弯曲法测杨氏模量
《弯曲法测杨氏模量》物理实验报告(有数据)

弯曲法测定杨氏模量一、实验目的1.学习用弯曲法测量金属的杨氏模量。
2.学习用读数显微镜法测量微小位移。
3.掌握用最小二乘法及逐差法处理数据。
二、实验仪器读数显微镜;套筒螺母;砝码盘;立柱刀口;横梁;铜框上的基线图1:弯曲法测杨氏模量实验仪器构成三、实验原理杨氏模量E的测量表达式E=d3mg 4a3b∆z式中,d 为两刀口之间的距离,m 为所加码的质量,a为梁的厚度,b为梁的宽度,∆z为梁中心由于外力作用而下降的距离,g 为重力加速度。
四、实验内容和步骤(一)实验仪器预调整1.调节显微镜的高度。
在码盘上加 20g 后使镜简轴线和铜上的基线等高。
2.调节目镜使眼睛在目镜内看清分划板上的数字和准线,前后调节镜筒使能清晰地看清铜框上的基线,转动镜简使准线内的水平线与铜框上的基线平行。
(二)记录弯曲数据1.当砝码盘上为初始负载的情况下,转动读数鼓轮使目镜视场中的水平准线和铜框上的基线重合,记录显微镜上的初始读数。
2.在初始负载20g的基础上向砝码盘上逐次加10g的砝码,记录数据。
(三)测量黄铜的杨氏模量1.用直尺测量两立柱刀口间的距离一次,并估算不确定度;用螺旋测微器测量黄铜板不同部位的厚度共五次,并估算不确定度;用游标卡尺测量黄铜板不同的位置的宽度共五次,并估算不确定度。
2.重复(二)中的步骤,向砝码盘中逐次加10g的砝码,测出相应的8个值,用同样的方法测量并记录黄铜板的弯曲记录。
3.用逐差法处理数据,计算在40g重力下的黄铜板中心下降的距离,并计算黄铜的杨氏模量E及其误差。
五、数据处理d=230mm,a=0.8mm,b=23.34mm=130GPaE=d3mg4a3b∆z六、实验结论和分析可以根据实验结果,分析样品的结构特性。
杨氏模量是描述材料刚度和弹性特性的重要参数,对于材料的设计和性能评估具有重要意义。
需要注意的是,弯曲法测定杨氏模量是一种近似方法,实验结果可能受到多种因素的影响。
因此,在进行实验结论和分析时,应充分考虑实验条件、样品准备和测量误差等因素,以得出准确和可靠的结论。
实验八(b)杨氏弹性模量的测量(用弯曲法)

实验八(b ) 杨氏弹性模量的测量(用弯曲法) 实验目的1.学会使用梁的弯曲法测定杨氏弹性模量。
2.熟悉用读数显微镜测量微小长度变化的方法。
实验仪器梁的弯曲实验仪,螺旋测微器,游标卡尺,米尺,读数显微镜(或测高仪),砝码。
实验原理设有效长度为l 厚度为h 宽为a 的均匀矩形梁,置在一对平行的刀口上,在矩形梁的中点竖直向下作用一个力F 如图2-8b -1所示,在弹性限度内,梁中点下垂量λ(挠度),在λ<<1时,梁的杨氏模量为 334ah Fl E λ= (2-8b -1)本实验通过测F 、l 、a 、h 、λ而测量E ,由于λ很小,用读数显微镜测出不同F 下的λ的变化值来求E 。
实验内容1.使用梁的弯曲法测定金属梁的杨氏模量(1)将待测材料安放在仪器刀口上,套上金属框架并使其刀刃恰好在仪器刀口中间,框架的下面挂上砝码盘;(2)调读数显微镜的上下位置,使望远镜的轴线对正金属框架上的小窗,调节显微镜的目镜看清十字线,前后移动显微镜,直到从望远镜中看到清楚的梁的边缘,再调整显微镜中十字线与梁的某一边重合,并消除视差;(3)从显微镜中读出初始位置r 0 ;(4)在砝码托盘上加一个砝码记下位置。
这样顺次增加200g 砝码,记下相应的位置(注意在改变砝码时,不要让砝码盘歪斜);(5)顺次将砝码取下,记下相应的位置;(6)用游标卡尺测a ,用千分尺测h ,用米尺测l 。
数据处理1.使用逐差法求挠度λ记录l 、a 、h 的测量数值及误差。
2.计算E 值(1)将l 、a 、h 、λ代入公式(2-8b -1)可以求出E ,并表示成E E E ∆±=的形式。
(2)用作图的方法求出E 的数值。
使用坐标纸,以λ为横坐标,以F 为纵坐标,作F ~λ图,应为一直线,其斜率为334l Eah k = (2-8b -2) 从图上求出k ,则 334aEhkl E = (2-8b -3)思考题1.采用光杠杆和望远镜等组成的测量系统测量λ,应如何安装仪器,简要写出实验步骤。
