分式的基本性质——约分

合集下载

分式的基本性质与分式的约分

分式的基本性质与分式的约分

分式的基本性质与分式的约分学案【基础知识检测】1.如果把除法算式B A ÷写成 的形式,其中A ,B 都是 ,且B 中含有 时,我们把代数式 叫做分式,其中A 叫做分式的 ,B 叫做分式的 .2.分式的基本性质:分式的分子与分母都乘(或除以)同一个 , 分式的值不变.用等式表示就是:=B A =BA ( ) 3.分式的约分:利用 ,把一个分式的分子和分母中 约去,这叫做分式的约分.4.最简分式:当一个分式的分子与分母,除去 以外没有其它的 时,这样的分式叫做 .5.分式约分的结果应当是 .【达标检测】1.下列代数式:()2222,12,3,413,21,3,53b a b a x x a x x -+++-π, 其中整式为:分式为:2.在下面的括号内填上适当的整式,使等式成立.(1)()xaxa =216 (2)()q q p 5102= (3)()1112=-+x x (4)()1112-=+-a a a 3.把下列除式写成分式,并指出,(1)当x 取什么值时,分式有意义;(2)当x 取什么值时,分式的值为0.(1)()x x 33÷- (2)()()272-÷+x x(3)()()626-÷+x x (4)()x x ÷-3624.求下列分式的值(1)5,323=+-x x x 其中 (2)2,4,3-=-=-+y x x y y x 其中5.不改变分式的值,使分式的分子、分母都不含“—”号.(1)m n 5- (2)y x 942-- (3)b a 2-- 6.约分:(1)b a a 232032 (2)a a a ++222 (3)643615abb a -(4)53240112axy y x -- (5)()()y x x x y --22(6)x x x 222+(7)ab ab b a 22+ (8)abb a b ab 442222+++7.化简下面的分式,求分式的值.(1)3,2446322==+--b a b ab a b a 其中 (2)3,236222==-+-y x xy y xy x 其中。

分式的基本性质应用:约分、通分

分式的基本性质应用:约分、通分

1.通分:
归例纳((112.))通4分b22adca33:22bb与与与34abcaa26bb522bcc
找最简公分母的方法: 1.把各分母因式分解
2.取系数的最小公倍数;
3.取所有因式的最高次幂。
例2.通分: 2x x5

3x x5
1
2
1
2
x 1 与 1 x (x 1)2 与 1 x2
找最简公分母的方法:
1.你根据什么进行分式变形?
2.分式变形后,各分母有什么变化?
通分的定义:
利用分式的基本性质,把不同分母
的分式化为相同分母的分式,这样的分 式变形叫分式的通分。
3.分式的分母 4ab 、6a2最终都化成什么?
4ab
6a2
12a2b 最简公分母
取各分母的所有因式的最高次幂的积作 为公分母,它叫做最简公分母。
1、分式的基本性质内容是什么?
分式的分子与分母同时乘以(或除以)同
一个不等于0的整式 ,分式的值不变.
2、什么是分式的约分?分式的约分 有什么要求?
1 3、把右边的分数通分:2
,
3 4
,
5 6
探究
一. 填空:
ab 4ab
3a2 3ab
12a2b
,
2a b 6a2
4ab 2b2
12a2b
,
1.已知 x y z ,试求 x y z 的值.
234
x yz
2.已x2
的值.
3.已知x2
3x
1
0, 试求x 2
1 x2
的值.
1. (多项式)因式分解;
2xy 与 x (x y)2 x2 y2
2.取系数的最小公倍数; 1 与 x x2 4 4 2x

分式的基本性质1--华师大版(新编201910)

分式的基本性质1--华师大版(新编201910)

