基于MATLAB的车牌定位算法设计
基于MATLAB的车牌定位算法设计 电子信息工程毕业设计论文

北京联合大学信息学院毕业设计题目:基于MATLAB的车牌定位算法设计姓名:学号:2009080403104学院:信息学院专业:电子信息工程同组人:指导教师:协助指导教师:2011年5月12日摘要车牌自动识别系统是现代智能交通管理的重要组成部分,可用于各级各类车辆管理场所。
与传统的车辆管理方法相比,它大大地提高了管理效率与水平,节省了人力、物力,实现了车辆管理的科学化、规范化,对交通治安起到了一定的保障作用,因此有着广泛的应用前景。
车牌自动识别系统一般包括车牌定位、字符分割和字符识别三个模块。
它的研究主要涉及到模式识别、人工智能、计算机视觉、数字图像处理等众多学科领域。
车牌的定位、分割更是该系统的关键,由于图像场景的复杂性以及车牌位置和图像质量的不可预知性,牌照定位分割系统一直都未做到令人满意,所以有必要对其进行进一步的研究。
本文通过对大量资料的搜集、整理,总结了近年来国内外在车牌定位分割领域的最新研究成果和进展,对车牌区域的固有特征和目前的车牌定位、分割技术进行了分析和比较,提出了自己的观点并设计了一个车牌定位、分割系统。
本文利用MATLAB工具实现车牌定位算法研究。
利用灰度修正.滤波和图像增强等处理方法.较好地消除了图像的噪音,提高了图像质量。
通过对车牌特征的研究,利用边缘扫描方法实现车牌定位。
关键词:车牌定位;倾斜矫正;图像预处理;图像分割AbstractVehicles License Plate Recognition System(LPRS),which is all important part of the contemporary Intelligent Transportation System(ITS),can be applied to vehicle management situations of all levels and all kinds.Compared with traditional vehicles managements,LPRS has greatly improved the efficiency and level of management and saved manpower and material resources,laying a good foundation for the realization of standardized management.We Call safely come to the conclusion that LPRS has already improved the order of the traffic system, illustrating a good prospect of application for us.Generally, the LPR system consists of three modules:license plate location、character segmentation and character recognition.Its study concerns various disciplines including Pattern Recognition、Artificial Intelligence,Computer Vision、Digital Image Processing and SO 011.It is the location and segmentation of license plates standing at the heart of LPR system.Considering that the complexity of image background and the uncertainly of plate position and image quality,it is necessary to do further research into it.By summarizing the latest research achievements and development in the area of license plate location and segmentation both here and abroad,this paper, after making a deep comparison between the intrinsic characteristics of license plate and the current location and segmentation technologies on it,proposes its own understanding and designs a new LP location and segmentation system.The paper introduces a method of car license plate location and realizes a system of car license plate location based on MATLAB.The pre--processing methods including gray level modification,filter and image enhancement,are used to improve image quality and cut image noise.Car license plate location is realized by the method of edge detection and according to the car plate feature.key words:License plate location;Slant correction;Image pre--process ;car Image Segmentation.