2015年江西省高考适应性测试理科数学试卷word版含答案

合集下载

2015届第三次高考适应性考试数学试卷(理科)

2015届第三次高考适应性考试数学试卷(理科)

2015届第三次高考适应性考试数学试卷(理科)【试卷综析】这套试题,具体来说比较平稳,基本符合高考复习的特点,稳中有变,变中求新,适当调整了试卷难度,体现了稳中求进的精神.考查的知识涉及到函数、三角函数、数列、解析几何、立体几何、概率、复数等几章知识,重视学科基础知识和基本技能的考察,同时侧重考察了学生的学习方法和思维能力的考察,有相当一部分的题目灵活新颖,知识点综合与迁移.试卷的整体水准应该说可以看出编写者花费了一定的心血.但是综合知识、创新题目的题考的有点少.这套试题以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能.试题中无偏题,怪题,起到了引导高中数学向全面培养学生数学素质的方向发展的作用.【题文】第I卷共10小题。

【题文】一、选择题:本大题共10小题,每题5分,共50分·在每个小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设集合M满足{1,2}{1,2,3,4},则满足条件的集合M的个数为()A.1 B .2 C .3. D. 4【知识点】子集与真子集A1【答案】【解析】C 解析:根据子集的定义,可得集合M必定含有1、2两个元素,而且含有1,2,3,4中的至多三个元素.因此,满足条件{1,2}⊆M⊈{1,2,3,4}的集合M有:{1,2}、{1,2,3}、{1,2,4},共3个.故选:C.【思路点拨】根据集合包含关系的定义,将满足条件的集合逐个列出,即可得到本题答案.【题文】2.已知点A(1,3),B(4,一1),则与向量AB的方向相反的单位向量是()A、(-35,45)B、(-45,35)C、(35,-45)D、(45,-35)【知识点】单位向量F1【答案】【解析】A 解析:AB=(4,﹣1)﹣(1,3)=(3,﹣4),|AB |==5.∴与向量AB的方向相反的单位向量()3,434,555ABAB-⎛⎫-=-=- ⎪⎝⎭.故选:A.【思路点拨】利用与向量的方向相反的单位向量ABAB-即可得出.【题文】3.函数2()f x x=+bx的图象在点A(l,f(1))处的切线与直线3x - y+2=0平行,若数列{1()f n}的前n项和为Sn,则S2015=()A、1B、20132014C、20142015D、20152016【知识点】数列的求和;二次函数的性质.B5 D4【答案】【解析】D 解析:f′(x)=2x+b,由直线3x﹣y+2=0可知其斜率为3,根据题意,有f′(1)=2+b=3,即b=1,所以f(x)=x2+x,从而数列{1 () f n}的通项为,所以S2015==,故选:D.【思路点拨】由f′(1)与直线斜率相等可得f(x)的解析式,从而可得数列{1()f n}的通项公式,计算可得答案.【题文】4.某锥体三视图如右,根据图中所标数据,该锥体的各侧面中,面积最大的是()A. 3B. 25C. 6D. 8【知识点】由三视图求面积、体积.G2【答案】【解析】C 解析:因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为:=,所以后面三角形的面积为:×4×=2.两个侧面面积为:×2×3=3,前面三角形的面积为:×4×=6,四棱锥P﹣ABCD的四个侧面中面积最大的是前面三角形的面积:6.故选C.【思路点拨】三视图复原的几何体是四棱锥,利用三视图的数据直接求解四棱锥P﹣ABCD 的四个侧面中面积,得到最大值即可.【题文】5.已知圆C1:(x一2)2+(y-3 )2 =1 ,圆C2 : (x -3)2+(y-4).2 =9,M,N分别是Cl ,C2上的动点,P为x轴上的动点,则|PM |+ |PN|的最小值为()A. 17-1B、6-22C、52-4D .17【知识点】圆与圆的位置关系及其判定.H4【答案】【解析】C 解析:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,由图象可知当P,C2,C3,三点共线时,|PM|+|PN|取得最小值,|PM|+|PN|的最小值为圆C3与圆C2的圆心距减去两个圆的半径和,即:|AC2|﹣3﹣1=﹣4=﹣4=5﹣4.故选:C.【思路点拨】求出圆C1关于x轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆C2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.【题文】6.函数恰有两个零点,则实数k的范围是()A.(0,1)B.(0,l)U(1,2)C. (1,+oo)D、(一oo,2)【知识点】函数的零点与方程根的关系.B9【答案】【解析】B 解析:由题意,令f(x)=0,则211xkx x-= -令2111xyx-=-,2y kx=,则y1==,图象如图所示2y kx =表示过点(0,0)的直线,结合图像以及斜率的意义,∴k 的取值范围是(0,1)∪(1,2), 故选B.【思路点拨】令f (x )=0,则211x kxx -=-,构建函数,作出函数的图象,即可求得k 的取值范围.【题文】7.已知抛物线22(0)y px p =>上一点M (1,m )(m >0)到其焦点的距离为5,双曲线2221x y a -=的左顶点为A ,若双曲线一条渐近线与直线AM 平行、则实数a 等于( ) A 、19 B 、14 C 、13 D 、12【知识点】双曲线的简单性质;抛物线的简单性质.H6 H7【答案】【解析】A 解析:抛物线y2=2px (p >0)的准线方程为x=﹣, 由抛物线的定义可得5=1+,可得p=8,即有y2=16x ,M (1,4),双曲线﹣y2=1的左顶点为A (﹣,0),渐近线方程为y=±x ,直线AM 的斜率为,由双曲线的一条渐近线与直线AM 平行,可得=,解得a=,故选A .【思路点拨】求得抛物线的准线方程,再由抛物线的定义可得p=8,求出M 的坐标,求得双曲线的左顶点和渐近线方程,再由斜率公式,结合两直线平行的条件:斜率相等,计算即可得到a 的值. 【题文】8.函数在x =1和x =-1处分别取得最大值和最小值,且对于,则函数f (x +1)一定是( )A .周期为2的偶函数 B.周期为2的奇函数C.周期为4的奇函数D.周期为4的偶函数 【知识点】正弦函数的图象.B4 【答案】【解析】C 解析:由题意可得,[﹣1,1]是f (x )的一个增区间,函数f (x )的周期为2×2=4, ∴=4,ω=,∴f (x )=Asin (x+φ).再根据f (1)=Asin (ω+φ)=A ,可得sin (+φ)=cosφ=1,故φ=2kπ,k ∈z ,f (x )=Asin x ,故f (x )是周期为4的奇函数,故选:C .【思路点拨】由题意可得函数f (x )的周期为4,由此求得ω 的值,再根据f (1)=A ,求得φ 的值,可得f (x )的解析式,从而得出结论. 【题文】9.已知正方体ABCD 一A1B1C1D1,,下列命题:③向量1AD 与向量1A B 的夹角为600④正方体ABCD 一A1B1C1D1的体积为1||AB AA AD ,其中正确命题序号是A.①③B.①②③C.①④D.①②④. 【知识点】空间向量及应用F1 【答案】【解析】A 解析:如图所示:以点D 为坐标原点,以向量,,所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设棱长为1,则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),A1(1,0,1),B1(1,1,1),C1(0,1,1),D1(0,0,1),对于①:,∴,,∴,∴||=,||=1,∴①正确;对于②:,,∴=2.∴②错误;对于③:,,∴,∴③正确;对于④:∵,∴④错误,故选A.【思路点拨】结合图形,以点D为坐标原点,以向量,,所在直线分别为x,y,z轴,建立空间直角坐标系,然后结合空间向量的坐标运算,对四个命题进行逐个检验即可.【题文】10.已知函数,则关于x的方程有5个不同实数解的充要条件是()A. b<一2且c>0B. b>一2且c<0C. b<一2且c=0D. b≤一2且c=0【知识点】充要条件.A2【答案】【解析】C 解析:∵方程f2(x)+af(x)+b=0有且只有5个不同实数解,∴对应于f(x)等于某个常数有4个不同实数解,由题意作出f(x)的简图:由图可知,只有当f(x)=0时,它有﹣个根.且f(x)=﹣b时有四个根,由图可知﹣b>2,∴b<﹣2.故所求充要条件为:b<﹣2且c=0,故选C.【思路点拨】作出f(x)的简图,数形结合可得.