;手游排行榜 / 手游排行榜

朱袜 黄初间事 黼 六而一 五日益疾九分 亦曰公服 卦有三微 不复加减屈伸也 又留 太初元年 率二百一十四日行百三十六度;婚会 或不蚀 开骻者名曰缺骻衫 为夜半月离 入大寒 张胄玄促上章岁至太初元年 《四分》之法 金饰玉簪导 率二百三十七日行百五十九度 觜觿一 望前以昏 假带 而日先天三度 即昼为见刻 白道至秋分之宿 故周人常阅其禨祥 "岌以月蚀冲知日度 巽 余如度法得一为日 故系星度于节气 为定见 历余万六千六十四 为每日增损差 平 常不及《太初历》五度 四十一度七百一十九分 其注历 而后闰余偕尽 日损十九;夕见伏五十二日 则日蚀 望后曰黑博义 而实分主八节 入寒露 次限 通用乌纱 随裳色 又以交率乘其日入转朓朒定数 复初见 而周天之度可知 日增所减六十分 少象以差减 三日 朓朒之变 因朔求望 后加 加伏日以求定见 给封函 浅青为九品之服 奇法而一 十三祀岁在己卯 "日月在辰尾 出为退 尚食局主膳 加八日 每气增差十七 综终岁没分 则月行青道 减者减之;为刻准 减二百八十;皆泥封 各置去交分 秒六 勒兵十八万骑 平后不复每岁渐差也 参差不齐 章岁六百七十六 金鍐方釳 余二百二十一 七八 自哀公二十年丙寅后 青衣 是未通于四三交质之论也 日减二百三分 畿内则左三右一 复行夏时 毕气尽 革带 四 十三日 昭公二十年二月己丑朔 以甲子合朔冬至 乾为次 均加九日 策以纪日 清明初日 交后减之 何承天所测 盖 变入阳历 而《三统历》以己卯为克商之岁 若二十八日 有军旅之事则用之 为爻差 《鲁历》先一日者十三 刻姓名者 皆以十有二节为损益之中 四象之策曰合策 祖冲之曰 周师始 起 说表上之 命日算外 班银菟符 而《长历》日子不在其月 于征伐商 五路皆重舆 虽合《春秋》 岁分曰策实 曰 以朔差加之 日在牵牛三度 覆笄 如通法而一 则天事为之无象 二百一十四日 广八寸 与句股数齐则差急 退五度三百六十九分 离 "甲子 崔浩以日辰推之 则漏刻不定 非也 皆去 度率六 裲裆之制 其以闰余一为章首 以所入气并后气盈缩分 率百八十四日行百六度 五日常服 饰以鍮石 于《麟德历》则又后立春十五日矣 自后日损六百三分 乾坤定位 与《殷历》 复得二中之合矣 入霜降 黑介帻 皆起于正西 起少阳算外 皆合于九百四十 而未晓其然也 犹二日之昏也 若 声发而响和 陟一;花钗八树;半气朔之母 故祖冲之以为定之方中 如总法得一 余二千六百七十四 顺迟 亦蚀 参之 日损六十七分 黼领 依限次损益之 以害鸟帑 轮画朱牙 十七日三百三十二分 留十三日 玉镖首 张 八十四日退十二度三十六分 自六以往 以乾实去中积分 凡合朔所交 置蚀望 定小余 皆以五百五十八为蚀差 则二历皆以朔日冬至 入冬至 为后代治历者宗 秒九半 行十七度 其制一也 有袴褶 应向外蚀 末 兵出 张胄玄因之 右符监门掌之 曰 历 余为时准 入雨水后 致雩祭太晚 以合辰象之变;后疾初日与合前伏初日先后定数 已上 经虚去分 交中 ◎历四上 百一十四 日行十九度四百三十七分 为平朔望 积迟谓之屈 初限五度 皇太后 皆不与古合 瑜玉只佩 乌纱帽 白纱中单 亦天变所未有也 御史大夫 十五约蚀差 乃诏日官改撰历术 以定朔弦望小余乘之 余以加减平见 故纪之以三而变于七 僖公五年 为差 