2.2平面向量的加减运算
2.2.向量加减法、数乘运算及其几何意义

2.2.向量加法、减法运算 及其几何意义
1、位移
AB + BC = AC
C A B F1
2、力的合成
F1 + F2 = F
F2
F
数的加法启发我们,从运算的角度看, AC可以认为 是AB与BC的和,F可以认为是F1与F2的和,即位移、力的 合成可以看作向量的加法。
(1)同向
a
(2)反向
a
b
A
B C B C
b
A
AC = a + b
规定: a + 0 = 0 + a = a
AC = a + b
当向量a ,b不是共线向量时,a + b又如何 作出来?
b a
o·
a
A
a+ b
b
B
| a+ b|< | a|+ |b| 一般地,有 | a + b |? | a | |b|
E
3AB BC
3 AC
∴ AC与 AE 共线.
作业:
课本P 4, P 5, P 4 84 90 91
数的加法满足交换律与结合律,即对任意a,b∈R,有
a+b=b+a
任意向量
a、 b
(a+b)+c=a+(b+a)
的加法是否也满足交换律与结合律?
a+ b = b+ a (a + b) + c = a + (b + c )
2.2 平面向量的线性运算

2.2 平面向量的线性运算2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ .⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++ ;③00a a a +=+=.⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ= ;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.课堂训练 一.选择题1.下列命题正确的是( ) A.若∥a b ,则a 与b 同向B.若∥a b ,则a 与b 同向或反向 C.若a =0,则a 与0共线D.若a 不为0,则a 与0不共线且3AC CB =-,设2.如图1所示,向量 ,,OAOBOC 的终点A B C ,,在一条直线上,=OA p ,= OB q ,= OC r ,则以下等式中成立的是( )A.1322r p q =-+B.2r p q =-+baCBAa b C C -=A -AB =BC.3122r p q =- D.2r q p =-+3.如图2所示,在菱形ABCD 中,120DAB ∠= ,则以下说法错误的是( ) A.与AB 相等的向量只有一个(不含AB本身) B.与AB 的模相等的向量只有4个(不含AB本身) C.BD 的长度恰为DAD.CB 与DA不共线4.将1[2(28)4(42)]12+--a b a b 化简成最简式为( ) A.2a b - B.b a - C.a b - D.2b a -5.已知G 是ABC △的重心,如图1所示,则GA GB GC +-=( ) A.0 B.4GEC.4GDD.4GF6.若9AB = ,6AC = ,则BC的取值范围为( )A.[315],B.[39], C.(315),D.[69],二.填空题7.已知非零向量1e 和2e 不共线,欲使t 12+e e 和1+e t 2e 共线, 则实数t 的值为 .8.平行四边形ABCD 中,M 为DC 中点,N 为BC 的中点.设AB = a ,AD = b ,则=MN (用a ,b 表示).9.已知菱形ABCD 的边长为1,60ABC AB ∠==,a ,AC = c ,BC =b ,则a bc ++= .10.已知OA = a ,OB = b ,若12OA = ,5OB =,且90AOB ∠= ,则-=a b . 11.在菱形ABCD 中,60DAB ∠= ,1AB = ,则BC DC +=.12.在静水中划船速度是10米/分钟,水流速度10米/分钟,如果船从岸边径直沿垂直于水流方向行走,那么船实际行进速度应是 .实际行进方向与水流方向的夹角为 . 三.解答题13.两个非零向量12,e e 不共线.(1)若= AB 12e e +,BC = 1228e e +,CD =123()-e e ,求证:,,A B D 三点共线; (2)求实数k ,使k 12e e +与12+e k 2e 共线.14.一艘军舰从基地A 出发向东航行了200海里到达基地B ,然后又改变航向向东偏北60 航行了400海里到达C 岛,最后又改变航行,向西航行了200海里到达D 岛.(1)试作出向量AB BC CD,,;(2)求AD .15.如图4,在ABC △中,在AC 上取点N ,使得13AN AC =,在AB 上取点M ,使得13AM AB =,在BN 的延长线上取点P ,使得12NP BN =,在CM 的延长线上取点Q ,使得12MQ CM =,用向量的方法证明P A Q ,,三点共线.16.一架飞机向北飞行300 km ,然后改变方向向西飞行400 km ,求飞机飞行的路程及两次位移的合成.17.已知ABCD 的对角线AC 和BD 相交于O ,且OA a = ,OB b = ,用向量a ,b 分别表示向量OC ,OD,DC ,BC .18.