【题文】 第II 卷(非选择题,满分100分)【题文】二、填空题:本大题共5小题,每小题5分,共25分. 【题文】11、若复数x =(1+ai )(2+i )的实部与虚部相等,则实数a = 【知识点】复数的基本概念;复数代数形式的乘除运算.L4【答案】【解析】13 解析: ()()()12221x ai i a a i=-++=++,因为实部与虚部相等,所以221a a -=+,解得13a =,故答案为13【思路点拨】利用两个复数代数形式的乘法,虚数单位i 的幂运算性质,把复数化为最简形式,由实部和虚部相等,求出实数a .【题文】12.93()3x x -的展开式中常数项等于 【知识点】二项式系数的性质.J3【答案】【解析】289-解析:93()3x x -的展开式的通项公式为Tr+1=••(﹣3)r•,令=0,求得r=3,可得展开式中常数项等于••(﹣3)3=﹣,故答案为:289-.【思路点拨】先求出二项式展开式的通项公式,再令x 的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值.【题文】13.7个身高各不相同的学生排成一排照相,高个子站中间,从中间到左边一个比一个矮,从中间到右边也一个比一个矮,则共有 种不同的排法(结果用数字作答). 【知识点】排列、组合及简单计数问题.J3 【答案】【解析】20 解析:最高个子站在中间,只需排好左右两边,第一步:先排左边,有=20种排法,第二步:排右边,有=1种,根据分步乘法计数原理,共有20×1=20种,故答案为:20.【思路点拨】最高个子站在中间,只需排好左右两边,第一步:先排左边,有=20种排法,第二步:排右边,有=1种,根据分步乘法计数原理可得结论.【题文】14.阅读右边框图,为了使输出的n=5,则输人的整数P的最小值为【知识点】程序框图.L1【答案】【解析】8 解析:程序在运行过程中各变量的值如下表示:是否继续循环S n循环前/0 1第一圈是 1 2第二圈是 3 3第三圈是7 4第四圈是15 5第五圈否故S=7时,满足条件S<pS=15时,不满足条件S<p故p的最小值为8故答案为:8【思路点拨】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量S的值,并输出满足退出循环条件时的k值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【题文】15.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:①∃m,使曲线E过坐标原点;②对∀m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为2m+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m。

江西省重点中学协作体2015届高考数学二模试卷(理科)

江西省重点中学协作体2015届高考数学二模试卷(理科)

江西省重点中学协作体2015届高考数学二模试卷(理科)一、选择题:本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣4x>0},N={x|m<x<8},若M∩N={x|6<x<n},则m+n=()A.10 B.12 C.14 D.162.(5分)设i是虚数单位,则|(1+i)﹣|=()A.B.2C.3D.3.(5分)已知等比数列{a n}的各项都是正数,且3a1,a3,2a2成等差数列,则=()A.1B.3C.6D.94.(5分)给出下列结论:①命题“∀x∈R,sinx≠1”的否定是“∃x∈R,sinx=1”;②命题“α=”是“sinα=”的充分不必要条件;③数列{a n}满足“a n+1=3a n”是“数列{a n}为等比数列”的充分必要条件.其中正确的是()A..①②B..①③C..②③D..①②③5.(5分)已知函数f(x)=x2﹣2x+4,数列{a n}是公差为d的等差数列,若a1=f(d﹣1),a3=f (d+1),则{a n}的通项公式为()A.2n﹣2 B.2n+1 C.2n+3 D.n+26.(5分)若实数x,y满足,则z=的最小值为()A.﹣2 B.﹣3 C.﹣4 D.﹣57.(5分)已知直角△ABC中,斜边AB=6,D为线段AB的中点,P为线段CD上任意一点,则(+)•的最小值为()A.﹣B.C.﹣2 D.28.(5分)甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,则甲、乙、丙三人训练成绩的方差S甲2、S乙2、S丙2的大小关系是()A.S丙2>S乙2>S甲2B.S甲2>S丙2>S乙2C.S丙2>S甲2>S乙2D.S乙2>S丙2>S甲29.(5分)如图所示程序框图,则满足|x|+|y|≤2的输出的有序实数对(x,y)的概率为()A.B.C.D.10.(5分)已知圆x2+y2=4,点A(,0),动点M在圆上运动,O为坐标原点,则∠OMA 的最大值为()A.B.C.D.11.(5分)已知点A(0,1),曲线C:y=alnx恒过定点B,P为曲线C上的动点且•的最小值为2,则a=()A.﹣2 B.﹣1 C.2D.112.(5分)已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C.D.二、填空题:本题共4个小题,每小题5分,共20分.13.(5分)二项式(2﹣)6展开式中常数项是.14.(5分)已知数列{a n}满足a n+1=(n∈N+),若a1=,则a2015=.15.(5分)已知某几何体的三视图如图所示,则它的外接球的表面积为.16.(5分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是.三、解答题:本题共5小题,共70分,解答题应写出文字说明、证明过程和演算步骤.17.(12分)已知函数f(x)=2sinxcosx﹣cos2x+1.(1)求f(x)的单调递增区间;(2)角A,B,C为△ABC的三个内角,且f(+)=,f(+)=,求sinC的值.18.(12分)如图,在三棱锥P﹣ABC中,平面APC⊥平面ABC,且PA=PB=PC=4,AB=BC=2.(1)求三棱锥P﹣ABC的体积V P﹣ABC;(2)求直线AB与平面PBC所成角的正弦值.19.(12分)4月15日,亚投行意向创始成员国已经截止,意向创始成员国敲定57个,其中,亚洲国家34个,欧洲国家18个,非洲和大洋洲各2个;南美洲1个.18个欧洲国家中G8国家有5个(英法德意俄).亚投行将设立理事会、董事会和管理层三层管理架构.假设理事会由9人组成,其中3人由欧洲国家等可能产生.(1)这3人中恰有2人来自于G8国家的概率;(2)设X表示这3人来自于G8国家的人数,求X的分布列和期望.20.(12分)已知点F(,0),圆E:(x+)2+y2=16,点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(1)求动点Q的轨迹方程;(2)若直线l与圆O:x2+y2=1相切,并与(1)中轨迹交于不同的两点A、B.当•=λ,且满足≤λ≤时,求△AOB面积S的取值范围.21.(12分)已知函数f(x)=x﹣ae x(a为实常数).(1)若函数f(x)在x=0的切线与x轴平行,求a的值;(2)若f(x)有两个零点x1、x2,求证:x1+x2>2.一、选修4-1:几何证明选讲:请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.在答题卡选答区域指定位置答题,并写上所做题的题号.注意所做题目的题号必须和所写的题号一致.22.(10分)如图,已知PA与圆O相切于点A,半径OB⊥OP,AB交PO于点C.(1)求证:PA=PC;(2)若圆O的半径为3,PO=5,求线段AC的长度.一、选修4-4:坐标系与参数方程23.在直角坐标系xoy中,直l线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=10cosθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点P的坐标为(2,6),求|PA|+|PB|.一、选修4-5:不等式选讲24.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|a﹣1|的解集非空,求实数a的取值范围.江西省重点中学协作体2015届高考数学二模试卷(理科)参考答案与试题解析一、选择题:本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2﹣4x>0},N={x|m<x<8},若M∩N={x|6<x<n},则m+n=()A.10 B.12 C.14 D.16考点:交集及其运算.