三种杨氏模量测量方法比较

三种杨氏模量测量方法比较周晓明【摘要】The measuring methods of young's modulus in college physics experimental teaching are compared,and the main errors are analyzed.According to their characteristics and the aspect of cultivating student's innovative capability through physics experimental teaching,some beneficial teaching suggestions of measuring methods of young's modulus are put forward in combining the teaching reform practice.%对大学物理实验课程中三种杨氏模量测量方法进行了比较,分析了其主要误差来源。
根据各种测量方法的特点,从通过实验教学培养学生综合能力的角度,结合教改实践给出了杨氏模量测量实验教学的若干参考建议。
【期刊名称】《实验科学与技术》【年(卷),期】2011(009)006【总页数】3页(P97-99)【关键词】杨氏模量;误差来源;教学建议【作者】周晓明【作者单位】华南理工大学物理学院,广州510640【正文语种】中文【中图分类】G642.423;O4-33杨氏模量是表征固体材料弹性形变性质的基本力学参数,也是工程设计中选择机械构件的一个重要依据,杨氏模量测定在科学研究和技术应用中都具有重要意义。
测量杨氏模量的方法有很多,如拉伸法、梁弯曲法、百分表法、光杠杆法、干涉条纹法、共振法等,每种方法各有其特点,适合不同的测试条件。
在大学物理实验中,固体材料杨氏模量的测量是理工科院校物理实验中必做实验之一,很多高校开设了用不同方法测量杨氏模量的多个实验,构成具有相对独立性的一个实验项目子系列。
弯曲法测杨氏模量实验报告

弯曲法测杨氏模量实验报告一、实验目的1、掌握用弯曲法测量金属丝杨氏模量的原理和方法。
2、学会使用读数显微镜、砝码等实验仪器。
3、培养实验数据处理和误差分析的能力。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
当一根长度为L、横截面为 S 的金属丝,在其两端受到力 F 的作用时,金属丝会发生弯曲形变。
根据胡克定律,在弹性限度内,金属丝的弯曲形变与所受的外力成正比。
设金属丝的弯曲形变产生的挠度为δ,根据材料力学理论,有:\\frac{F}{S} = E\frac{\delta}{L^3}\其中,E 为杨氏模量。
通过测量金属丝的长度 L、横截面直径 d(从而计算出 S)、施加的力 F(通过砝码质量计算)以及挠度δ,即可计算出杨氏模量 E。
三、实验仪器1、读数显微镜:用于测量金属丝的挠度。
2、砝码:提供外力。
3、金属丝:实验测量对象。
4、支架:用于固定金属丝。
5、游标卡尺:测量金属丝的直径。
6、米尺:测量金属丝的长度。
四、实验步骤1、用米尺测量金属丝的长度 L,多次测量取平均值,减少误差。
2、用游标卡尺在不同位置测量金属丝的直径 d,测量多次取平均值。
3、将金属丝固定在支架上,使其处于水平状态。
4、调整读数显微镜,使其能够清晰地看到金属丝的下表面,并将显微镜的刻度调零。
5、依次在金属丝的一端缓慢加上砝码,记录每次增加砝码后读数显微镜中金属丝的挠度值。
6、实验结束后,整理实验仪器。
五、实验数据记录与处理1、金属丝长度 L 的测量测量次数:5 次测量值(单位:cm):_____、_____、_____、_____、_____平均值:L =_____ cm2、金属丝直径 d 的测量测量次数:5 次测量值(单位:mm):_____、_____、_____、_____、_____平均值:d =_____ mm3、挠度δ 的测量砝码质量 m(单位:g):_____、_____、_____、_____、_____对应的挠度值δ(单位:mm):_____、_____、_____、_____、_____4、计算横截面积 S\S =\frac{\pi d^2}{4}\5、计算外力 F\F = mg\(其中 g 为重力加速度,取 98 m/s²)6、根据实验数据,计算出杨氏模量 E\E =\frac{mgL^3}{48S\delta}\六、误差分析1、测量误差长度 L、直径 d 和挠度δ 的测量都存在一定的误差,可能是由于测量仪器的精度、读数的误差等因素导致。