目录摘要 (1)Abstract (2)引言 (4)一、绪论 (5)1 . 1 、课题的背景和意义 (5)1 . 2、国内外研究状况 (5)1 . 3、车牌识别系统的应用范围 (6)二、系统概述 (9)三、硬件系统设计 (10)3.1、硬件系统设计 (10)3.2、各模块功能 (10)3.3、各模块与DSP的接口设计 (10)3.4.系统原理图和生成的PCB板 (15)四、在MATLAB环境下实现车牌定位的功能 (17)4.1、车牌定位系统介绍 (17)4.2、图像预处理 (17)4.3、灰度化 (18)4.4、图像边缘检测 (20)4.5、形态学处理 (21)4.6、车牌提取 (23)五、结论 (25)问题和不足: (26)不足之处: (27)六、主要参考资料如下: (28)七、致谢 (29)引言随着我国交通运输的不断发展,智能交通系统(Intelligent Traffic System,简称ITS)的推广变的越来越重要,而作为ITS的一个重要组成部分,车辆牌照识别系统(vehicle license plate recognition system,简称LPR)对于交通管理、治安处罚等工作的智能化起着十分重要的作用。
基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。
本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。
该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。
关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。
为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。
车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。
二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。
灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。
2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。
在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。
这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。
3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。
这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。
三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。
基于MATLAB的车牌识别系统设计

使得S ∈ [Smin , Smax ],其中,T为线性变换,
S=
若 r(50,200)、s(0,255) 则:S =
255 150
S max −S mi×r max −S max ×r min r max −r min
(3)
r−
255×50 150
≈ 1.7r − 85
图 11 提取分割字符 2.2 字体识别 首先要建立字符模版。中国现行车牌规定一共有 7 个字符,第一个字符一般是汉字代 表省、直辖市或军种警别等有特定含义的简称;接下来的为字母和数字。10 个阿拉伯数字 0~9,26 个英文字母 A~Z,将这些所有的字母、数字、汉字收集到一起组成的字库就是字符 模版。 采用模版匹配法对定位切割出的车牌字符进行识别,算法如下:(1)找出模版图像和 待识别字符图像相异点像素的数目;(2)根据相异点像素数目计算出模版图像和待识别字 符图像平均相异值;(3)将待识别字符图像与 15 个模版图像比较完后,将平均相异值最 小的模版所代表的字符作为识别结果输出。最终识别匹配结果如图 13 所示。
基于 MATLAB 的车牌识别系统设计
摘要:汽车拍照识别是智能交通领域的重要研究课题,整个过程主要分为预处理、车牌定 位,字符分割、字符识别 4 个环节。本文提出基于车牌彩色信息的彩色分割方法。用 MATLAB 实现整个系统,有效地解决车牌定位、字符倾斜、字符分割等复杂问题。 车牌识别技术是推进交通管理向智能化发展的关键技术之一。通过车牌识别,可以获得 车辆的许多重要信息,从而大大缓解交通系统的智能化管理。车牌识别技术要求能够将运 动中的汽车牌照从复杂背景中提取并识别出来,通过预处理、车牌定位、字符分割、识别, 从而最终识别出车辆牌照。
图 13
识别结果提示框
基于MATLAB的车牌定位系统(含全套CAD图纸)