飞机从甲地以北偏西15˚的方向飞行1400km 到达乙地,再从乙地以南偏东75˚的方向飞行1400km 到达丙地.试画出飞机飞行的位移示意图,并说明丙地在甲地的什么方向?丙地距甲地多远?第19题.如图,13AM AB = ,13AN AC =.求证:13MN BC = .同步提升一.选择题(每题5分)1.设b →是a →的相反向量,则下列说法错误的是( ) A .a →与b →的长度必相等 B .a bC .a →与b →一定不相等 D .a →是b →的相反向量2.已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a →、b →、c →,则向量OD 等于( ) A .a b c ++ B .a b c -+ C .a b c + - D .a b c-- 3.(如图)在平行四边形ABCD 中,下列正确的是( ).A .AB CD = B .AB AD BD -=C .AD AB AC += D .AD BC 0+= 4.+++等于( ) A . B . C .AC D .CA5.化简SP PS QP OP ++-的结果等于( )A 、B 、C 、D 、A AB OC = B AB ∥DEC AD BE =D AD FC =7.下列等式中,正确的个数是( )①a b b a +=+ ②a b b a = --③0a a -=- ④(a )a --= ⑤a (a )0+-=A .5B .4C .3D .28.在△ABC 中,AB a = ,AC b = ,如果a||b|=|,那么△ABC 一定是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形9.在ABC ∆中,BC a =,CA b =,则AB 等于( )A .a b +B .(a b )-+C .a b -D .b a -10.已知a 、b 是不共线的向量,AB a b λ=+ ,AC a b μ=+(λ、R μ∈),当且仅当( )时, A 、B 、C 三点共线. ()1A λμ+= ()1B λμ-=()1C λμ=-()1D λμ=二.填空题(每题5分)11.ABCD 的两条对角线相交于点M ,且AB a,AD b ==,则MA = ______,MB = ______,MC = ______,MD =______.12.已知向量a 和b 不共线,实数x ,y 满足b y x a b a y x)2(54)2(-+=+-,则=+y x ______13.在ABCD 中,AB a,AD b ==,则AC = ______,DB = ______.14.已知四边形ABCD 中,1AB DC 2=,且AD BC = 则四边形ABCD 的形状是______.三.解答题15.化简下列各式:(1)=++++______;(2)()()AB MB BO BC OM ++++=______.(3)=-++-)()(______.16.某人从A 点出发向西走了10m ,到达B 点,然后改变方向按西偏北︒60走了15m 到达C 点,最后又向东走了10米到达D 点.(1)作出向量AB ,,(用1cm 长线段代表10m 长);(2)求DA17.如图,在梯形ABCD 中,对角线AC 和BD 交于点O ,E 、F 分别是AC 和BD 的中点,分别写出 (1)图中与、共线的向量; (2)与相等的向量.CDABNM18.在直角坐标系中,画出下列向量: (1)a 2= ,a的方向与x 轴正方向的夹角为 60,与y 轴正方向的夹角为 30;(2)a 4=,a的方向与x 轴正方向的夹角为 30,与y 轴正方向的夹角为 120;(3)a=,a的方向与x 轴正方向的夹角为 135,与y 轴正方向的夹角为 135.19.在ABC ∆所在平面上有一点P ,使得=++,试判断P 点的位置.20.如图所示,在平行四边形ABCD 中,点M 是AB 边中点,点N 在BD 上且BD BN 31=,求证:M 、N 、C 三点共线.2.2 平面向量的线性运算 课堂训练参考答案一.选择题 1~5 CADDD 6 A 二.填空题7.1± 8.1()2-a b 9.2 10.13 11.45三.解答题 第13题.(1)证明:=++= AD AB BC CD 1266+=e e 6AB, A B D ∴,,三点共线;(2)解: k 12+e e 与12e +k 2e 共线, ∴k 12+=e e λ(12e +k 2e ),(2)λ∴-k 1e +(1)k λ-2e =0,201k k k λλ-=⎧∴⇒=⎨-⎩,,第14题.解:(1)向量ABBC CD ,,如右图所示.(2)根据题意,易知AB 和CD 方向相反,故AB 与CD共线.又AB CD = ,∴在四边形ABCD 中,AB CD∥,四边形ABCD 是平行四边形, AD BC ∴= ,400AD BC ∴==海里.第15题.证明:111()()222AP NP NA BN CN BN NC BC =-=-=+=,111()()222QA MA MQ BM CM BM MC BC =-=-=+= ,AP QA ∴= ,P A Q ∴,,三点共线.