专题:集合.分析:求出M中不等式的解集确定出M,根据N及两集合的交集,确定出m与n的值,即可求出m+n的值.解答:解:由M中不等式解得:x<0或x>4,∴M={x|x<0或x>4},∵N={x|m<x<8},且M∩N={x|6<x<n},∴m=6,n=8,则m+n=6+8=14,故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设i是虚数单位,则|(1+i)﹣|=()A.B.2C.3D.考点:复数求模.专题:数系的扩充和复数.分析:利用复数的运算法则、模的计算公式即可得出.解答:解:∵=1+i+=1+3i,∴|(1+i)﹣|==.故选:D.点评:本题考查了复数的运算法则、模的计算公式,属于基础题.3.(5分)已知等比数列{a n}的各项都是正数,且3a1,a3,2a2成等差数列,则=()A.1B.3C.6D.9考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:设各项都是正数的等比数列{a n}的公比为q,(q>0),由题意可得关于q的式子,解之可得q,而所求的式子等于q2,计算可得.解答:解:设各项都是正数的等比数列{a n}的公比为q,(q>0)由题意可得2×a3=3a1+2a2,即q2﹣2q﹣3=0,解得q=﹣1(舍去),或q=3,故==q2=9.故选:D.点评:本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.4.(5分)给出下列结论:①命题“∀x∈R,sinx≠1”的否定是“∃x∈R,sinx=1”;②命题“α=”是“sinα=”的充分不必要条件;③数列{a n}满足“a n+1=3a n”是“数列{a n}为等比数列”的充分必要条件.其中正确的是()A..①②B..①③C..②③D..①②③考点:命题的真假判断与应用.专题:简易逻辑.分析:利用命题的否定判断①的正误;充要条件判断②的正误;等比数列的定义判断③的正误.解答:解:对于①,命题“∀x∈R,sinx≠1”的否定是“∃x∈R,sinx=1”;满足命题的否定形式,所以①正确.对于②,命题“α=”是“sinα=”的充分不必要条件;前者能够说明后者成立,sinα=成立则α=不一定成立,所以②正确;对于③,数列{a n}满足“a n+1=3a n”是“数列{a n}为等比数列”的充分必要条件错误.例如:数列是常数列{0},则满足“a n+1=3a n”,数列不是等比数列,所以③不正确;故选:A.点评:本题考查命题的真假的判断,充要条件以及命题的否定,等比数列的基本知识的应用,考查基本知识的掌握情况.5.(5分)已知函数f(x)=x2﹣2x+4,数列{a n}是公差为d的等差数列,若a1=f(d﹣1),a3=f (d+1),则{a n}的通项公式为()A.2n﹣2 B.2n+1 C.2n+3 D.n+2考点:数列与函数的综合.专题:函数的性质及应用;等差数列与等比数列.分析:根据f(x)求出a1、a3,再利用等差数列的定义求出d与a1的值,即得通项公式a n.解答:解:∵f(x)=x2﹣2x+4,∴a1=f(d﹣1)=(d﹣1)2﹣2(d﹣1)+4=d2﹣4d+7,a3=f(d+1)=(d+1)2﹣2(d+1)+4=d2+3;∴a3﹣a1=4d﹣4,即2d=4d﹣4,解得d=2;∴a1=3,∴a n=3+2(n﹣1)=2n+1.故选:B.点评:本题考查了根据函数的解析式求函数值的应用问题,也考查了等差数列的通项公式的应用问题,是基础题目.6.(5分)若实数x,y满足,则z=的最小值为()A.﹣2 B.﹣3 C.﹣4 D.﹣5考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域.,利用分式函数的意义以及直线的斜率进行求解即可解答:解:作出不等式组对应的平面区域如图:z===1+,设k=,则k的几何意义为区域内的点到定点D(2,﹣2)的斜率,由图象知AD的斜率最小,由得,即A(1,2),此时AD的斜率k=,则z=1+k=1﹣4=﹣3,即z=的最小值为﹣3,故选:B点评:本题主要考查线性规划的应用,利用直线斜率以及数形结合是解决本题的关键.7.(5分)已知直角△ABC中,斜边AB=6,D为线段AB的中点,P为线段CD上任意一点,则(+)•的最小值为()A.﹣B.C.﹣2 D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据图形判断设|PC|=3﹣x,e则|PD|=x,与的夹角为π,0≤x≤3,运用数量积的运算得出函数式子(+)•=﹣2x•(3﹣x),再利用基本不等式求解即可.解答:解:∵直角△ABC中,斜边AB=6,D为线段AB的中点,∴|CD|=3,+=2,∵P为线段CD上任意一点,∴设|PC|=3﹣x,则|PD|=x,与的夹角为π,0≤x≤3,∴(+)•=﹣2x•(3﹣x),∵x•(3﹣x)≤,∴﹣2x•(3﹣x)≥﹣2×=﹣.故选:A.点评:本题考查了平面向量的数量积,转化为函数求解,关键是根据图形得出向量的关系,属于容易题.8.(5分)甲、乙、丙三人投掷飞镖,他们的成绩(环数)如下面的频数条形统计图所示,则甲、乙、丙三人训练成绩的方差S甲2、S乙2、S丙2的大小关系是()A.S丙2>S乙2>S甲2B.S甲2>S丙2>S乙2C.S丙2>S甲2>S乙2D.S乙2>S丙2>S甲2考点:极差、方差与标准差.专题:概率与统计.分析:由于方差为表示数据离散程度的量,且数据越小越集中,观察数据即可得到结论.解答:解:由于方差为表示数据离散程度的量,且数据越小越集中,由条形图知,乙图最集中,丙图最分散,故s乙2<s乙2<s丙2,故选:C点评:本题主要考查了频率分布条形图,以及平均数、方差和标准差,属于基础题9.(5分)如图所示程序框图,则满足|x|+|y|≤2的输出的有序实数对(x,y)的概率为()A.B.C.D.考点:程序框图.专题:函数的性质及应用;算法和程序框图.分析:模拟执行程序框图,由y=x3是奇函数可求阴影部分的面积与正方形的面积之比,从而得解.解答:解:程序框图的含义是,阴影部分的面积与正方形的面积之比,因为y=x3是奇函数,所以面积之比为:.故选:D.点评:本题主要考查了程序框图和函数的性质及应用,属于基本知识的考查.10.(5分)已知圆x2+y2=4,点A(,0),动点M在圆上运动,O为坐标原点,则∠OMA 的最大值为()A.B.C.D.考点:圆与圆的位置关系及其判定.专题:计算题;直线与圆.分析:设|MA|=x,则可求得|OM|,|AO|的值,进而利用余弦定理得到cos∠OMA的表达式,利用均值不等式求得cos∠OMA的最小值,进而求得∠OMA的最大值.解答:解:设|MA|=x,则|OM|=2,|AO|=由余弦定理可知cos∠OMA==(x+)≥×2=(当且仅当x=1时等号成立)∴∠OMA≤.故选:C.点评:本题主要考查了点与圆的位置关系,余弦定理的应用,均值不等式求最值.考查了学生综合分析问题和解决问题的能力.11.(5分)已知点A(0,1),曲线C:y=alnx恒过定点B,P为曲线C上的动点且•的最小值为2,则a=()A.﹣2 B.﹣1 C.2D.1考点:平面向量数量积的运算.专题:平面向量及应用.分析:运用对数函数的图象特点可得B(1,0),设P(x,alnx),运用向量的数量积的坐标表示,可得f(x)=•=x﹣alnx(0,+∞)+1,再由导数,求得极值点即为最值点,对a讨论通过单调性即可判断.解答:解:曲线C:y=alnx恒过点B,则令x=1,可得y=0,即B(1,0),又点A(0,1),设P(x,alnx),则•=f(x)=x﹣alnx+1,由于f(x)=x﹣alnx+1在(0,+∞)上有最小值2,且f(1)=2,故x=1是f(x)的极值点,即最小值点.f′(x)=1﹣=,a<0,f'(x)>0恒成立,f(x)在(0,+∞)上是增函数,所以没有最小值;故不符合题意;当a>0,x∈(0,a)时,f'(x)<0,函数f(x)在(0,a)是减函数,在(a,+∞)是增函数,有最小值为f(a)=2,即a﹣alna+1=2,解得a=1;故选D.点评:本题考查了利用导数求函数的最值;关键是将数量积表示为关于x的函数,通过求导,判断单调性,得到最值求参数a.12.(5分)已知圆O1:(x﹣2)2+y2=16和圆O2:x2+y2=r2(0<r<2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1>e2),则e1+2e2的最小值是()A.B.C.D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:分别求出e1、e2(e1>e2),利用基本不等式求出e1+2e2的最小值.