三点弯曲法 杨氏模量

三点弯曲法杨氏模量全文共四篇示例,供读者参考第一篇示例:三点弯曲法是一种常用的材料力学测试方法,用于测定材料的弯曲强度和弯曲模量。
而杨氏模量是衡量材料刚度的指标之一,它反映了材料在拉伸或压缩加载下的应力应变关系。
本文将详细介绍三点弯曲法和杨氏模量的相关知识。
三点弯曲法是一种简便有效的材料力学测试方法,适用于各种材料的弯曲性能测试。
在这种测试方法中,试样以两个支点为支撑,施加一个载荷在试样中间,由此产生弯曲变形。
通过测量试样的挠度和载荷,可以计算出材料的弯曲模量和弯曲强度。
三点弯曲法的原理是基于梁的弯曲理论,即当在梁上施加一个外力时,梁会发生弯曲变形,内部产生拉应力和压应力。
根据梁的弯曲理论,可以推导出试样中心的最大应力和最大挠度与试样尺寸、载荷大小和支座间距等参数的关系。
在进行三点弯曲测试时,需要事先制备好符合标准要求的试样,并严格控制试验条件,如载荷施加速度、试验环境温度等。
测试完成后,可以通过计算得到试样的弯曲模量和弯曲强度。
在三点弯曲法中,可以通过试验数据计算得到材料的弯曲模量。
弯曲模量的大小取决于材料的组织结构、成分和加工工艺等因素,不同材料的弯曲模量也会有所差异。
在工程设计和材料选择中,弯曲模量是一个重要的参数,可以指导材料的合理选择和设计。
第二篇示例:杨氏模量是材料力学性能的一个重要参数,用于描述材料在弹性区域内受力变形的能力。
而三点弯曲法则是一种常用的测试方法,用来测定材料的弯曲性能和弯曲刚度。
本文将介绍三点弯曲法和杨氏模量的相关知识,以及它们在工程实践中的应用。
我们来了解一下三点弯曲法的原理和操作步骤。
在进行三点弯曲测试时,通常需要一根长条状的材料样品,将其固定在两个支撑点之间,使样品在中间形成一个凸起。
然后在凸起的中间点施加一个向下的载荷,通过测量变形和载荷的关系来确定材料的弯曲性能。
三点弯曲测试可以得到材料的弯曲强度、弯曲刚度等参数,用于评估材料在实际应用中的性能。
三点弯曲法可以应用于不同类型的材料,包括金属、塑料、陶瓷等。
3.5弯梁法测量杨氏模量

3.5弯梁法测量杨氏模量实验目的1.学习用弯曲法测量金属的杨氏模量。
2.了解和使用霍尔位置传感器。
3.学习微位移的测量方法。
仪器用具霍尔位置传感器杨氏模量装置(包括读数显微镜、95A 型集成霍尔传感器等),霍尔位置传感器输出信号测量仪(数字电压表)。
实验原理在弹性限度内,物体在长度方向单位横截面积所受的力/F S 称为应力,物体在长度方向产生的相对形变/L L ∆称为应变,由胡克定律可知,这二者是成正比的,即F L E S L∆= (3.5-1) 其比例系数E 称做杨氏弹性模量,即//F S E L L=∆ (3.5-2) 杨氏模量是描述固体材料在线度方向受力后,抵抗形变的能力的重要物理量。
它与材料的物质结构、化学结构及其加工制作方法等自身性质有关,与材料的几何形状和所受外力的大小无关,是工程设计中机械构件选材的重要参数和依据。
测量杨氏模量的常用方法有拉伸法、弯曲法和振动法等。
本实验采用弯曲法测量金属的杨氏模量,运用霍尔位置传感器法测量微位移。
一.用弯曲法测量金属的杨氏模量。
将厚为a 、宽为b 的金属板放在相距为d 的二刀口上(图3.5-1),在金属板上二刀口的中点处挂上质量为m 的砝码,板被压弯,设挂砝码处下降Z ∆,这时板材的杨氏模量334d mg E a b Z=∆ (3.5-3) 下面推导式(3.5-3)。
图3.5-2为沿金属板方向的纵断面的一部分。
在相距dx 的O 1O 2二点上的横断面,在金属板弯曲前互相平行,弯曲后则成一小角d ϕ。
显然,在金属板弯曲后,其下半部呈现拉伸状态,上半部为压缩状态,而在金属板的中间的一薄层虽弯曲但长度不变,称为中间层。
