第一章 微积分的发展历史简介
微积分历史简介

微积分学是数学的一个基础分 支学科,源于代数 几何,内容 代数和 支学科,源于代数和几何 内容 主要包括极限 主要包括极限 微分学 积分学
微积分的创立
(一)历史背景
自文艺复兴以来, 自文艺复兴以来,在资本主义生产力的刺激下得到了 蓬勃发展自然科学(天文学 力学)开始面临综合与突破的阶 天文学,力学 蓬勃发展自然科学 天文学 力学 开始面临综合与突破的阶 而这种综合与突破面临的数学困难, 段,而这种综合与突破面临的数学困难,使微积分的基本 问题成为人们的关注焦点
1686年Leibniz 发表了他的第二篇微积分论文《深奥的几何学 年 发表了他的第二篇微积分论文《 与不可分量及无限的分析》 与不可分量及无限的分析》
学家( 发明人问题是由瑞士数学家(N . F. de duillier)挑起的 挑起的 N . F. de duillier 1699年在一本小册子中提出“Newton是 年在一本小册子中提出“ 年在一本小册子中提出 是 微积分的第一发明人, 是微积分的第二发明人, 微积分的第一发明人, Leibniz是微积分的第二发明人, 是微积分的第二发明人 Leibniz借鉴了 借鉴了Newton的成果 的成果” 借鉴了 的成果 Leibniz即时作出了反驳 即时作出了反驳 1712年 英国皇家学会宣布Newton 微积分的第一发明人 1712年,英国皇家学会宣布Newton是微积分的第一发明人 , 这引起了Leibniz的申诉,,争论在双方追随者见越演越烈,直到 的申诉,,争论在双方追随者见越演越烈, 这引起了 的申诉,,争论在双方追随者见越演越烈 Newton和Leibniz去世,后经过调查,特别是 去世, 的手稿分析, 和 去世 后经过调查,特别是Leibniz的手稿分析, 的手稿分析 证实Newton和Leibniz独立完成了微积分,发明时间 独立完成了微积分, 证实 和 独立完成了微积分 发明时间Newton早于 早于 Leibniz, 发表时间 发表时间Leibniz 早于 早于Newton 可悲的是18世纪英国和欧洲大陆数学发展分道扬镳, 可悲的是 世纪英国和欧洲大陆数学发展分道扬镳,英国 世纪英国和欧洲大陆数学发展分道扬镳 对微积分的发展不再有贡献, 对微积分的发展不再有贡献,微积分的发展由欧洲大陆完成
微积分的发展历史

微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。
2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。
3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。
牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。
这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。
4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。
5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。
这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。
6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。
来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。
7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。
爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。
8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。
函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。
论述微积分发展简史

论述微积分发展简史1一、微积分的萌芽微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。
这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。
公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。
在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。
这些都是最早期人类对无穷、极限等概念的原始的描述。
二、微积分的创立微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。
最后一个阶段是由牛顿、莱布尼茨完成的。
前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。
中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。
中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。
在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。
而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。
这些想法都是积分法的前驱。
在微分方面,十七世纪人类也有很大的突破。
费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。
另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。
由此可见,人类在十七世纪已经掌握了微分的要领。
英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。
微积分发展史简述