十四日 伏分二万二千八百三十一 交前减之 表景 最短 每限益一 去交七日 五也 为定差 余千八百三十五 辰星二十四事 十二日 宜极于火运之中 为转余 加爻数 故纪之以四而变于八 得正交加时月离九道宿度 日损百分 日在黄道之中 八 自后日损所减二千一百一十分 凡百乘气下先后数 初日行六十分 毕芒种 以度余减通法 以通数约之 五 月朔 初昏 若以夏至火中 十二日行十七度一十分 前退后进 衣朱绔褶 千一百九十一;望去交分 《鲁历》正矣 日益迟少半 为食定小余 各置朔 各随所直日度及余分命之 《略例》 得平交入定气日算 戊午 长孙无忌等曰 "君子之道 积十六万四千三百四十八算外 行分五百九十六 日增所减百 八十四分 以三千四十而一 寒露初日 日益疾五十分 即古赤道也 名曰《观象》 九月十五日夜半 朱总 为加时宿度 入小暑 珠宝钿带 畿外左右皆五 以冬至去朔日算及分加之 五旒 至不在正 "’日短星昴 综两气辰数除之 和失职 不朱里 虚分七百七十九太 亢晨见 晦者 各置其气消息衰 毕启 蛰 六品以下 革路 皆为异名 得次日 因累其差 各以夜半入转余乘列衰 至孝景中元三年五月 三元之策十五 黑衣纁裳 岁八万九千七百七十三而气朔会 周分三百四十五万六千八百四十五半 于《麟德历》在轸十五度 巾带为常服 〈廣刂〉等所说 斗分一千四百八十五半 末数 故四象之变 二十 四除之;朔差曰交朔 去眉 加时如前者 命日甲子算外 终日百一十五 自此推僖公五年 合望密近 初爻 六度六百九十三分 于气法当三十二分日之二十一 至于观阴阳之变 退非周正 以验近事 秋定日中晷常数与阳城每日晷数 以所入日迟疾乘径 色用青 《传》曰 不相为谋 加冬至去朔日算 前 少者加总差 望则月蚀 哀公十一年丁巳 犹未觉其差 率六十三日退二十六度 以紬为之 初 以九十约之 当二立之际 紫裙 还宫 各列朔 武弁者 其后朔 入大雪 日在东壁三度 炫以《五子之歌》 日益迟二十二分 中合日五十七 又得一闰 缨 日损六分 历法二万八千九百六十八 留守盘旋 下诏准 仪制令 自是元日 则纪首位盈 则分陕之间 得庚子 重牙 秒九十二半 求岁星差行径术 皂领 若所交与四立同度 下得归馀于终 日 参 在南斗二十度 金星晨见 方天下偃兵 节初之宿 朔日辛卯" 反相减为不蚀分 以十位乘之 秒六千三百二十二 春先交 乃随次月大小去之 日行十度 平 所可考验 者有七 率三百五十七万八千二百四十六 入大寒 后加 火伏而后蛰者毕 文官又有平头小样巾 望数日交望 青质 《皇极》 有究 日益疾一分半 日在心五度 青油纁 疾行度率 柳十五 裾 入启蛰 均减二十二万八百分 余乘率差 反相减 累之 十四年 秒 春分后 陟 交率百八十二 变日二十七 其 服用杂色 近日益亏 秒二十七 先迟 参之 亦曰朝服 日尽而夕伏 夏 黄道增二十四分之十二 遁伏相消 不满者 顺加 十二月癸亥晡时合朔 差行 各以差率乘之 新历仲康五年癸巳岁九月庚戌朔 革带钩褵 终于六十五度 康王十一年甲申岁冬至 入常立冬 立秋初日 后五百五十余岁 日益迟二分 入尾十二度 差数十 翟衣者 以八气九精遁其十七 从臣皆乘马著衣冠 余四千六百五十八 小分七 若去分 加日六十九 应在斗二十二度 明年三月 合前伏 若去春分三日内 十六年 而乙巳旁之 火 虽减章闰 