解答:解:①当动圆M与圆O1、O2都相内切时,|MO2|+|MO1|=4﹣r=2a,∴e1=.②当动圆M与圆O1相内切而与O2相外切时,|MO1|+|MO2|=4+r=2a′,∴e2=∴e1+2e2=+=,令12﹣r=t(10<t<12),e1+2e2=2×≥2×==故选:A.点评:本题考查了两圆相切的性质、双曲线的离心率,属于难题.二、填空题:本题共4个小题,每小题5分,共20分.13.(5分)二项式(2﹣)6展开式中常数项是﹣160.考点:二项式定理.专题:计算题.分析:利用二项式定理展开式,直接求出常数项的值即可.解答:解:因为=20×8×(﹣1)=﹣160.所以展开式中常数项是﹣160.故答案为:﹣160.点评:本题考查二项式定理展开式的应用,特定项的求法,考查计算能力.14.(5分)已知数列{a n}满足a n+1=(n∈N+),若a1=,则a2015=﹣2.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:通过求出数列的前几项,找出其周期即可.解答:解:∵a n+1=(n∈N+)、a1=,∴a2==3,a3==﹣2,a4==﹣,a5==,a6==3,∴数列{a n}满足:a n=a n+4,∵2015=503×4+3,∴a2015=a3=﹣2,故答案为:﹣2.点评:本题考查求数列的通项,找出周期是解决本题的关键,注意解题方法的积累,属于中档题.15.(5分)已知某几何体的三视图如图所示,则它的外接球的表面积为8π.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:根据三视图判断几何体的形状,根据他的几何性质得出AD⊥面BDC,DC=1,AD=1,BE⊥CD与E,DE=,BE=,利用三角形判断得出三角形BDC外接圆的半径r=1,根据球的几何性质得出:R2=r2+d2,求解R即得出面积.解答:解:根据三视图得出几何体为三棱锥,AD⊥面BDC,DC=1,AD=1,BE⊥CD与E,DE=,BE=,∴∠BED=60°,BD=1,∵在三角形BDC中,BD=DC=1,∠BDC=120°,∴根据余弦定理得出:BC=,∵利用正弦定理得出:=2r∴三角形BDC外接圆的半径r=1,∵三棱锥的外接球的半径R,d=AD=1,利用球的几何性质得出:R2=r2+d2,∴R=,∴它的外接球的表面积为4×π×()2=8π,故答案为:8π.点评:本题考查了空间几何体的外接球的问题,充分利用几何性质,把立体问题转化为平面问题求解,考查了三角的定理的运用综合性较强,属于中档题.16.(5分)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是6.考点:集合的相等.专题:计算题;集合.分析:利用集合的相等关系,结合①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,即可得出结论.解答:解:由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d=4;a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;a=4时,b=1,c=3,d=2;∴符合条件的有序数组(a,b,c,d)的个数是6个.点评:本题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本题共5小题,共70分,解答题应写出文字说明、证明过程和演算步骤.17.(12分)已知函数f(x)=2sinxcosx﹣cos2x+1.(1)求f(x)的单调递增区间;(2)角A,B,C为△ABC的三个内角,且f(+)=,f(+)=,求sinC的值.考点:两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的图像与性质.分析:首先利用倍角公式化简解析式为一个角的一个三角函数的形式,然后求单调区间和sinC.解答:解:由题意可得f(x)=2sinxcosx﹣cos2x+1=2sin(2x﹣)(1)令2kπ≤2x﹣≤2kπ+所以增区间为:[kπ﹣,kπ+],k∈Z.…(6分)(2)由f(+)=得sinA=;…(7分)f()=得cosB=,sinB=;…(8分)由于sinA=<sinB=,则a<b⇒cosA=…(10分)所以sinC=sin(A+B)=.…(12分)点评:本题考查了倍角公式的运用化简三角函数,然后求单调区间以及解三角形;关键是正确化简三角函数解析式为一个角的一个三角函数的形式.18.(12分)如图,在三棱锥P﹣ABC中,平面APC⊥平面ABC,且PA=PB=PC=4,AB=BC=2.(1)求三棱锥P﹣ABC的体积V P﹣ABC;(2)求直线AB与平面PBC所成角的正弦值.考点:直线与平面所成的角;棱柱、棱锥、棱台的体积.专题:综合题;空间位置关系与距离;空间角.分析:(1)取AC中点O,连结PO,BO,证明OP⊥平面ABC,利用三棱锥的体积公式,即可求三棱锥P﹣ABC的体积V P﹣ABC;(2)建立如图所示的空间直角坐标系.求出平面PBC的法向量,利用向量的夹角公式,即可求直线AB与平面PBC所成角的正弦值.解答:解:(1)取AC中点O,连结PO,BO,∵PA=PC,AB=BC,∴OP⊥AC,OB⊥AC,又∵平面APC⊥平面ABC,∴OP⊥平面ABC…(2分),∴OP⊥OB,∴OP2+OB2=PB2,即16﹣OC2+4﹣OC2=16,得OC=,则OA=,OB=,OP=,AC=2,…(4分)∴S△ABC==2.∴V P﹣ABC==.…(6分)(2)建立如图所示的空间直角坐标系.得O(0,0,0),A(0,﹣,0),B(,0,0),C(0,,0),P(0,0,),…(8分)∴=(﹣),=(﹣,0,),设平面PBC的法向量=(x,y,z).则,取z=1,得=(,,1).(10分)∵=(),∴直线AB与平面PBC所成角的正弦值为.…(12分)点评:本题考查线面垂直的判定,考查三棱锥体积的计算,考查线面角,正确运用向量方法是关键.19.(12分)4月15日,亚投行意向创始成员国已经截止,意向创始成员国敲定57个,其中,亚洲国家34个,欧洲国家18个,非洲和大洋洲各2个;南美洲1个.18个欧洲国家中G8国家有5个(英法德意俄).亚投行将设立理事会、董事会和管理层三层管理架构.假设理事会由9人组成,其中3人由欧洲国家等可能产生.(1)这3人中恰有2人来自于G8国家的概率;(2)设X表示这3人来自于G8国家的人数,求X的分布列和期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(1)直接利用古典概型的概率求解这3人中恰有2人来自于G8国家的概率;(2)设X表示这3人来自于G8国家的人数,求出概率得到分布列,然后求解X的期望.解答:解:(1)这3人中恰有2人来自于G8国家的概率:P==…(5分)(2)X可能的取值为0、1、2、3P(X=0)==,P(X=1)==P(X=2)==P(X=3)==X 0 1 2 3P…(10分)EX=0×+1×+2×+3×=…(12分)点评:本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.20.(12分)已知点F(,0),圆E:(x+)2+y2=16,点P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(1)求动点Q的轨迹方程;(2)若直线l与圆O:x2+y2=1相切,并与(1)中轨迹交于不同的两点A、B.当•=λ,且满足≤λ≤时,求△AOB面积S的取值范围.考点:直线与圆锥曲线的关系;轨迹方程.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)连接QF,结合圆的定义和垂直平分线的性质,以及椭圆的定义,可得Q的轨迹方程;(2)设直线l的方程为x=my+n(m∈R),由直线和圆相切的条件:d=r,可得m,n的关系,联立直线方程和椭圆方程,运用韦达定理和弦长公式,求得△AOB的面积,结合向量的数量积的坐标表示和基本不等式,即可得到所求范围.解答:解:(1)连接QF,∵|QE|+|QF|=|QE|+|QP|=|PE|=4>|EF|=2,∴动点Q的轨迹是以E(﹣,0)、F(,0)为焦点,长轴长2a=4的椭圆,即动点Q的轨迹方程为:+y2=1;(2)依题结合图形知直线l的斜率不为零,所以设直线l的方程为x=my+n(m∈R).∵直线L即x﹣my﹣n=0与圆O:x2+y2=1相切,∴=1得n2=m2+1.