毕业设计(论文)题目:汽车牌照定位系统设计与开发诚信承诺书本人郑重声明:所呈交的毕业设计(论文)汽车牌照定位系统设计与开发是本人在导师的指导下独立进行研究所取得的成果,其内容除了在毕业设计(论文)中特别加以标注引用,表示致谢的内容外,本毕业设计(论文)不包含任何其他个人、集体已发表或撰写的成果作品。
班级:计科94学号:0921144作者姓名:2013 年5 月25 日无锡太湖学院信机系计算机科学与技术专业毕业设计论文任务书一、题目及专题:1、题目汽车牌照定位系统设计与开发2、专题二、课题来源及选题依据课题来源:导师指定选题依据:汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。
在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位。
这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。
车辆牌照定位与识别是计算机视觉与模式识别技术在智能交通领域应用的重要研究课题之一,该技术应用范围非常广泛,其中包括:(1)交通流量检测;(2)交通控制与诱导;(3)机场、港口等出入口车辆管理;(4)小区车辆管理;(5)闯红灯等违章车辆监控;(6)不停车自动收费;(7)道口检查站车辆监控;(8)公共停车场安全防盗管理;(9)计算出行时间等。
其潜在在市场应用价值极大,有能力产生巨大的社会效益和经济效益。
三、本设计(论文或其他)应达到的要求:软件、技术要求:在基于图像处理的车牌识别技术的基础上设计并开发了一个基于MATLAB的车牌定位系统通过编写MATLAB文件对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。
四、接受任务学生:计科94 班姓名宋开拓五、开始及完成日期:自2012 年11 月12 日至2013年5月25日六、设计(论文)指导(或顾问):指导教师签名签名签名教研室主任〔学科组组长〕签名研究所所长系主任签名2012年11月12日车辆牌照识别系统(vehicle license plate recognition system,简称LPR)是现代智能交通系统中的一项重要研究课题,是实现智能交通的重要环节,涉及领域异常广阔。
基于MATLAB的车牌定位识别方法

图1a车牌图像图1b行分割结果图1c列分割结果图1d最终分割结果图1 车牌分割图像1.3 OSTU算法OSTU算法是一种自适应阈值确定方法[4],该方法按照图像的灰度特性来确定阈值。
对于一幅大小为M×N的图像,遍历图像求取使得类间方差g最大的阈值T。
图像中像素小于阈值T的像素个数记做N0,大于阈值T的像素个数记做N1,目标像素点占整幅图像的比记为ω0,平均灰度为μ0;背景占整幅图像的比记为ω1,平均灰度为μ1;图像总的平均灰度为μ,即:ω0=N0÷(M×N) (2)ω1=N1÷(M×N) (3)μ=ω0×μ0+ω1×μ1(4)g=ω0(μ0-μ)2+ω1(μ1-μ)2(5)由式(2)~式(5)可得:g=ω0ω1(μ0-μ1)2(5)(6)OSTU算法就是查找使得式(6)值最大的T值。
1.4 模板匹配模板匹配是数字图像处理中的一种有效识别方法。
该方法是通过度量输入模式与样本之间的某种相似性,取相似性最大的为输入模式的类别。
本文通过将分割所得字符与字符模板库的字符进行匹配。
通过建立已知模式库,再将其应用到输入模式中寻找与之最佳匹配模式的处理方法,得到最终的识别结果,具有很高的运行效率。
其基本过程如下。
第一,建库。
建立已经过标准化的字符模板库。
第二,对比。
从待识别图像区域中提取若干特征向量与模板库相应的特征向量图2a原图像图2b预处理结果图2c车牌图像图2d高斯滤波、灰度化、二值化结果图2e字符分割图像图2f识别结果图2 实验处理效果通过统计,100张不同场景下的彩色车牌图像,正确定位与识别的车辆图像为93张,从处理结果可以看出,本文方法可以有效克服外界干扰影响,实现较为准确的车牌定位与识别[8]。
4 结 语笔者通过对车牌图像进行增强,采用彩色像素点统计法实现车牌定位,采用高斯滤波、灰度化、二值化对车牌图像进行处理后,采用字符分割和模板匹配算法实现了车牌的定位识别。
基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
基于matlab的车牌识别算法

基于Matlab的车牌识别算法摘要车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。
车牌识别系统是以特定目标为对象的专用计算机系统,该系统主要包括三个内容:车牌定位、字符分割和字符识别。
其中车牌定位的目的就是从所拍摄的汽车图像中确定车牌的位置,从而便于后续的字符分割和字符识别工作。
目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。
本设计采用基于模板匹配算法和基于人工神经网络算法对车牌进行定位识别,此算法只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,。
此算法分割出的图像像素值和模板图像达到了一致,由此便避免了切割出的图像像素值不一致所带来的问题。
但对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0)。