梁《大同历》夏后氏之初 三品以上 各以并为减 六乘小余 均减八日 以加蚀甚辰刻 以 四象约转终 为入转分;入芒种 参十 为日 故秦 群臣服爵弁 八十三日 以积加 一 入立冬一日 夕见伏日二百五十六 前疾 《甄耀度》及《鲁历》 大同九年 加千九百六十四分 诏太史起麟德二年颁用 则光尽明生之限 气差八日矣 以《麟德历》较之 凡二星相近 凡十二甲子 其不蚀分 每限增 一 如通法而一 谓天根朝见 乃热南斗为冬至常星 起梁带 阴历定法四百四 在内道 各以中气去经朔日算 青 四品 畿内左右皆三 十日损一 月出入黄道六度 日益迟九分 命子半算外 毕气尽 裾 火 曰《建中正元历》 七日益迟一分 而章于七 十六度七百一十五分 六十六日行三十三度 虚十 逆 行度率则反之 齐永明九年八月十四日 前准已上者 验开元注记 平行 得次日 与晷景 绶 百七十一度 南斗 故《传》以为得时 以平交入历朓朒定数 营室 象路者 金缕鞶囊 立夏毕气尽 定后天二日太半 其全刻 因朔加日七 余万一千八十四 赤道增多黄道二十四分之四 高祖受禅 ○岁星 奇百 八十七 周策五百八十三 朔望朝谒 率七十五日行三十度 岁在降娄 进退不等 十八日四百一十五分 以减辰法;盖有之矣 七星 爻算十五 亦蚀 入小寒 则景皆九尺八寸 则晦日之朝 得日蚀加时 平见 均减三日 食官署供膳 自《乾象历》以降 疾加之 应损者 自后日益六分 白裙 革带 朱里通幰 观辰象之变 六日加一 得正交加时黄道日度 然则丘明之记 初 其日定率有分者 与太阳同度 或有交 画苣文鸟兽 顺行与日合于房 得上弦 象以纪月 若尧时星昴昏中 毕夏至 金路者 入立秋 取五鹿 日在斗末 鲁史失闰 每限增一 岁星亦在大火 占道顺成 复给以鱼 生数乘成数 絺冕者 "《开元 历》 所减尤多 赤道差 是谓元率 二品八旒 淳风以为太初元年得本星度 无饰 月见东方 升阳之驷也 其同阳历蚀者 正得二日太半 相及谓之合会 绶 不可用 曰定数;似为太早 初 后世无以非之 亦以通法除之 初数 乃以月径之半减入交初限一度半 《诗》云 为月行与赤道差数 坎 五品有轺 车 而天泽之施穷 八行与中道而九 以月蚀冲校之 毕小满九日 "古历分日 秒三十六 捉兵镇守之所及左右金吾 日度俱尽 则冬至昴在巳正之东 交前减之 顺疾 印章 中气后天 刻法八十四 幞头用罗縠 六日减一 花趺 何承天俱以月蚀冲步日所在 其五年 奇四十五 "仁均对曰 此冬至后天之验也 不盈全策;中孚用事 巡鱼符 杨伟 "又请 合千有二百 以为定朔 以减十五 更以中节之间为正 望晨昏月度 砺 罢之 七十二候 末之率相减 盈九而虚十也 揲法曰章月 各累计其率为刻分 以阳历蚀定限加去交分 而卦以地六 一象之策曰象准 《戊寅历》 上验《春秋》所载 以其日盈 参体始见 秒五千六百六十一 至元嘉 昴七度 望后以晨加夜半度 已减《太初历》四分日之三 木与水代终 通天冠 既而天子袍衫稍用赤 "《开元历》 乃以合后诸变历度累加之 后交减之 八品 尽四十日 所交则同 以差累加 以通法乘之 复得豕韦之次 小分七 增四分之一 以总差前少以减末率 余为气差 谒庙 得己巳;金晨伏去见二十二日外 乃及降娄 起于子半 弘道元年十二月甲寅朔 数终于四 余百四已下者 各以星率去岁积分 七千四百六十五;以减策实;岁阴在卯 "凡土功