又∵点A,B的坐标满足:,消去x整理得(m2+4)y2+2mny+n2﹣4=0,由韦达定理得y1+y2=﹣,y1y2=,又|AB|=•|y1﹣y2|,点O到直线l的距离d==1,∴S△AOB=d•|AB|=•|y1﹣y2|=|n|•|y1﹣y2|=2•=2•,∵λ==x1x2+y1y2=(my1+n)(my2+n)+y1y2=(m2+1)y1y2+mn(y1+y2)+n2==∵,令t=1+m2,则λ=∈[,],即有t∈[3,6]∴S△AOB=2•=2•=2•=∵t+∈[6,],t++6∈[12,],∈[,],∴S△AOB∈[,1],∴S△AOB的取值范围为[,1].点评:本题考查椭圆的定义、方程和性质,主要考查椭圆的定义和方程的运用,联立直线方程,运用韦达定理,弦长公式和基本不等式,属于中档题.21.(12分)已知函数f(x)=x﹣ae x(a为实常数).(1)若函数f(x)在x=0的切线与x轴平行,求a的值;(2)若f(x)有两个零点x1、x2,求证:x1+x2>2.考点:利用导数研究曲线上某点切线方程;函数的零点.专题:导数的综合应用.分析:(1)求出函数的导数,利用导数的几何意义,即可得到结论.(2)由题意可求出0<a<;则a=的两个不同根为x1,x2,作出y=的图象,利用数形结合证明.解答:解:(1)函数的导数f′(x)=1﹣ae x,∵f(x)在x=0的切线与x轴平行,∴f′(0)=0,即f′(0)=1﹣a=0,解得a=1.(2)由f(x)=x﹣ae x=0得a=,设g(x)=,则g′(x)==,由g′(x)<0得x>1,由g′(x)>0得x<1,即函数g(x)在x=1时,取得极大值g(1)=,则要使f(x)有两个零点x1、x2,则满足0<a<,则x1=ae x1,x2=ae x2;∵g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减;又∵当x∈(﹣∞,0]时,g(x)≤0,故不妨设x1∈(0,1),x2∈(1,+∞);对于任意a1,a2∈(0,),设a1>a2,若g(m1)=g(m2)=a1,g(n1)=g(n2)=a2,其中0<m1<1<m2,0<n1<1<n2,∵g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减;又∵g(m1)>g(n1),g(m2)>g(n2);∴m1>n1,m2<n2;∴;故随着a的减小而增大,令=t,x1=ae x1,x2=ae x2,可化为x2﹣x1=lnt;t>1;则x1=,x2=;则x2+x1=,令h(t)=,则可证明h(t)在(1,+∞)上单调递增;故x2+x1随着t的增大而增大,即x2+x1随着的增大而增大,故x2+x1随着a的减小而增大,而当a=时,x2+x1=2;故x1+x2>2.点评:本题考查了导数的综合应用及恒成立问题,同时考查了数形结合的思想应用,属于难题一、选修4-1:几何证明选讲:请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.在答题卡选答区域指定位置答题,并写上所做题的题号.注意所做题目的题号必须和所写的题号一致.22.(10分)如图,已知PA与圆O相切于点A,半径OB⊥OP,AB交PO于点C.(1)求证:PA=PC;(2)若圆O的半径为3,PO=5,求线段AC的长度.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:(1)根据弦切角定理,可得∠PAB=∠ACB,根据圆周角定理可得∠BAC=90°,结合BC⊥OP,根据同角的余角相等及对顶角相等可得∠PDA=∠PAB,即△PAD为等腰三角形;(2)利用切割线定理求出PA,再求出cos∠AOP,利用余弦定理,即可得出结论.解答:(1)证明:∵PA与圆O相切于点A,∴∠PAB=∠ADB∵BD为圆O的直径,∴∠BAD=90°∴∠ADB=90°﹣∠B∵BD⊥OP,∴∠BCO=90°﹣∠B∴∠BCO=∠PCA=∠PAB即△PAC为等腰三角形∴PA=PC;…(5分)(2)解:假设PO与圆O相交于点M,延长PO交圆O于点N.∵PA与圆O相切于点A,PMN是圆O的割线,∴PA2=PM•PN=(PO﹣OM)(PO+ON).∵PO=5,OM=ON=3,∴PA=4.由(1)知PC=PA=4,∴OC=1.在Rt△OAP中,cos∠AOP==.∴AC2=9+1﹣2×3×1×=.∴AC=.…(10分)点评:本题考查的知识点是弦切角定理,圆周角定理,等腰三角形的判定,相似三角形的判定与性质,属于中档题.一、选修4-4:坐标系与参数方程23.在直角坐标系xoy中,直l线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=10cosθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点P的坐标为(2,6),求|PA|+|PB|.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)由ρ=10cosθ得ρ2=10ρcosθ,把代入即可得出.(2)将l的参数方程代入圆C的直角坐标方程,化为=0,可设t1,t2是上述方程的两个实根.利用|PA|+|PB|=|t1|+|t2|=﹣(t1+t2)即可得出.解答:解:(1)由ρ=10cosθ得ρ2=10ρcosθ,∴直角坐标方程为:x2+y2=10x,配方为:(x﹣5)2+y2=25.(2)将l的参数方程代入圆C的直角坐标方程,化为=0,由于△=﹣4×20=82>0,可设t1,t2是上述方程的两个实根.∴t1+t2=﹣,t1t2=20,又直线l过点P(2,6),可得:|PA|+|PB|=|t1|+|t2|=﹣(t1+t2)=9.点评:本题考查了参数方程的应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.一、选修4-5:不等式选讲24.已知函数f(x)=|2x+1|+|2x﹣3|.(Ⅰ)求不等式f(x)≤6的解集;(Ⅱ)若关于x的不等式f(x)<|a﹣1|的解集非空,求实数a的取值范围.考点:带绝对值的函数;其他不等式的解法.专题:计算题;压轴题.分析:(Ⅰ)不等式等价于①,或②,或③.分别求出这3个不等式组的解集,再取并集,即得所求.(Ⅱ)由绝对值不等式的性质求出f(x)的最小值等于4,故有|a﹣1|>4,解此不等式求得实数a的取值范围.解答:解:(Ⅰ)不等式f(x)≤6 即|2x+1|+|2x﹣3|≤6,∴①,或②,或③.解①得﹣1≤x<﹣,解②得﹣≤x≤,解③得<x≤2.故由不等式可得,即不等式的解集为{x|﹣1≤x≤2}.(Ⅱ)∵f(x)=|2x+1|+|2x﹣3|≥|(2x+1)﹣(2x﹣3)|=4,即f(x)的最小值等于4,∴|a﹣1|>4,解此不等式得a<﹣3或a>5.故实数a的取值范围为(﹣∞,﹣3)∪(5,+∞).点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解.体现了分类讨论的数学思想,属于中档题.。

2015年江西省赣州市高考一模数学试卷(理科)【解析版】

2015年江西省赣州市高考一模数学试卷(理科)【解析版】

2015年江西省赣州市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A=x|x2﹣x﹣2<0},B={x|log4x<0.5},则()A.A∩B=∅B.B⊆A C.A∩∁R B=R D.A⊆B2.(5分)在复平面内,复数对应的点的坐标为()A.(0,﹣1)B.C.D.3.(5分)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|);②y=f(﹣x);③y=xf(x);④y=f(x)+x.A.①③B.②③C.①④D.②④4.(5分)已知双曲线x2﹣=1的两条渐近线的夹角为60°,且焦点到一条渐近线的距离大于,则b=()A.3B.C.D.5.(5分)要从由n名成员组成的小组中任意选派3人去参加某次社会调查.若在男生甲被选中的情况下,女生乙也被选中的概率为0.4,则n的值为()A.4B.5C.6D.76.(5分)某同学想求斐波那契数列0,1,1,2,…(从第三项起每一项等于前两项的和)的前10项的和,他设计了一个程序框图,那么在空白矩形框和判断框内应分别填入的语句是()A.c=a;i≤9B.b=c;i≤9C.c=a;i≤10D.b=c;i≤10 7.(5分)已知向量,,若向量满足与的夹角为120°,,则=()A.1B.C.2D.8.(5分)设{a n}是公差不为零的等差数列,满足,则该数列的前10项和等于()A.﹣10B.﹣5C.0D.59.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.32B.18C.16D.1010.