第16题.飞机飞行的路程是700 km ;两次位移的合成是向北偏西约53˚方向飞行500 km .第17题.OC a =- ,OD b =- ,DC b a =- ,BC a b =--.第18题.丙地在甲地的北偏东45˚方向,距甲地1400km .第19题.证明:因为MN AN AM =-,而13AN AC = ,13AM AB = ,所以1133MN AC AB =- ()1133AC AB BC =-= .同步提升参考答案 一.选择题(每题5分)1.C2. B3.C4.B5. B6.D7.C8.A9.B 10.D 二.填空题(每题5分)11.111(a b ),(a b ),(a b )222-+-+ ,1(b a )2-12.1 13.a b + ,a b- 14.等腰梯形三.解答题(每题10分)15.(1)0(2)AC (3)016.【解答】(1)如图,(2)∵-=,故四边形ABCD 为平行四边形, )m (15==DA BC17.【解答】与EF 共线的向量有AB 、; 与CO 共线的向量有CE ,CA ,OE ,OA ,; 与EA 相等的向量是18.【解答】19.【解答】 PA PB PC AB ++=()PA PA AB PC AB ∴+++=,故-=2A ∴、P 、C 三点共线,且P 是线段AC 的三分点中靠近A 的那一个20.【解答】提示:可以证明MC 3MN =CDABNM。
2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

③当两个非零向量a与b反向且|a|<|b|时(如图2),则a+b与b方向相同 (与a方向相反),且|a+b|=||a|-|b||. ④当两个向量a与b中至少有一个为0时,则必有|a+b|=|a|+|b|=||a||b||. 综上可知任意两个向量a,b恒有||a|-|b||≤|a+b|≤|a|+|b|.
uuur uuur 则飞机飞行的路程指的是| AB |+| BC |;
uuur uuur uuur 两次飞行的位移的和指的是 AB + BC = AC .
uuur uuur 依题意,有| AB |+| BC |=800+800=1 600(km), 又α=35°,β=55°,∠ABC=35°+55°=90°,
新知导学 课堂探究
新知导学·素养养成
1.向量加法的定义 定义:求两个向量 和 的运算,叫做向量的加法. 对于零向量与任一向量a,规定0+a=a+ 0 = a .
2.向量求和的法则
三角形 法则
法则
前提 作法
结论
已知非零向量a,b,在平面内任取一点A
uuur uuur
uuur
作 AB =a, BC =b,再作向量 AC
uuur uuur uuur uuur uuur uuur uuur uuur (1)解析:a=( AB + CD )+( BC + DA )= AB + BC + CD + DA =0, 所以 0∥b,①正确;0+b=b,③正确;|0+b|=|0|+|b|,⑤正确.故选 C.
uuur uuur uuur (2)化简:① AB + CD + BC ;
高中数学第二章平面向量2.2.1向量加法运算及其几何意义课件3新人教A必修4

【即时小测】
1.思考下列问题.
(1)两个向量相加结果可能是一个数量吗? 提示:不能,实数相加结果是数,而向量具有方向,所以相加的结果 是向量. (2)两个向量相加实际上就是两个向量的模相加,这种说法对吗? 提示:这种说法是不正确的.向量既有大小又有方向,在进行向量相 加时,不仅要确定长度还要确定向量的方向.
答案:CF
知识点1 向量的加法
【知识探究】
观察图形,回答下列问题:
问题1:三角形法则和平行四边形法则的使用条件有何不同? 问题2:共线向量怎样进行求和? 问题3:当涉及多个向量相加时,运用哪个法则求解?
【总结提升】 1.对向量加法的三角形法则和平行四边形法则的三点说明 (1)两个法则的使用条件不同. 三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于 两个不共线的向量求和. (2)当两个向量不共线时,两个法则是一致的. (3)在使用三角形法则时要注意“首尾相连”,在使用平行四边形法 则时需要注意两个向量的起点相同.
3.如图,在正六边形ABCDEF中BuuAur
uuur CD
uur EF
=______.
【解析】根据正六边形的性质,对边平行且相等,我们容易得到
uuur uuur uur uuur uuur uur uur uuur uur BA CD EF BA AF EF BF CB CF.
uur
【解题探究】典例图1中a与b有何关系,图2两向量相加可采用哪种方
法进行?图3三向量相加可采用哪种方法进行? 提示:图1中向量a与向量b共线,图2中两向量相加可采用三角形法则 或平行四边形法则进行.图3中三向量相加可采用三角形法则或平行四 边形法则进行.
【解析】如图中(1),(2)所示, 首先作OuuAu=r a,然后作 Auu=Burb,则 Ou=uBura+b.