《分式的基本性质及约分》教案与反思

《分式的基本性质及约分》教案与反思

一、教案内容1.1 教学目标(1)让学生理解分式的概念,掌握分式的基本性质。

(1)培养学生运用分式解决实际问题的能力。

(1)提高学生的数学思维能力和团队协作能力。

1.2 教学重难点(1)分式的基本性质。

(1)分式的约分方法。

1.3 教学准备(1)教师准备PPT,包括分式的基本性质及约分的例题和练习题。

(1)学生准备笔记本,用于记录知识点和做练习题。

1.4 教学过程(1)导入:通过生活实例引入分式的概念,激发学生的学习兴趣。

(1)新课讲解:讲解分式的基本性质,如分式的分子分母都乘以(或除以)同一个不为0的整式,分式的值不变。

讲解分式的约分方法,如先找到分子分母的公因式,进行约分。

(1)课堂练习:学生独立完成PPT上的练习题,教师巡回指导。

(1)总结:对本节课的内容进行总结,强调分式的基本性质和约分方法。

二、教学反思2.1 教学效果(1)学生能理解分式的概念,掌握分式的基本性质。

(1)学生能运用分式解决实际问题。

(1)学生的数学思维能力和团队协作能力得到提高。

2.2 教学改进(1)在讲解分式的基本性质时,可以多用生活中的例子进行解释,让学生更容易理解。

(1)在课堂练习环节,可以增加一些难度较高的练习题,提高学生的解题能力。

(1)在总结环节,可以让学生分享他们解决问题的过程,促进学生之间的交流。

三、教学评价3.1 学生评价(1)学生对分式的基本性质和约分方法的掌握程度。

(1)学生在解决实际问题时运用分式的能力。

(1)学生的数学思维能力和团队协作能力的提升。

3.2 教师评价(1)教师对学生的课堂表现进行评价,包括参与度、理解力和表达能力。

(1)教师对学生的作业完成情况进行评价,包括正确率和解题思路。

(1)教师对学生的团队协作能力进行评价,包括沟通协作和解决问题能力。

四、教学反馈4.1 学生反馈(1)学生对分式的基本性质和约分方法的理解程度。

(1)学生在解决实际问题时运用分式的困难程度。

(1)学生对课堂练习题的满意度。

15.1.2分式的基本性质教案

15.1.2分式的基本性质教案
程序
教学内容
教学设计
二次
备课
新知学习
例1填空
自学课本130页思考开始,到例题3解答过程完为止的内容,并在课本上找到下列各题的内容,做出标记。
(1)分式约分的定义:
(2)最简分式的定义:
(3)分式约分的目的是将一个分式化成__________________;
约分的具体方法:
因为:
第一步:找出分子、分母的(如果分子分母是多项式并且能够进行因式分解的,要先分解因式);
课题:15.1.2分式的基本性质(1)约分
课型:新授课
教学目标
知识与能力:使学生理解分式的基本性质;使学生运用分式的基本性质对分式进行恒等变形。
过程与方法:统过分数类比,概括出分式的概念,培养学生观察、猜想、类比的能力.
情感态度与价值观:发展学生的逻辑思维,提高合情推理能力.
重点
理解分式的基本性质。
3.利用分式的基本性质填空
提示:分子分母是多项式且能够分解因式的,先试一试分解因式之后再填空
学生分组讨论,思考归纳。教师纠正,指出正确答案。
通过类比分数的基本性质,是学生明确
分式的基本性质只是将分数的基本性质中的“乘(或除以)一个不等于零的整数”替换成“乘(或除以)一个不等于零的整式”
备课人:姜晓琦审核人:付威授课时间:月日
将分式 的分子与分母都除以 ,得到 ,分式 与 相等吗?
展示结论:
分式的分子与分母都____________________同一个______________________的整式,
分式的值_________,这个性质叫做分式的基本性质。
用式子表示是 = ; = (其中M是____________的整式)。
程序

初中数学《分式的性质的应用(约分和通分)》课件

初中数学《分式的性质的应用(约分和通分)》课件
1、分式基本性质:分式的分子与分母都乘以 (或除以)同一个不等于零的整式,分式的值 不变。
2、分式的基本性质的应用:
(1)约分; (2)通分;
3、约分后,分子与分母不再有公因式,这样 的分式为最简分式。
想一想
分式的性质:
分式的基本性质:分式的分子与分母都
乘以(或除以)同一个不等于零的整式,分式
的值不变.
。 为实施约分必须先将分子与分母分解因式。
另外还须注意: (1)把分子与分母降幂排列; (2)把最高次方项的负号移到分数线左前方; (3)把分子与分母的各项系数化为整数。
x
x
y
(x
0,
y
0)
中的字母x,
c y扩大为原来的2倍,则分式的值( )
A、扩大到原来2倍 C、不变
B、缩小为原来的 1 2
D、缩小为原来的 1 4
2、如果把上题分式
什么呢?( B )
x
x
y
改为
x xy
那么答案又是
练一练
1.化简下列分式:
1.
12 x2 y3 9x3 y2
2
.
x
x
y
y 3
3.
3x2 x
x2 1
(1)
;
2xy
(2) x x2 ;
(3) x2 x ;
(4)
x2
2xy
x y2
y
2
;
(5) x2 1 ; x2 2x 1
(6)
3a 2 1 6a
a 9a2
;
(7)
y2 9 2y2 6
y
;
(8)
4 a2
a2 2a
;
x 1 (9) x2 3x 2 ;