计算与中间层相距为y 、厚dy 、形变前长为dx 的一段,弯曲后伸长了yd ϕ,它受到的拉力为dF ,根据胡克定律有dF yd E dS dxϕ= 式中,dS 表示形变层的横截面积,即dS bdy =,于是d dF Eb ydy dxϕ= 此力对中间层的转矩为dM ,即2d dM Eby dy dxϕ= 而整个横断面的转矩M 应是 22301212a d d M Eb y dy Ea b dx dxϕϕ==⎰ (3.5-4)层图3.5-1 图3.5-2如果将金属板的中点C 固定,在中点两侧各为2d 处分别施以向上的力12mg (图3.5-3),则金属板的弯曲情况应当和图3.5-1所示的完全相同。
弯梁法测量杨氏模量

3.5弯梁法测量杨氏模量实验目的1.学习用弯曲法测量金属的杨氏模量。
2.了解和使用霍尔位置传感器。
3.学习微位移的测量方法。
仪器用具霍尔位置传感器杨氏模量装置(包括读数显微镜、95A 型集成霍尔传感器等),霍尔位置传感器输出信号测量仪(数字电压表)。
实验原理在弹性限度内,物体在长度方向单位横截面积所受的力/F S 称为应力,物体在长度方向产生的相对形变/L L ∆称为应变,由胡克定律可知,这二者是成正比的,即F L E S L∆= (3.5-1) 其比例系数E 称做杨氏弹性模量,即//F S E L L=∆ (3.5-2) 杨氏模量是描述固体材料在线度方向受力后,抵抗形变的能力的重要物理量。
它与材料的物质结构、化学结构及其加工制作方法等自身性质有关,与材料的几何形状和所受外力的大小无关,是工程设计中机械构件选材的重要参数和依据。
测量杨氏模量的常用方法有拉伸法、弯曲法和振动法等。
本实验采用弯曲法测量金属的杨氏模量,运用霍尔位置传感器法测量微位移。
一.用弯曲法测量金属的杨氏模量。
将厚为a 、宽为b 的金属板放在相距为d 的二刀口上(图3.5-1),在金属板上二刀口的中点处挂上质量为m 的砝码,板被压弯,设挂砝码处下降Z ∆,这时板材的杨氏模量334d mg E a b Z=∆ (3.5-3) 下面推导式(3.5-3)。
图3.5-2为沿金属板方向的纵断面的一部分。
在相距dx 的O 1O 2二点上的横断面,在金属板弯曲前互相平行,弯曲后则成一小角d ϕ。
显然,在金属板弯曲后,其下半部呈现拉伸状态,上半部为压缩状态,而在金属板的中间的一薄层虽弯曲但长度不变,称为中间层。
计算与中间层相距为y 、厚dy 、形变前长为dx 的一段,弯曲后伸长了yd ϕ,它受到的拉力为dF ,根据胡克定律有dF yd E dS dxϕ= 式中,dS 表示形变层的横截面积,即dS bdy =,于是d dF Eb ydy dxϕ= 此力对中间层的转矩为dM ,即2d dM Eby dy dxϕ= 而整个横断面的转矩M 应是 22301212a d d M Eb y dy Ea b dx dxϕϕ==⎰ (3.5-4)层图3.5-1 图3.5-2如果将金属板的中点C 固定,在中点两侧各为2d 处分别施以向上的力12mg (图3.5-3),则金属板的弯曲情况应当和图3.5-1所示的完全相同。
实验3.4 弯曲法测定杨氏模量

目镜调节
镜筒调节
四、给霍尔位置传感器定标
当砝码盘上为初 始负载的情况下, 转动读数鼓轮, 使目镜视场中的 水平准线和铜框 上的基线重合, 记录显微镜上的 初始读数h1;
初始负载
1 2 3 4 5 6 7 8
0.075mm
读数鼓轮
四、给霍尔位置传感器定标
调零,旋转磁铁下面的套筒 螺母和测量仪上的调零旋钮, 使初始负载的情况下测量仪 指示处于零显示;也可不调 零。
铁板的弯曲记录,用最小二乘法计算灵敏度K
i 0 0.00 1 20.00 2 40.00 3 60.00 4 80.00 5 100.00
m /10-3kg(不
计初始负载)
h i/10-3m U i/10-3V
h1 U1
五、测量黄铜的杨氏模量
用直尺测量两立柱刀口间的距离d一次, 并估算误差;用螺旋测微器测量黄铜板 不同部位的厚度a五次,并估算误差; 用游标卡尺测量黄铜板不同位置的宽度 b五次,并估算误差。
谢谢!