平面向量的加减法

,b= ,仍是零向量
a
(-a)+a
-b
-a
0
向量减法的定义和法则
问题1:两个相反数的和为零,那么两个相反向量的和也为零吗? 提示:是零向量. 问题2:根据向量加法,如何求作a-b? 提示:①先作出-b;②再按三角形或平行四边形法则进行.
向量的减法
(1)定义:a-b=a+ (-b) ,即减去一个向
量相当于加上这个向量的 相反向量
.
(2)几何意义:以O为起点,作向量 OA =
a, OB =b,则 BA =a-b,如图所示,即a-b可表示从
向量b的终点
指向 向量a的终点
的向量.
深化理解
1.向量的减法运算与向量的加法运算是互逆运算, 可以相互转化,减去一个向量等于加上这个向量的相反 向量.
2.两个向量的差也可用平行四边形法则及三角形法 则求得:用平行四边形法则时,两个向量也是共起点,
跟踪练习
1.在平行四边形ABCD中, AB + CB - DC =
A. BC
B. AC
C. DA
D. BD
解析:如图∵ CB = DA , ∴ AB + CB - DC = AB + DA - DC = AB + CA = CA + AB = CB = DA .
答案:C
()
2.如图,在四边形 ABCD 中,根据图示填空: a+b=____,b+c=____,c-d=____, a+b+c-d=____.
答案:4 km/h
2.如图,一架飞机从 A 地按北偏西 30°的方向飞行 300 km 后 到达 B 地, 然后向 C 地飞行.已知 C 地在 A 地北偏 东 60°的方向处,且 A,C 两地相距 300 km,求飞机从 B 地向 C 地飞行的方 向及 B、C 两地的距离.
2.2 平面向量的减法

B C
A
C
B
A
习题 2.2 A组
第 4、6、7、8、11 题. B组
第 5 题.
4. 化简: 习题: (习题2.2) A 组
(1)AB BC CA;
(2) (AB MB) BOOM;
(3) OAOC BOCO; (4) AB- AC BD-CD;
(5) OA-OD AD;
① a 与-a互为相反向量.
② 零向量的相反向量仍是零向量.
③ 任上一a图向(中量-a的与)=它a0.相b反=0向. 量的和是零向量, 即:
问题1. 向量AB与向量BA有什么关系? 能化简
AB BC - DC - ED EF 吗?
答: 向量 AB 与向量 BA是互为相反向量, 即 AB = -BA.
2.2.2 向量减法运算 及其几何意义
返回目录
1. 什么是相反向量? 2. 向量加法与向量减法有什么关系? 3. 怎样作向量的减法? 两个非零向量的差向 量是怎样的一个向量?
(一) 相反向量
定义: 与向量 a 长度相等, 方向相反的向量, 叫做 a 的相反向量, 记作 -a.
如图:
a
b
-a
b = -a, a = -b, |a| = |b|.
= CΒ BC =0.
4. 化简: 习题: (习题2.2) A 组
(1)AB BC CA;
(2) (AB MB) BOOM;
(3) OAOC BOCO; (4) AB- AC BD-CD;
(5) OA-OD AD;
(6) AB- AD- DC;
(7) NQ QP MN - MP.
-
b
-a
-b-=a--ab
平面向量的加法与减法运算

平面向量的加法与减法运算在平面向量的运算中,加法与减法是最基本的运算法则。
平面向量加法与减法的定义及运算规则如下:一、平面向量的定义在平面上,向量是由大小和方向确定的箭头表示,具有大小和方向的量。
平面向量用字母加箭头表示,如AB→,表示从点A指向点B的向量。
二、平面向量的加法运算1. 定义:对于两个平面向量AB→和CD→,可以将CD→放置在平面上的A点,使得它们有相同的起点,然后从A点指向D点,得到一个新的向量AD→。
AD→就是AB→与CD→的和,表示为AB→+CD→。
2. 运算规则:a) 加法的交换律:AB→ + CD→ = CD→ + AB→b) 加法的结合律:(AB→ + CD→) + EF→ = AB→ + (CD→ + EF→)c) 零向量的定义:零向量是指大小为0的向量,用0→表示,对于任意向量AB→,有AB→ + 0→ = AB→d) 反向向量的定义:对于任意向量AB→,存在一个与之方向相反但大小相等的向量,称为其反向向量,用-AB→表示,有AB→ + (-AB→) = 0→三、平面向量的减法运算1. 定义:对于两个平面向量AB→和CD→,可以将CD→取反,然后按照向量加法的规则,得到AB→ + (-CD→),表示为AB→ - CD→。
2. 减法的运算规则:a) 减法的定义:AB→ - CD→ = AB→ + (-CD→)b) 减法的性质:AB→ - CD→ ≠ CD→ - AB→,减法不满足交换律。
四、示例分析1. 平面向量加法示例:设有向量AB→ = 3i + 4j和向量CD→ = -2i + 5j,其中i和j是单位向量。