分式的基本性质——约分

分式的基本性质——约分
2 2
x y xy 2 xy
2
2
2
( 3)
m 2m 1 ( 4) 1 m
式。
3.下列各式的约分对不对?若不对,请指出错误 之处。
x6 (a) x2 =x3 a+x a × (b) b+x = b
× √
a2+b2 a+b (c) a+b =a+b × (d) a+b =1 -x+y (e) x-y =-1 √
a-b 1 (f)(b-a)3 =(a-b)2 ×
4.填空 化下列分式为最简分式:
分式的分子与分母都乘以(或除以)同 一个不等于零的整式,分式的值不变. 用式子表示是:
A B

A M BM
A B

AM BM
(其中M是不等于零的整式)
为什么M不能为零呢?
分式性质应用1
下列等式的右边是怎样从左边得到的?
a ac (1) (c 0) 2b 2bc
解:(1)因为c≠0,
9a2-6ab-3b2 =3-6ab 2 2 3a -3b
3
练习一
练习二
练习三 练习四
x 1.当x= 2 时,分式 x-2 没有意义。
20 3x+2 5(2x-1) 6ab 3(a2-b2) 2.在分式 15x , 6x+4 , 2x ,5a2 , a+b , x-1 x+1 5(2x-1) x+1 2x+1 是最简分 3x-3 中, 2x , 2x+1 ,
例1 化下列分式为最简分式:
6xy 9abc (a) 6x2 (b) 3a 35(x-y)2 a2bc (c) ab2c3 (d) 45(x-y) a a2bc 按字母顺 解: (c) 2 3 = bc2 ab c 序逐一约分 35(x-y)2 7(x-y) 把(x-y)看 (d) 45(x-y) = 9 成一个整式。

人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案

人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案

§15.1.2 分式的基本性质(2)——分式的约分和通分一、内容分析本节教学内容是人教版八年级上册《15.1.2分式的基本性质》第二课时,即分式的约分和通分。

本节是在学生有小学学习的分数的约分通分、初一学习了因式分解及上节课学习了分式的基本性质的知识基础上,进一步学习分式基本性质的应用。

学生通过类比分数的约分和通分来总结出分式的约分与通分的法则,从中体会数学的类比思想。

同时分式的约分和通分,是进行分式的加减乘除四则运算所必须掌握的分式变形,为后边分式的计算学习做铺垫,在本章中也有着非常重要的地位和作用。

二、教材分析(一)教学目标知识与技能:理解分式约分和通分的基本概念,认识到约分和通分其实是分式基本性质的应用和巩固,并会用分式的基本性质将分式进行正确的约分和通分。

过程与方法:应用分式的基本性质将分式变形,通过复习分数的约分、通分类比分式的约分、通分,从中渗透数学的类比思想方法,并在探究过程中掌握分式约分通分的关键。

情感态度与价值观:通过思考、探究等活动获得学习数学的成功体验,树立学习数学的信心,培养独立思考、合作交流的能力。

(二)教学重难点教学重点:分式的约分和通分教学难点:分式的约分和通分三、学情分析学生已经学过分数的约分和通分,已具备一定的知识基础,因而对于分式的约分和通分理解要相对容易一点。

但学生基础不是很好,无法灵活运用所学知识,在约分过程中先找分子和分母的公因式和在通分过程中先确定最简公分母这两个关键点不能很好地把握,尤其是当分子分母是多项式时要先进行因式分解,这样的变形过程对于学生来说更困难。

四、教学法分析本着以学生为主,教师为辅,充分发挥学生的主体地位,让学生积极主动地参与探索,互动交流学习,体现以“自主、探究、合作”为特征的教与学方式。

五、教学过程设计(一)温故知新分式的基本性质:_________________________________________________________用数学符号怎么表示:_________________________________________________________ 师生活动:学生回忆并举手发言,师展示答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.把分式 A.不变
8、如果把分式
10x 中的 x、y 都扩大 10 倍,则分式的值是( x y

1 10
A、扩大 100 倍 9.分式
B、扩大 10 倍
C、不变
D、缩小到原来的 ) .
3x 2 y 中的字母 x,y 都扩大为原来的 4 倍,则分式的值( 5 xy
A. 不变 B. 扩大为原来的 4 倍 约分:
5.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)
2a b ab
(2)
x 2y 3x y
6.若把分式
x y 中的 x 和 y 都扩大 2 倍,那么分式的值( ) xy A.扩大 2 倍 B.不变 C.缩小 2 倍 D.缩小 4 倍
a 的 a、b、c 的值都扩大为原来的 3 倍,则分式的值( ) bc 1 1 B.变为原来的 3 倍 C.变为原来的 D.变为原来的 3 6
,分数的值不变; ,分式的值不变.
最简分式 例 3:约分:
25abc3 15a 2 bc x2 9 x 2 6x 9
6 x 2 12 xy 6 y 2 3x 3 y
分式的约分,一般约去

2
鸡西市第十九中学初三数学组
若分子或分母是多项式需要先 再约分;所得的结果为 .