微积分发展史简述微积分是数学中的重要分支,广泛应用于自然科学、工程学、经济学等领域。
它的发展历史可以追溯到古希腊时期,但直到17世纪才得到了系统的发展和完善。
本文将简要介绍微积分的发展史。
1. 古希腊时期:微积分的雏形在古希腊时期,数学家们对于几何学有着深入的研究。
亚里士多德和欧几里得等人提出了许多与微积分相关的概念,如无穷小量和极限。
然而,由于当时的数学工具和观念的限制,微积分的发展受到了很大的阻碍。
2. 牛顿和莱布尼茨:微积分的创始人17世纪,牛顿和莱布尼茨几乎同时独立地发展出微积分学。
牛顿创立了微积分的主要思想和方法,他提出了差分和积分的概念,并建立了微分方程和牛顿运动定律等基本理论。
莱布尼茨独立地发展出了微积分的符号表示法,引入了微积分中的极限和导数的概念。
牛顿和莱布尼茨的工作为微积分的发展奠定了基础。
3. 微积分的完善:极限与连续性18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。
欧拉进一步完善了微积分的符号表示法,并提出了欧拉公式等重要结果。
拉格朗日则对微积分中的极限和连续性进行了系统的研究,提出了拉格朗日中值定理和泰勒展开等重要定理。
这些工作使微积分的理论更加严谨和完备。
4. 微积分的应用:物理学和工程学19世纪,微积分的应用开始扩展到物理学和工程学等实际问题中。
拉普拉斯和傅里叶等数学家使用微积分的方法解决了一系列的物理学问题,为微积分的应用奠定了基础。
同时,微积分也在工程学中得到了广泛的应用,如力学、电磁学和流体力学等领域。
微积分的应用使得工程学的发展取得了重大的突破。
5. 微积分的发展与现代数学的关系20世纪,微积分的发展与现代数学的发展密切相关。
在集合论和数理逻辑的基础上,数学家们对微积分的理论进行了深入的研究和推广。
勒贝格和黎曼等数学家提出了测度论和黎曼积分等新的概念和方法,为微积分的发展带来了新的思路和工具。
同时,微积分也成为了现代数学的重要组成部分,在数学的其他分支中得到了广泛的应用。
微积分发展简介

旨.他在《平面与立体轨迹引论》(开始于1629年,1636年 前完成.“立体轨迹”指不能用尺规作出的曲线,与现在的 含义不同)一文中明确指出方程可以描述曲线,并通过对方 程的研究可以推断出曲线的性质. 在解析几何里,由于建立了坐标系,可以用字母表示变 动的坐标,用代数方程刻画一般平面曲线,用代数运算代替 几何量的逻辑推导,从而把对几何图形性质的研究转化为对 解析式的研究,使数与形紧密地结合起来了.这种新的数学 方法的出现与发展,使数学的思想和方法的发展发生了质的 变化,恩格斯把它称为数学的转折点.此后人类进入了变量 数学阶段,也是变量数学发展的第一个决定性步骤.为十七 世纪下半叶微积分算法的出现准备了条件.
16世纪以后,欧洲数学家们仍沿用阿基米德的 方法求面积、体积等问题,并不断加以改进。天文 学家兼数学家开普勒的工作是这方面的典型。他注 意到,酒商用来计算酒桶体积的方法很不精确,他 努力探求计算体积的正确方法,写成《测量酒桶体 积的新科学》一书,他的方法的精华就是用无穷多 小元素之和来计算曲边形的面积或体积。 微分思想也在古代略见端倪,它是和求曲线的切 线问题相联系的,这是数学家们历来所关注的另一类 问题。
柯西在数学上的最大贡献是在微积分在引进了极限概念,并 以极限为基础建立了逻辑清晰的分析体系。这是微积分发展 史上的菁华,也是柯西对人类科学发展所作的巨大贡献。 柯西提出极限定义的ε方法,把极限过程用不等式来刻划,后 经维尔斯特拉斯改进,成为现在所说的柯西极限定义或叫ε- δ定义。
柯西在其它方面的研究成果也很丰富。复变函数的微积分理论就是由他 创立的。在代数方面、理论物理、光学、弹性理论方面,也有突出贡献。 柯西的数学成就不仅辉煌,而且数量惊人。柯西全集共有27卷,其论 著有800多篇。在数学史上是仅 次于欧拉的多产数学家。他的光辉 名字与许多定理、准则一起铭记在当今许多教材中。
微积分的发展历程