AB→ + CD→ = (3i + 4j) + (-2i + 5j) = (3 - 2)i + (4 + 5)j = i + 9j2. 平面向量减法示例:设有向量AB→ = 3i + 4j和向量CD→ = -2i + 5j,其中i和j是单位向量。
AB→ - CD→ = (3i + 4j) - (-2i + 5j) = (3 + 2)i + (4 - 5)j = 5i - j五、平面向量的运算性质1. 平面向量加法满足交换律和结合律,即满足整个群论的要求。
平面向量加减法口诀

向量的加法口诀: 首尾相连,首连尾,方向指向末向量。
以第一个向量的起点为起点,以第二个向量的终点为终点的向量是两向量的和向量。
二、向量的减法两向量做减法运算,图像如下图所示:向量的减法口诀: 首首相连,尾连尾,方向指向被减向量。
以第一个向量的终点为起点,以第二个向量的终点为终点的向量是两向量的差向量。
向量的学习是高一数学必修四第二章的内容,要求同学们会向量的基本运算,其中就包括加法、减法、数乘。
要求大家能根据运算法则解决基本的向量运算,学会运用图像解决向量加减法,向量的数乘等问题。
向量的相关题目难度也不是很大,只要大家认真学习,认真做好笔记,认真做做题目,总结做题规律,那么当我们遇到类似题目时就会似曾相识,做起来也很顺手,再细心点的话,得满分也没有问题。
学习方法很多,重要的事找到适合自己的方法,当然适合自己方法就是最好的方法。
附一;三角形定则解决向量加减的方法将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。
注:两个向量相减,则表示两个向量起点的字母必须相同;差向量的终点指向被减向量的终点。
平行四边形定则解决向量加法的方法实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ 3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b 〈=〉a·b=0.|a·b|≤|a|·|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、向量减法的几何意义:
向量减法的三角形法则:
b
B a bb a
b
a
O
A
a
思考:如果从a
的终点到b的终 点作向量,那么 所得向量是什么 ?
“共起点,连终点,指向被减向量”
a b 表 示 从 减 向 量 b 的 终 点 指 向 被 减 向 量 a 的 终 点 的 向 量 , 这 就 是 向 量 减 法 的 几 何 意 义 .
你能用 a , b 表示向量AB和AD吗?
解:AB=a + b; AD=a - b.
D
a
A
C
O
b
B
2020/8/18
例:2.已知如图向量 a, ,b c 求作 abc.
abc
ab
c
a
练习:P91.8
b
2020/8/18
例:3
(1)化A 简 B AC BD CD 解 : 原 式 = C B B D C D = C D C D = 0
2.2 平面向量的加减运算
2020/8/18
1.向量加法的三角形法则: 2.向量加法的平行四边形法则
首尾相连,起点指向终点
起点相同,对角为和
C
ab b
A
a
B
Ba
b
ab
C b
O
a
A
3.向量加法的交换律
4.向量加法的结合律
:
a
:
(a
b
b
=
b
a.
)
c
=
a
(b
c)
2020/8/18
2020/8/18
例 1.已知平行 AB四 C ,A边 D B =a,形 AD =b,
用 a,b表示A 向 C ,D量 B
D
C
b
解:由向量加法的平行四边形法则,
得
AC=ab;
AaBຫໍສະໝຸດ 由向量的减法可得,D B = A B A D = a b .
2020/8/18
变式训练1. 如图, ABCD中,AO=a,OB=b,
三点是一个三角形的定点 ( )
5、 0a=a ( )
6、两个向量是互为相反向量,则两个向量共线.
2020/8/18
(√ )
3、相反向量
定义:与 a 长度相等,方向相反的向量,
叫做 a 的相反向量,记作: a
a
a
AB= BA,在计算中常用
结论: (1) (a) = a
(2)零向量的相反向量仍是零向量, 0 = 0
(3)a(a)=(a)a= 0
(4)如果是a,b互为相反的向量,那么
2020/8/18
a= b ,b= a ,ab=0
(2)化O 简 AO CBO CO
解 :原 式 =(O ABO)(O CCO ) =(O AO B)0=BA
2020/8/18
练习、1.判断下列命题是否正确,若不正确,说明理由
1、 ABBA=0 (√ )
2、 AB=OAOB( )
3、相反向量就是方向相反的量 ( )
4、若 AB BC C= A0 ,则A、B、C