关键词:车牌识别系统;字符分割;车牌定位LICENSE PLATE RECOGNITION ALGORITHM BASEDON MATLABABSTRACTLicense plate system is a computer vision and pattern recognition technology in one of the important application research topic in the field of intelligent transportation. License plate recognition system based on specific goals of a special computer system, the system mainly includes three contents: license plate locating, character segmentation and character recognition. One of the purpose of license plate location is taken from the auto locate the license plate in the image, so as to facilitate the subsequent work character segmentation and character recognition. Now commonly used methods are: based on template matching method, based on the characteristics of the method and neural network, etc.This design USES based on template matching algorithm and based on artificial neural network algorithm to locate license plate recognition, the algorithm is only for blue white license plate segmentation recognition, the algorithm can be directly applicable in principle to the black white plate,. This algorithm to segment the image pixel values and template image, thus to avoid the cut out in the process of image pixel values are not consistent. But black on white background and black text plate, yellow bottom plate, adjustments need to license plate localization algorithm, and the image inversion of (0, 1, 1, 0).Key words: license plate recognition system; Character segmentation; License plate location目录1 前言 (4)1.1车牌号识别研究背景 (4)1.2 车牌号识别技术研究现状和趋势 (5)1.2.1国内外车牌识别技术情况及我国车牌特点 (5)1.2.2车牌识别技术的应用前景 (6)1.3 车牌识别研究内容 (7)2 车牌识别系统设计原理概述 (9)3 车牌识别系统程序设计 (11)3.1图像读取及车牌区域提取 (11)3.1.1图像灰度图转化 (11)3.1.2图像的边缘检测 (13)3.1.3灰度图腐蚀 (14)3.1.4图像平滑处理 (15)3.1.5移除小对象 (16)3.1.6车牌区域的边界值计算 (17)3.2字符切割 (18)3.2.1字符切割前的图像去噪处理 (18)3.2.2字符切割前的图像膨胀和腐蚀处理 (19)3.2.3字符切割 (19)3.3字符识别 (22)3.3.1字符识别方法选择 (22)3.3.2字符归一化 (22)3.3.3字符匹配识别 (23)4 仿真结果及分析 (26)4.1 车牌定位及图像读取及其图像处理 (26)4.2 车牌字符分割及其图像处理 (26)5 结论 (28)参考文献 (29)致谢............................................... 错误!未定义书签。
基于matlab的蓝色车牌定位与识别---定位

基于matlab的蓝⾊车牌定位与识别---定位接着昨天的⼯作继续。
定位的过程有些是基于车牌的颜⾊进⾏定位的,⾃⼰则根据数字图像⼀些形态学的⽅法进⾏定位的。
合着代码进⾏相关讲解。
1.相对彩⾊图像进⾏灰度化,然后对图像进⾏开运算。
再⽤⼩波变换获取图像的三个分量。
考虑到车牌的竖直分量较为丰富,选⽤竖直分量进⾏后续操作。
注意下,这⾥的⼀些参数可能和你的图⽚⼤⼩有关,所以要根据实际情况调整。