微积分的发展历程微积分是数学中一个重要的分支,它涉及到极限、导数、积分等概念和方法,被广泛应用于物理学、工程学、经济学等领域。
本文将简要介绍微积分的发展历程。
一、古代的预备工作在微积分出现之前,人们对于一些基本数学问题已经有了一些认识和解决方法。
例如,古希腊的毕达哥拉斯学派就研究了直线的长度、面积和体积等问题。
此后,阿基米德提出了可以计算曲线面积的方法,称为阿基米德法则。
这些古代数学家为微积分的发展打下了基础。
二、牛顿和莱布尼茨的贡献17世纪,牛顿和莱布尼茨几乎同时独立地发明了微积分学。
牛顿通过研究物体的运动和力学问题,提出了“极限”的概念,并建立了微分和积分的基本运算法则。
莱布尼茨则通过研究曲线的切线和面积问题,独立地发展了微积分的方法和符号体系。
他们的贡献使得微积分有了系统的理论基础。
三、分析学的建立18世纪,欧拉、柯西等数学家对微积分进行了深入研究,逐渐建立了分析学的框架。
欧拉通过引入指数和对数运算,为微积分提供了更加方便的计算工具。
柯西则对极限、连续和导数等概念进行了严格的定义和证明,奠定了微积分的数学基础。
此后,分析学成为了微积分的主要研究方法。
四、微积分的应用微积分的发展不仅带来了丰富的数学理论,还在实际应用中发挥了巨大的作用。
在物理学中,微积分被应用于描述质点的运动、电磁场的变化等问题,成为了理论物理学的基础工具。
在工程学中,微积分被用于求解曲线的切线、曲面的切平面等问题,为工程设计提供了精确的计算方法。
在经济学中,微积分被用于分析经济变量之间的关系、优化经济模型等,为经济研究提供了理论支持。
五、微积分的发展趋势随着科学技术的不断进步,微积分的应用领域也在不断扩展。
例如,微分几何将微积分与几何学相结合,研究曲线的性质和空间的几何结构。
微分方程则将微积分与方程学相结合,研究动力系统、波动现象等。
此外,近年来的计算机技术的发展也使得微积分的计算更加便捷和高效。
总结起来,微积分是一个源远流长、发展迅速的学科。
微积分的发展历史

微积分的发展历史微积分是数学中的一个重要分支,它的发展历史可以追溯到古希腊时期。
在这篇文章中,我们将探讨微积分的发展历史,从古希腊时期到现代,逐步了解微积分的发展过程。
古希腊时期,数学家欧多克斯提出了一种叫做“尽量大与尽量小”的方法,这种方法可以用来求解一些几何问题。
这种方法后来被称为“极限法”,它是微积分的基础之一。
在17世纪,牛顿和莱布尼茨分别独立地发明了微积分。
牛顿主要研究物理学问题,他发明了微积分中的“微分法”,用来研究物体的运动和力学问题。
莱布尼茨则主要研究数学问题,他发明了微积分中的“积分法”,用来求解曲线下面积和一些几何问题。
18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。
欧拉发明了欧拉公式,它将三角函数、指数函数和虚数单位i 联系在了一起。
拉格朗日则发明了拉格朗日乘数法,用来求解约束条件下的极值问题。
19世纪,高斯和柯西等数学家对微积分进行了更加深入的研究和发展。
高斯发明了高斯-黎曼方程,它是复变函数理论的基础。
柯西则发明了柯西积分定理和柯西-黎曼方程,它们是复变函数理论的重要组成部分。
20世纪,微积分在应用数学和物理学中得到了广泛的应用。
微积分被用来研究物理学中的力学、电磁学、热力学等问题,也被用来研究应用数学中的概率论、统计学、控制论等问题。
微积分的应用范围越来越广泛,成为现代科学和工程技术的基础。
微积分的发展历史可以追溯到古希腊时期,经过了欧多克斯、牛顿、莱布尼茨、欧拉、拉格朗日、高斯、柯西等数学家的不断研究和发展,逐步形成了现代微积分的体系。
微积分在应用数学和物理学中得到了广泛的应用,成为现代科学和工程技术的基础。
微积分的发展历史