(5分)如图是函数图象的一部分,对不同的x 1,x2∈[a,b],若f(x1)=f(x2),有,则()A.f(x)在上是减函数B.f(x)在上是减函数C.f(x)在上是增函数D.f(x)在上是减函数11.(5分)过抛物线C:y2=2px(p>0)的焦点且斜率为2的直线与C交于A、B两点,以AB为直径的圆与C的准线有公共点M,若点M的纵坐标为2,则p的值为()A.1B.2C.4D.812.(5分)已知函数f(x)=(a﹣3)x﹣ax3在[﹣1,1]的最小值为﹣3,则实数a的取值范围是()A.(﹣∞,﹣1]B.[12,+∞)C.[﹣1,12]D.二、填空题:本大题共4小题,每小题5分1,3,5.13.(5分)展开式中的常数项为.14.(5分)若不等式组表示的平面区域是面积为的三角形,则m 的值.15.(5分)A、B、C三点在同一球面上,∠BAC=135°,BC=2,且球心O到平面ABC的距离为1,则此球O的体积为.16.(5分)已知数列{a n}满足a n+a n+1=(﹣1)n,S n是其前n项和,若S2015=﹣1007﹣b,且a1b>0,则+的最小值为.三、解答题:解答须写出文字说明、证明过程和演算步骤.17.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,且.(Ⅰ)求角A的大小;(Ⅱ)若a=3,sin C=2sin B,求b、c的值.18.(12分)在四棱锥P﹣ABCD中,底面ABCD是矩形,平面P AD⊥平面ABCD,PD⊥PB,P A=PD.(Ⅰ)求证:平面PCD⊥平面P AB;(Ⅱ)设E是棱AB的中点,∠PEC=90°,AB=2,求二面角E﹣PC﹣B的余弦值.19.(12分)某校学生参加了“铅球”和“立定跳远”两个科目的体能测试,每个科目的成绩分为A,B,C,D,E五个等级,分别对应5分,4分,3分,2分,1分,该校某班学生两科目测试成绩的数据统计如图所示,其中“铅球”科目的成绩为E的学生有8人.(Ⅰ)求该班学生中“立定跳远”科目中成绩为A的人数;(Ⅱ)若该班共有10人的两科成绩得分之和大于7分,其中有2人10分,2人9分,6人8分.从这10人中随机抽取两人,求两人成绩之和ξ的分布列和数学期望.20.(12分)已知椭圆E:的焦距为2,A是E的右顶点,P、Q是E上关于原点对称的两点,且直线P A的斜率与直线QA的斜率之积为.(Ⅰ)求E的方程;(Ⅱ)过E的右焦点作直线与E交于M、N两点,直线MA、NA与直线x=3分别交于C、D两点,设△ACD与△AMN的面积分别记为S1、S2,求2S1﹣S2的最小值.21.(12分)设函数f(x)=(e为自然对数的底),曲线y=f(x)在点(0,f(0))处的切线方程为y=x+b.(Ⅰ)求a、b的值,并求函数y=f(x)的单调区间;(Ⅱ)设x≥0,求证:f(x)>.请考生在第22、23、24两题中任选一题作答,并用2B铅笔将答题卡上把所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分.选修4-1:几何证明选讲22.(10分)如图,已知AB为圆O的一条直径,以端点B为圆心的圆交直线AB于C、D两点,交圆O于E、F两点,过点D作垂直于AD的直线,交直线AF于H点.(Ⅰ)求证:B、D、H、F四点共圆;(Ⅱ)若AC=2,AF=2,求△BDF外接圆的半径.选修4-4:坐标系与参数方程23.已知极坐标系的极点与直角坐标第的原点重合,极轴与直角坐标系的x轴的正半轴重合.点A、B的极坐标分别为(2,π)、(a∈R),曲线C 的参数方程为为参数)(Ⅰ)若,求△AOB的面积;(Ⅱ)设P为C上任意一点,且点P到直线AB的最小值距离为1,求a的值.选修4-5:不等式选讲24.设函数f(x)=|x|+|2x﹣a|.(Ⅰ)当a=1时,解不等式f(x)≤1;(Ⅱ)若不等式f(x)≥a2对任意x∈R恒成立,求实数a的取值范围.2015年江西省赣州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每一小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A=x|x2﹣x﹣2<0},B={x|log4x<0.5},则()A.A∩B=∅B.B⊆A C.A∩∁R B=R D.A⊆B【解答】解:∵x2﹣x﹣2<0,∴(x﹣2)(x+1)<0,解得﹣1<x<2∴A=(﹣1,2),∵log4x<0.5=log42,∴0<x<2,∴B=(0,2),∴B⊆A,故选:B.2.(5分)在复平面内,复数对应的点的坐标为()A.(0,﹣1)B.C.D.【解答】解:复数===﹣i对应的点的坐标为(0,﹣1),故选:A.3.(5分)已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|);②y=f(﹣x);③y=xf(x);④y=f(x)+x.A.①③B.②③C.①④D.②④【解答】解:由奇函数的定义:f(﹣x)=﹣f(x)验证①f(|﹣x|)=f(|x|),故为偶函数②f[﹣(﹣x)]=f(x)=﹣f(﹣x),为奇函数③﹣xf(﹣x)=﹣x•[﹣f(x)]=xf(x),为偶函数④f(﹣x)+(﹣x)=﹣[f(x)+x],为奇函数可知②④正确故选:D.4.(5分)已知双曲线x2﹣=1的两条渐近线的夹角为60°,且焦点到一条渐近线的距离大于,则b=()A.3B.C.D.【解答】解:双曲线x2﹣=1(b>0)的两条渐近线方程为y=±bx,即有tan60°=||=||=,设焦点(c,0)到一条渐近线的距离为d===b,即有b>,解得b>1,则有b2﹣2b﹣=0,解得b=,故选:C.5.(5分)要从由n名成员组成的小组中任意选派3人去参加某次社会调查.若在男生甲被选中的情况下,女生乙也被选中的概率为0.4,则n的值为()A.4B.5C.6D.7【解答】解:由题意,在男生甲被选中的情况下,只需要从其余n﹣1人中选出2人,在男生甲被选中的情况下,女生乙也被选中,即从其余n﹣2人中选1人即可,故=0.4,∴n=6,故选:C.6.(5分)某同学想求斐波那契数列0,1,1,2,…(从第三项起每一项等于前两项的和)的前10项的和,他设计了一个程序框图,那么在空白矩形框和判断框内应分别填入的语句是()A.c=a;i≤9B.b=c;i≤9C.c=a;i≤10D.b=c;i≤10【解答】解:由题意,斐波那契数列0,1,1,2,…,从第三项起每一项等于前两项的和,分别用a,b来表示前两项,c表示第三项,S为数列前n项和,故空白矩形框内应为:b=c,第1次循环:a=0,b=1,S=0+4=1,i=3,求出第3项c=1,求出前3项和S=0+1+1=2,a=1,b=1,满足条件,i=4,执行循环;第2次循环:求出第4项c=1+1=2,求出前4项和S=0+1+1+2=4,a=1,b =2,满足条件,i=5,执行循环;…第8次循环:求出第10项c,求出前10项和S,此时i=10,由题意不满足条件,退出执行循环,输出S的值.故判断框内应为i≤9.故选:B.7.(5分)已知向量,,若向量满足与的夹角为120°,,则=()A.1B.C.2D.【解答】解:设=(x,y)∵,,∴4=(﹣1,2),|4|=,∵,∴﹣x+2y=5,即x﹣2y=﹣5,∵向量满足与的夹角为120°∴=,即=,∵=,∴=2.故||=2,故选:D.8.(5分)设{a n}是公差不为零的等差数列,满足,则该数列的前10项和等于()A.﹣10B.﹣5C.0D.5【解答】解:设等差数列{a n}的首项为a1,公差为d(d≠0),由,得,整理得:2a1+9d=0,即a1+a10=0,∴.故选:C.9.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.32B.18C.16D.10【解答】解:由三视图知:几何体是正方体的一半,如图:已知正方体的棱长为4,∴几何体的体积V=×43=32.故选:A.10.(5分)如图是函数图象的一部分,对不同的x 1,x2∈[a,b],若f(x1)=f(x2),有,则()A.f(x)在上是减函数B.f(x)在上是减函数C.f(x)在上是增函数D.f(x)在上是减函数【解答】解:由函数图象的一部分,可得A=2,函数的图象关于直线x==对称,∴a+b=x1+x2.由五点法作图可得2a+φ=0,2b+φ=π,∴a+b=﹣φ.再根据f(a+b)=2sin(π﹣2φ+φ)=2sinφ=,可得sinφ=,∴φ=,f(x)=2sin(2x+).在上,2x+∈(﹣,),故f(x)在上是增函数,故选:C.11.