220m/s)这一特点,提出了行波故障测距方法。

行波法测距利用行波在测量点到故障点之间来回一次的时间,经过简洁运算即可得到距离。

行波信号的猎取和识别第一类是利用电压行波信号的方法,其次类是接受电流行波信号的测距方法。

目前国内基本上只接受电流行波进行故障测距,其原因在于,电压行波信号不易猎取,当母线上出线较多时电压信号比较弱,而电流信号却很强,电流行波信号比较简单猎取。

在工程应用上,与以上两类方法相对应的方法有低压脉冲反射法、脉冲电压法和脉冲电流法等
3.2阻抗法
较经典的阻抗法是直流电桥法以及近年来讨论得较多的利用电缆故障时工频(相量)电压电流关系来推导出故障定位方程的方法。

电桥法的优点是简洁、便利,其缺点是只能用于低阻故障测距,而不能用于高阻故障和闪络性故障,但是,据统计,电力电缆有60%以上的故障是高阻故障,在防备性试验中被击穿的故障有90%以上是高阻故障。

电桥法在现场已很少使用。

相关文档
最新文档