微积分的发展历史微积分是数学中的一个重要分支,它主要研究一些连续变化的函数之间的关系,以及这些函数的一些量的变化规律。
微积分的历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。
以下是微积分的发展历史。
1. 古希腊时期古希腊数学家阿基米德(287 BC - 212 BC)就是微积分的先驱之一。
他发明了一种称为“方法论”的技术,这种技术可以用来求解一些几何问题,例如圆的面积和球体的体积。
这种技术可以用来求解一些连续变化的函数的面积或体积问题。
2. 17世纪初期17世纪初期,数学家牛顿(1643-1727)和莱布尼茨(1646-1716)几乎同时发明了微积分。
他们的发现彻底改变了数学的面貌。
牛顿的微积分是基于几何直觉的发现,而莱布尼茨的微积分则是基于代数记号的发现。
3. 18世纪在18世纪,微积分的研究得到了进一步发展。
法国数学家欧拉(1707-1783)和拉格朗日(1736-1813)在微积分的研究中做出了重要的贡献。
欧拉在微积分中引入了复数,这对微积分的发展具有重要的意义。
拉格朗日发现了微积分中的一些基本定理,例如拉格朗日中值定理和柯西中值定理。
4. 19世纪19世纪是微积分的发展中最重要的一个世纪。
数学家高斯(1777-1855)和魏尔斯特拉斯(1815-1897)在微积分的研究中做出了重要的贡献。
高斯发现了极值问题的解法,魏尔斯特拉斯则首次使用了极限的概念来解决微积分中的一些问题。
5. 20世纪20世纪是微积分发展的最后一个世纪。
在这个世纪里,微积分的研究得到了深入的发展。
数学家费曼(1918-1988)提出了路径积分理论,这个理论对微积分的研究有着重要的意义。
同时,微积分还应用于物理学、工程学和经济学等领域,在这些领域中发挥着至关重要的作用。
微积分的发展历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。
在18世纪和19世纪,微积分得到了进一步的发展,20世纪中期,微积分已经成为了一个重要的数学分支,并被广泛应用于各个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 微积分的发展历史简介
1.1微积分的概念 微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
基本定义
设函数0)(=x f 在],[b a 上有解,在],[b a 中任意插入若干个分点 n n x x x x x a <<<<<=-1210 把区间],[b a 分成n 个小区间
].,[],,[],,[12110n n x x x x x x - 在每个小区间],[1i i x x -上任取一点)(1i i x i x i <<-ζζ,作函数值)(i f ζ与小区间长度的乘积x i f ∆)(ζ并作出和如果不论对],[b a 怎样分法,也不论在小区间上的点i ζ怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数)(x f 在区间[a,b]上的定积分记作K 。
微积分的基本概念和内容包括微分学和积分学。
微分学的主要内容包括:极限理论、导数、微分等。
积分学的主要内容包括:定积分、不定积分等。
一元微分定义
设函数)(x f y =)在某区间内有定义,0x 及x x ∆+0在此区间内。
如果函数的增量)()(00x f x x f y -∆+=∆可表示为 0ox x A y +∆=∆(其中A 是不依赖于x ∆的常数),而x o ∆是比x ∆高阶的无穷小,那么称函数)(x f 在点0x 是可微的,且x A ∆称作函数在点0x 相应于自变量增量x ∆的微分,记作dy ,即x A dy ∆=
通常把自变量x 的增量x ∆称为自变量的微分,记作dx ,即x dx ∆=。
于是函数)(x f y =的微分又可记作dx x f dy )('=。
函数的微分与自变量的微分之商等于该函数的导数。
因此,导数也叫做微商。
几何意义
设x ∆是曲线)(x f y =上的点M 的在横坐标上的增量,y ∆是曲线在点M 对
多元微分
多元微分又叫全微分,是由两个自变量的偏导数相对应的一元微分的增量表示的。
总的来说,微分学的核心思想便是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。
1.2微积分的发展阶段
(一)早期导数概念----特殊的形式 大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求最大值与最小值的方法》。
在作切线时,他构造了差分)()(A f E A f -+,发现的因子E 就是我们现在所说的导数)('x f 。
(二)17世纪----广泛使用的“流数术” 17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。
牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。
牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。
分析概论》中定义导数:如果函数)(x f y =在变量x 的两个给定的界限之间保持
连续,并且我们为这样的变量指定一个包含在这两个不同界限之间的值,那么
δ-
是使变量得到一个无穷小增量。
19世纪60年代以后,魏尔斯特拉斯创造了ε语言,对微积分中出现的各种类型的极限重加表达,导数的定义也就获得了今天常见的形式。
1.3微积分思想的形成
微分和积分的思想在古代就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。
比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。
”这些都是朴素的、也是很典型的极限概念。
到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。
归结起来,大约有四种主要类型的问题:
第一类是研究运动的时候直接出现的,也就是求即时速度的问题。
第二类问题是求曲线的切线的问题。
第三类问题是求函数的最大值和最小值问题。
第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。
十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。
为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),
一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。
牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。
他把连续变量叫做流动量,把这些流动量的导数叫做流数。
牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。
就是这样一片说理也颇含糊的文章,却有划时代的意义。