下午4:20、晚上9:00开始签名,下午5: 00、晚上9:20结束实验离场。 原始记录数据写在一张空白纸上,不要 写在预习报告或书上。 两个预习报告签一个名即可。
横梁 铜框
三、实验仪器预调整
调节显微镜的高度,在砝码盘上加20g 后,使镜筒轴线和铜框上的基线等高。
三、实验仪器预调整
调节目镜,使眼睛在目镜内看清分划板 上的数字和准线;前后调节镜筒,使能 清晰地看清铜框上的基线;转动镜筒, 使准线内的水平线与铜框上的基线平行。
三、实验仪器预调整
1 2 3 4 5 6 7 8
五、测量黄铜板的杨氏模量
黄铜板的弯曲记录
i 1 2 10.00 3 20.00 4 30.00 5 40.00 6 50.00 7 60.00 8 70.00
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U1
调节铜杠杆使其水平;调节磁铁高度,使霍尔位 置传感器处于磁场中间位置。
调节读数显微镜;
1 2 3 4 5 6 7 8
镜筒调节
目镜调节
要防止空回误差,测量时必须使测微鼓轮单向 移动; 调好零记下读数显微镜的初始读数后,要防止 铜杠杆和显微镜的位置有任何移动; 要等待砝码架稳定后再读数。
学习用弯曲法测量金属的杨氏模量; 学习用霍尔位置传感器测量微小位移; 掌握用最小二乘法及逐差法处理数据。
测量杨氏模量E原理:
d mg E 3 4a b h
3dLeabharlann hd为两刀口之间的距离;a为梁的厚度;b为梁的 宽度;m为所加砝码的质量;g为重力加速度;Δh 为梁中心由于重物P的作用而下降的距离。
d 23.0 0.1cm a 1.000 0.001mm b 2.30 0.02cm
用逐差法处理数据,计算黄铜的杨氏模量E及 其误差。
i 0 20.00 1 30.00 2 40.00 3 50.00 4 60.00 5 70.00 6 80.00 7 90.00
m /10-3kg U i/10-3V
铁板的弯曲记录,用最小二乘法计算灵敏度K
i 0 20.00 1 40.00 2 60.00 3 80.00 4 100.00 5 120.00
m / 10 - 3 kg h i / 10 - 3 m U i / 10 - 3 V
h1 U1
用直尺测量两立柱刀口间的距离d一次,并估 算误差;用螺旋测微器测量黄铜板不同部位的厚度 a五次,并估算误差;用游标卡尺测量黄铜板不同 位置的宽度b五次,并估算误差。
霍尔效应:一半导体薄片处在垂直于它的 磁场B中,当通以电流I时,则在垂直于B、I 方向上产生霍尔电压,这种现象称为~。
U
B
I
用霍尔效应测量横梁下降高度
U Kh b U K h
传感器
铜杠杆
横梁
铜框
用读数显微镜测横梁下降的高度:
1 2 3 4 5 6 7 8
减砝码 加砝码
记录铁板的弯曲数据,用最小二乘法计算灵敏 度K,即给霍尔位置传感器定标。