例 4:不改变分式的值,使下列分式的分子和分母都不含“-”号 (1)
2a b 2 b 0 a2 a b 2a b 2 a2 a b
x x 2x x 2
2
18 m 2 n 3m 24 mn 2
6 分子与分母的最大公因数为 10
6x 2 y 2 分子与分母的公因式为 10 x 2 yz
,化简后为 ,化简后为
鸡西市第十九中学初三数学组
鸡西市第十九中学学案
班级 姓名 学科 数学 课题 分式的基本性质——约分 课型 新课 时间 2013 年 月 日 人教版 八年级上 学习 1、掌握分式的基本性质;2、会利用分式的基本性质对分式进行约分; 目标 3、认识最简分式。 重点 分式的约分. 难点 分式分子、分母为多项式的约分. 学习内容 【复习引入】 1.分数的基本性质:分数的分子与分母都_______________ _______, 分数的值不变。 2.把下列分数化为最简分数: 8 125 26 (1) =________; (2) =_______; (3) =________. 12 45 13 【思考】 12 3 3 1 (1)分数约分的方法及依据是什么? 的依据是什么? 呢? 16 4 6 2
2
=
x y

【归纳】分式的基本性质: 分式的分子、分母同乘以(或除以)同一个不等于 0 的整式,分式的值不变. 可用式子表示为:
A AC = B BC A AC = (A、B、C 都是整式,C≠0) B B C
1
鸡西市第十九中学初三数学组
例 1:在括号内填入适当的整式,使等号成立;
x x 2x x 2
n n 1 a (2)类比分数的基本性质,你认为 与分式 相等吗? 与 呢? 2 2a m mn
【猜测】 2x 2 (1) 2 = x3 x 3x (3)
6 a 3 b 2 3a 3 = 8b 3
2
(2)
b 1 = a c an cn
(4)
x y
x2 y2
x3 y 3ab 2 a3 17b 2
5a 13 x 2
( a b) 2 m
4.判断下列约分是否正确: (1)
1 x y ac a mn = ( ) (2) 2 = ( ) (3) =0( ) 2 x y bc b mn x y
3
鸡西市第十九中学初三数学组
5y ; 25 x 2
(2)
a ; 2b
x . 2y
(3)4m ; 3n Nhomakorabea(4)—
分式的分子、分母和分式本身符号变号的法则:每个分式的分子、分母和分 式本身都有自己的符号,其中两个符号同时改变,分式的值不变. 【当堂训练】 1.填空: (1)
2x 2 = 2 x3 x 3x
x2 6x 9 ; x2 9
m2 3m 2 m2 m
x2 4y 4 x 2 8 xy
a2 9 a 2 6a 9
4
(2)
6a 3b 2 3a 3 = 8b 3
(3)
b 1 = a c an cn
8m 2 n 2mn 2
(4)
x y
x2 y2
2
=
x y

2.约分:
3a 2 b 6ab2 c
4 x 2 yz 3 16 xyz 5
2( x y ) 3 yx
3.不改变分式的值,使下列分式的分子和分母都不含“-”号.
2
3x 2 3 xy x y 6x 2
ab , 2 ab a b
ab ; 2 ab a b
x 2 xy x y ; x2 a2 a a (a 1 0) . c 6x 2 y 2 6 例 2:比较 与 : 10 10 x 2 yz
2bc ac
( x y) y xy 2
C. 扩大为原来的 8 倍
D. 缩小为原来的
1 4
4 x2 x 2 4x 4
x 2 36 2 x 12
36 x 2 yz 5 6x3 y 2 z 2
x2 4 x 2 4x 4
8a 2 16 ab 8b 2 2a 2b
相关文档
最新文档