(5分)过抛物线C:y2=2px(p>0)的焦点且斜率为2的直线与C交于A、B两点,以AB为直径的圆与C的准线有公共点M,若点M的纵坐标为2,则p的值为()A.1B.2C.4D.8【解答】解:取AB的中点N,分别过A、B、N作准线的垂线AP、BQ、MN,垂足分别为P、Q、M,如图所示:由抛物线的定义可知,|AP|=|AF|,|BQ|=|BF|,在直角梯形APQB中,|MN|=(|AP|+|BQ|)=(|AF|+|BF|)=|AB|,故圆心N到准线的距离等于半径,即有以AB为直径的圆与抛物线的准线相切,由M的纵坐标为2,即N的纵坐标为2,抛物线y2=2px的焦点坐标为(,0),设直线AB的方程为y=2(x﹣),即x=y+,与抛物线方程y2=2px联立,消去x,得y2﹣py﹣p2=0由韦达定理可得AB的中点N的纵坐标为,即有p=4,故选:C.12.(5分)已知函数f(x)=(a﹣3)x﹣ax3在[﹣1,1]的最小值为﹣3,则实数a的取值范围是()A.(﹣∞,﹣1]B.[12,+∞)C.[﹣1,12]D.【解答】解:当a=0时,f(x)=﹣3x,x∈[﹣1,1],显然满足,故a可以取0,故排除A,B;当时,,,所以f(x)在[﹣1,1]上递减,所以,满足条件,故排除C,故选:D.二、填空题:本大题共4小题,每小题5分1,3,5.13.(5分)展开式中的常数项为80.【解答】解:的展开式的通项公式为T r+1=令15﹣5r=0,解得r=3,故展开式中的常数项为80,故答案为:80.14.(5分)若不等式组表示的平面区域是面积为的三角形,则m的值.【解答】解:作出不等式组对应的平面区域如图,若对应的区域为三角形,则m<2,由,得,即C(m,m),由,得,即B(m,),由,得,即A(2,2),则三角形ABC的面积S=×(﹣m)×(2﹣m)=,即(2﹣m)2=,解得2﹣m=,或2﹣m=﹣,即m=或m=(舍),故答案为:;15.(5分)A、B、C三点在同一球面上,∠BAC=135°,BC=2,且球心O到平面ABC的距离为1,则此球O的体积为4.【解答】解:由于∠BAC=135°,BC=2,则△ABC的外接圆的直径2r==2,即有r=,由于球心O到平面ABC的距离为1,则由勾股定理可得,球的半径R===,即有此球O的体积为V=πR3=π×()3=4.故答案为:4.16.(5分)已知数列{a n}满足a n+a n+1=(﹣1)n,S n是其前n项和,若S2015=﹣1007﹣b,且a1b>0,则+的最小值为.【解答】解:由已知得:a2+a3=﹣2,a4+a5=4,…,a2012+a2013=2012,a2014+a2015=﹣2014,把以上各式相加得:S2015﹣a1=﹣2014+1006=﹣1008,∴S2015=a1﹣1008=﹣1007﹣b,即a1+b=1,∴=.故答案为:.三、解答题:解答须写出文字说明、证明过程和演算步骤.17.(12分)在△ABC中,角A、B、C的对边分别为a、b、c,且.(Ⅰ)求角A的大小;(Ⅱ)若a=3,sin C=2sin B,求b、c的值.【解答】解:(1)由正弦定理余弦定理得=,∴2sin C cos A=sin(A+B)=sin C,∵sin C≠0,∴,∵A∈(0,π),∴.(2)由sin C=2sin B,得c=2b,由条件a=3,,由余弦定理得a2=b2+c2﹣2bc cos A=b2+c2﹣bc=3b2,解得.18.(12分)在四棱锥P﹣ABCD中,底面ABCD是矩形,平面P AD⊥平面ABCD,PD⊥PB,P A=PD.(Ⅰ)求证:平面PCD⊥平面P AB;(Ⅱ)设E是棱AB的中点,∠PEC=90°,AB=2,求二面角E﹣PC﹣B的余弦值.【解答】(1)证明:因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,AB⊥AD所以AB⊥平面P AD…(1分)又PD⊂平面P AD,所以PD⊥AB…(2分)又PD⊥PB,所以PD⊥平面P AB…(3分)而PD⊂平面PCD,故平面PCD⊥平面P AB…(4分)(2)如图,建立空间直角坐标系…(5分)设AD=2a,则A(a,0,0),D(﹣a,0,0)B(a,2,0),C(﹣a,2,0),P(0,0,a),E(a,1,0)…(6分)=(﹣a,﹣1,a),=(﹣2a,1,0),则得2a2﹣1=0,得,则,=(﹣,﹣1,),…(8分)设平面PEC的一个法向量,=(.﹣2,)由得,令x1=1,则=(1,,)…(9分),=(.﹣2,)设平面PCB的一个法向量,由得,令z2=1,则=(0,,1)…(10分)设二面角E﹣PC﹣B的大小为θ,则cosθ=|cos<,>|==…(11分)故二面角E﹣PC﹣B的余弦值为…(12分)19.(12分)某校学生参加了“铅球”和“立定跳远”两个科目的体能测试,每个科目的成绩分为A,B,C,D,E五个等级,分别对应5分,4分,3分,2分,1分,该校某班学生两科目测试成绩的数据统计如图所示,其中“铅球”科目的成绩为E的学生有8人.(Ⅰ)求该班学生中“立定跳远”科目中成绩为A的人数;(Ⅱ)若该班共有10人的两科成绩得分之和大于7分,其中有2人10分,2人9分,6人8分.从这10人中随机抽取两人,求两人成绩之和ξ的分布列和数学期望.【解答】解:(I)因为“铅球”科目中成绩等级为E的考生有8人,所以该班有8÷0.2=40人,所以该班学生中“立定跳远”科目中成绩等级为A的人数为40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3.…(4分)(II)设两人成绩之和为ξ,则ξ的值可以为16,17,18,19,20 …(6分),,,,…(10分)所以ξ的分布列为所以.所以ξ的数学期望为.…(12分)20.(12分)已知椭圆E:的焦距为2,A是E的右顶点,P、Q是E上关于原点对称的两点,且直线P A的斜率与直线QA的斜率之积为.(Ⅰ)求E的方程;(Ⅱ)过E的右焦点作直线与E交于M、N两点,直线MA、NA与直线x=3分别交于C、D两点,设△ACD与△AMN的面积分别记为S1、S2,求2S1﹣S2的最小值.【解答】解:(I)根据题意,设P(x0,y0),Q(﹣x0,﹣y0),则,,依题意有,又c=1,所以a2=4,b2=3,故椭圆E的方程为:;(II)设直线MN的方程为x=my+1,代入E的方程得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),由韦达定理知,又直线MA的方程为,将x=3代入,得,同理,所以,所以,,则2S1﹣S2=3﹣,令,则m2=t2﹣1,所以,记,则,所以f(t)在[1,+∞)单调递增,从而f(t)的最小值为,故2S1﹣S2的最小值为•21.(12分)设函数f(x)=(e为自然对数的底),曲线y=f(x)在点(0,f(0))处的切线方程为y=x+b.(Ⅰ)求a、b的值,并求函数y=f(x)的单调区间;(Ⅱ)设x≥0,求证:f(x)>.【解答】解:(Ⅰ)因为,而,所以,解得a=2;所以,因此,由知,当x>﹣1时,f′(x)>0,当x<﹣1且x≠﹣2时,f′(x)<0;故f(x)的单调增区间是(﹣1,+∞),减区间是(﹣∞,﹣2)和(﹣2,﹣1),(Ⅱ)证明:所证不等式等价于,因为,先证,记,g′(x)=e x﹣2x﹣2,记u(x)=e x﹣2x﹣2,则u′(x)=e x﹣2,由此可知,u(x)在(﹣∞,ln2)上单调递减,在(ln2,+∞)上单调递增;因为u(1)•u(2)<0,u(﹣1)•u(0)<0,故g′(x)=0在(0,+∞)只有一个零点x1(1<x1<2),且,所以g(x)在(0,x1)递减,在(x1,+∞)递增,所以当x≥0时,,即,又,所以,即,故.请考生在第22、23、24两题中任选一题作答,并用2B铅笔将答题卡上把所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分.选修4-1:几何证明选讲22.(10分)如图,已知AB为圆O的一条直径,以端点B为圆心的圆交直线AB于C、D两点,交圆O于E、F两点,过点D作垂直于AD的直线,交直线AF于H点.(Ⅰ)求证:B、D、H、F四点共圆;(Ⅱ)若AC=2,AF=2,求△BDF外接圆的半径.【解答】(Ⅰ)证明:因为AB为圆O一条直径,所以BF⊥FH,…(2分)又DH⊥BD,故B、D、F、H四点在以BH为直径的圆上,所以B、D、F、H四点共圆.…(4分)(2)解:因为AH与圆B相切于点F,由切割线定理得AF2=AC•AD,即(2)2=2•AD,解得AD=4,…(6分)所以BD=,BF=BD=1,又△AFB∽△ADH,则,得DH=,…(8分)连接BH,由(1)知BH为DBDF的外接圆直径,BH=,故△BDF的外接圆半径为.…(10分)选修4-4:坐标系与参数方程23.已知极坐标系的极点与直角坐标第的原点重合,极轴与直角坐标系的x轴的正半轴重合.点A、B的极坐标分别为(2,π)、(a∈R),曲线C 的参数方程为为参数)(Ⅰ)若,求△AOB的面积;(Ⅱ)设P为C上任意一点,且点P到直线AB的最小值距离为1,求a的值.【解答】解:(1)当时,A(﹣2,0),B(2,2),∵k OB=1,∴∠AOB=135°.∴.(2)曲线C的参数方程为为参数),化为(x﹣1)2+y2=4,圆心C(1,0),半径y=2.∵点P到直线AB的最小值距离为1,∴圆心到直线AB的距离为3,当直线AB斜率不存在时,直线AB的方程为x=﹣2,显然,符合题意,此时.当直线AB存在斜率时,设直线AB的方程为y=k(x+2),则圆心到直线AB的距离,依题意有,无解.故.选修4-5:不等式选讲24.设函数f(x)=|x|+|2x﹣a|.(Ⅰ)当a=1时,解不等式f(x)≤1;(Ⅱ)若不等式f(x)≥a2对任意x∈R恒成立,求实数a的取值范围.【解答】解:(Ⅰ)当a=1时,…(3分)根据图易得f(x)≤1的解集为…(5分)(Ⅱ)令x=ka(k∈R),由f(x)≥a2对任意x∈R恒成立等价于|k|+|2k﹣1|≥|a|对任意k∈R恒成立…(6分)由(1)知|k|+|2k﹣1|的最小值为,所以…(8分)故实数a的取值范围为…(10分)。