Image=imread('D:\1_2学习\图像处理\车牌识别\matlab_car_plate-recognization\car_example\car0.jpg');%获取图⽚im=double(rgb2gray(Image));im=imresize(im,[1024,2048]);%重新设置图⽚⼤⼩ [1024,2048]% % 灰度拉伸% % im=imadjust(Image,[0.150.9],[]);s=strel('disk',10);%strei函数Bgray=imopen(im,s);%打开sgray s图像% % figure,imshow(Bgray);title('背景图像');%输出背景图像% %⽤原始图像与背景图像作减法,增强图像im=imsubtract(im,Bgray);%两幅图相减% figure,imshow(mat2gray(im));title('增强⿊⽩图像');%输出⿊⽩图像[Lo_D,Hi_D]=wfilters('db2','d'); % d Decomposition filters[C,S]= wavedec2(im,1,Lo_D,Hi_D); %Lo_D is the decomposition low-pass filter% decomposition vector C corresponding bookkeeping matrix Sisize=prod(S(1,:));%元素连乘%cA = C(1:isize);%cA 49152cH = C(isize+(1:isize));cV = C(2*isize+(1:isize));cD = C(3*isize+(1:isize));%cA = reshape(cA,S(1,1),S(1,2));cH = reshape(cH,S(2,1),S(2,2));cV = reshape(cV,S(2,1),S(2,2));cD = reshape(cD,S(2,1),S(2,2));获取结果2. 对上⾯过程中获取的图像进⾏边沿竖直⽅向检测,再利⽤形态学的开闭运算扩⼤每个竖直⽅向⽐较丰富的区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京联合大学毕业设计(论文)任务书
题目:基于MATLAB的车牌定位算法设计
专业:电子工程系指导教师:章学静
学院:信息学院学号: 2009080403104 班级: 20090804031 姓名:林本存
一、课题的任务与目的
自从2010年以来,北京的交通拥堵问题成为社会普遍关注和谈论的话题。
而其他交通问题也呈现增长趋势。
由于车辆牌照是我们标定车辆的唯一ID,因此,车牌的定位识别对于处理突发的交通事件就显得尤为重要。
车牌定位识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要课题之一。
所谓车牌定位(License Plate Location),就是把车牌区域完整的从一幅具有复杂背景的车辆图像中分割出来。
它是进行车牌识别的首要任务和关键技术,能否将牌照的位置找出来,决定着车牌识别的后续工作能否继续进行,如果不能正确找到牌照的位置,那么就无法将它分割出来,字符分割和字符识别工作将无从谈起。
同时,车牌定位的效率也直接影响着整个识别系统的效率,一个高效率的车牌识别系统首先必须是建立在高效的车牌定位算法的基础之上。
因此,研究与开发车牌定位的算法具有十分重要的实用意义。
例如,在公安执法系统、高速公路自动收费系统、城市道路监控系统、智能停车场管理系统等诸多智能交通系统中都有应用。
车牌定位的目的是对摄像头获取的汽车图像进行预处理,确定车牌位置。
此次设计的任务就是在MATLAB中对采集到车辆图像进行色彩直方图分析,匹配车牌背景颜色的峰值从而实现车牌在图像位置中的定位。
然后将此算法移植到DSP中,在DSP中验证移植的算法正确性。
二、调研资料情况
目前国外车牌定位识别系统已经有很多成熟的产品,以色列Hi—Tech公司的See/CarSystem系列,新加坡optasia公司的IMPS系列都是比较成熟的产品。
但是,这些产品基本上只适合于自己国内的状况。
而我国的情况与国外有很大的不同,比如车牌的形状,颜色,字符的颜色以及我国车牌中包含着汉字等。
同时,目前的牌照识别系统具有一定的识别率,在天气条件差的情况下或夜晚时,识别率会明显下降,此外,也受到其他许多客观干扰的影响,例如天气、背景、车牌磨损、图像倾斜等。
因此现有的识别系统要达到完全实用化仍然有很长的路要走。
现有的比较好的车牌定位方法主要有J.Barroso等提出的基于水平线搜寻的定位
方法;R.Parisi等提出的基于DFT变换的频域分析方法;Charl Coetzee提出的基于Niblack二值化算法及自适应边界搜索算法的定位方法;Barroso J.Buls-Cruz 等人提出的基于扫描行的车牌提取算法等。
目前国内比较成熟的产品有中科院自动化研究所汉王科技的“汉王眼”,深圳吉通电子有限公司的“车牌通”,上海高德威智能交通系统有限公司的汽车牌照识别器等。
另外,西安交通大学的图像处理与识别研究室、上海交通大学的计算机科学和工程系、清华大学人工智能国家重点实验室、浙江大学的自动化系也在进行类似的研究。
由于汉字的识别难度较大,以及众多自然和人文因素的干扰,使得国内的成熟产品并不多,目前国内的车牌识别技术研究还主要集中在对各种车牌定位、字符分隔和识别等方面的算法进行研究上。
主要参考资料如下:
1、王家文. MATLAB 7.6图形图像处理.北京:国防工业出版社.2009
2、陈阳. 车牌定位系统的研究与开发[D]. 山西: 中北大学, 2007
3、张晓. 复杂背景下的车牌定位系统设计[D]. 西安: 西安电子科技大学, 2009
4、龚声蓉,刘纯平,王强.数字图象处理与分析[M].北京:清华出版社.2006.
5、贺兴华,周媛媛,王继阳,等.MATLAB图像处理[M].北京:人民邮电出版社.2006.
6、崔江,王友仁.车牌自动识别方法中的关键技术研究[J].计算机测量与控制,2003,1l(4):260—262.
7、杨静.基于数学形态学的图像分割研究及应用[J].仪器仪表用户,2005(5):18一19.
三、初步设计方法与实施方案进度要求
此次设计是主要基于图像处理技术,研究车牌定位的基本原理,设计基于MATLAB仿真软件的车牌定位的算法。
其涉及的主要内容是掌握图像处理中的灰度化、边缘提取、形态学处理、颜色判定等技术,按照图像处理的基本流程,编写程序实现给出区域裁剪、截取车牌子图像,实现所采集图片中的车牌的定位。
通过仿真,使原始图像经过该算法的处理后能够清楚地显示出车牌区域,同时使图像中的非车牌区域消失或者减弱,从而能准确有效地定位出车牌在图像中的位置。
此次算法的实现,采用的是由Math Works公司开发的MATLAB软件,它功能强、效率高、简单易学,是当今最优秀的科技应用软件之一,具有强大的科学计算与可视化功能和开放式扩展环境。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
1、图像预处理
车牌自动识别系统中车辆图像是通过图像采集卡将运动的车辆图像抓拍下来,并以位幽的格式存放在系统内存中。
而实际拍摄的车辆图像效果往往不理想,如受外界光线对车牌的不均匀反射、恶劣天气的影响、摄像头聚焦或后背焦没有调整到位而形成的车辆图像不清晰、所拍摄图像中存在的噪声干扰、所安装的车牌不规范或车辆{j驶变形等等。
这些都给车牌的定位增加了难度。
但我们可以对车辆图像根据不同应用特点进行识别前的预处理,尽最大町能提高车牌正确定位,这些图像预处理包括图像灰度变换、倾斜校正、等。
2、灰度修正
灰度修了F通常采用直方图修正法使图像具有期望的灰度分布.水平方向为像素欢度值,垂直方向为该像素值出现的数量,根据灰色|刳像直方图调整I冬{像像素值的分布范围,确保图像亮度值均匀和平滑,同时如果直方图中存在多个峰值,则按直方图峰值计算ff{限定阀值,然后进行分段图像处理,由此分离出背景和噪声。
3、图像滤波
图像滤波的目的是为了减少图像中的噪声,·般情况下在窄间域内采用领域平均法来减少噪声,在频率域内由于噪声频谱多住高频段,因此采用各种形式的低通滤波方法来减少噪声。
空间域是指对图像像素灰度值直接运算后取代,频率域是对图像的像素值进行变换运算后反变换取代,如傅立叶变换等。
采用MATLAB工具自定义滤波函数,实现图像的平滑处理。
4、图像增强
由于车牌的边框的特征必须明显,后期的车牌特征才能很好的提取。
利用MATLAB工具箱中的灰度变换上具imadijut函数来实现.同时配合improfiIe函数对图像进行分析,根据车牌底色和字符的像素值,将其对比度调到最大,实现图像的增强。
5、车牌定位研究
车牌定位比较好的定位算法有基于车牌文字变化特点的自动扫描tI}别算法、基于特征的车辆牌照定位算法.基丁变换函数提取车牌的算法、基十视觉的车辆牌照检测等。
另外,一些学者们从一些数学上具着手,利用数学形态学、小波分析、遗传算法等方法对一些传统定位方法进行改进。
6、图像边缘检测
根据每个像素在某个区域内的灰度变化,利用边缘_二阶方向导数变化规律实现边缘检测。
常用方法有LaPlaciai3.边缘增强、Sobel梯度方向边缘增强等。
本文对图像进行水平边缘检测,有效地检测出水平方向的边缘像素,然后对检测结果二值化处理,记录边缘点,然后对边缘点按照从上到下,从左到右进行扫描(定义位x和y方向扫描),得到整个图像的跳变点分布。
根据车牌的长宽比例确定车牌的区域,利用分割技术将车牌从整幅图像中分割出来。
7 、MATLAB环境下车牌定位系统的设计
本文利用MATLAB工具实现车牌定位系统的设计,采用图像预处理和车牌定位技术实现对车牌的定位。
四、预期结果
1、主要内容
在MATLAB工具中,对实际拍摄的图像进行预处理的算法进行设计和分析,和对车牌定位与分割的算法进行设计和分析。
从而在与处理后的图像中确定车牌的具体位置并将其分割出来。
2、预期结果
利用MATLAB工具对采集到车辆图像进行色彩直方图分析,匹配车牌背景颜色的峰值从而确定车牌在图像位置中的定位。
指导教师:(签字)专业负责人/系主任:(签字)。