江西省南昌市2015届高三零模调研测试数学(理)试卷(扫描版)

江西省南昌市2015届高三零模调研测试数学(理)试卷(扫描版)

2014—2015学年度南昌市高三年级调研测试卷数学(理科)参考答案及评分标准又∵03B π<<,∴2333B πππ<+<,∴当32B ππ+=,即6B π=时,ABC ∆的周长l 取得最大值2+………………………12分18. 解:(1)由2423n n n S a a =+-,2111423n n n S a a +++=+-,得22111422n n n n n a a a a a +++=-+-,11()(2)0n n n n a a a a +++--=…………………………3分当5n ≥时,0n a >,所以12n n a a +-=,所以当5n ≥时,{}n a 成等差数列.………………………………………………………………6分(2)由2111423a a a =+-,得13a =或11a =-, 又12345.,,,a a a a a 成等比数列,所以10(5)n n a a n ++=≤,1q =-,……………………………………………………………7分 而50a >,所以10a >,从而13a =,……………………………………………………………8分所以13(1),(14)27,(5)n n n a n n -⎧-≤≤=⎨-≥⎩, (10)分所以231-(1),(14)268,(5)nn n S n n n ⎧⎡⎤-≤≤⎪⎣⎦=⎨⎪-+≥⎩.………………………………………………………………12分 19. 解:(1)因为∆PAE ≅∆DAE ⇒PE=DE,又EH PD ⊥⇒H 为PD 中点,又////,,FH CD AB FH PAB AB PAB ⊄⊂面面⇒//FH PAB 平面,………………………2分又//,,//EF PB EF PAB PB PAB EF PAB ⊄⊂⇒面面平面, ………………………………4分EF HF F =,∴//,//EFH PAB EH EFH EH PAB ⊂⇒平面平面平面平面…………6分(2)如图建立空间坐标系E (0,0,2)P,C(0,2,0)D,1,1)2F ,(0,1,1)H PD AEPD AH⊥⎧⇒⎨⊥⎩(0,2,2)PD =-是平面EAH 的法向量…………8分 设平面FAH 的法向量为(,,)n x y z =,31(,,1),(0,1,1)2AF AH ==02000n AF y z y z n AH ⎧⋅=++=⎪⇒⎨+=⎪⋅=⎪⎩⎩,设z =,(1,3,n ∴=……………… 10分cos ,||||8PD n PD n PD n ⋅=== ∴平面FAH 与平面EAH ………………………………12分 20.解:(1)抛物线2C 的准线方程是2y =-,所以242pp =⇒=,所以抛物线2C 的方程是:28x y =,……………………………………………………… 2分椭圆椭圆22122:1(0)yx C a b ab+=>>的焦点坐标是(0,2),(0,2)-,所以2c =,2a ==,所以2a b ==,即椭圆1C 的方程是22184x y +=;…………………………………………………5分(2)设点(,0)P t ,11223344(,),(,),(,),(,)A x y B x y E x y F x y ,抛物线方程可以化为:218y x =,1'4y x =,所以AP 的方程为:1111()4y y x x x -=-,所以1111224y x t y --=-,即11124y tx =+同理:22124y tx =+,所以直线AB 的方程为:124y tx =+, (7)分将直线AB 方程代入椭圆1C 的方程得到:22(32)16640t x tx ++-=, 则22256256(32)0t t =++>△,且3434221664,3232t x x x x t t --+==++,……………………9分所以223434343422864320(1)()481623232t t t OE OF x x y y x x x x t t -+⋅=+=++++==-++ (11)分 因为232001032t <≤+,所以OE OF ⋅的取值范围是(8,2]-.………………………………12分21. 解:(1)'()1xf x a e =-⋅, (1)分当0a ≤时,'()0f x >,函数()f x 是(,)-∞+∞上的单调递增函数;………………………2分当0a >时,由'()0f x >得ln x a <-,所以函数()f x 是(,ln )a -∞-上的单调递增函数,函数()f x 是(ln ,)a -+∞上的单调递减函数;…………………………………………………………3分(2)2()xx x x f x e a e e ≤⇔≥-,设()xx x g x e e=-,则21'()x xe x g x e --=,………………4分当0x <时,210x e ->,'()0g x >,()g x 在(,0)-∞上单调递增,…………………………5分当0x >时,210x e -<,'()0g x <,()g x 在(0,)+∞上单调递减,…………………………6分所以max ()(0)1g x g ==-,所以1a ≥-;…………………………………………………………7分(3)函数()f x 有两个零点12,x x ,所以1212,x x x ae x ae ==,因此1212()x xx x a e e -=-, 即1212x x x x a e e-=-,……………………………………………………………………………………8分要证明122x x +>,只要证明12()2x x a e e +>,即证:121212()2x x xx e e x x e e +->-………………9分不妨设12x x >,记12t x x =-,则0,1tt e >>,因此只要证明:121t t e t e +⋅>-,即(2)20t t e t -++>,………………………………………10分记()(2)2(0)t h t t e t t =-++>,则'()(1)1t h t t e =-+,记()(1)t m t t e =-,则'()tm t te =,当0t >时,'()0m t >,所以()(0)1m t m >=-,即0t >时(1)1,'()0t t e h t ->->,所以()(0)0h t h >=即(2)20tt e t -++>成立, (11)分所以122x x +>.……………………………………………………………………………………12分22解:(1)当3a =时,42,1()2,1x 324,3x x f x x x -<⎧⎪=≤≤⎨⎪->⎩……………………………………1分当1x <时,由()4f x ≤得424x -≤,解得01;x ≤< ……………………………………2分 当13x ≤≤时,()4f x ≤恒成立; ……………………………………………………………3分 当3x >时,由()4f x ≤得244x -≤,解得34x <≤.……………………………………4分 所以不等式()4f x ≤的解集为{}04x x ≤≤. ………………………………………………5分(2)因为(x)1121f x a x x a x x a =-+-≥-+-=--, 当()()10x x a --≥时,()21f x x a =--;当()()10x x a --<时,()21f x x a >--.…………………………………………………7分 记不等式()()10x x a --<的解集为,A 则()2,1A -⊆,……………………………………8分 故2a ≤-,所以a 的取值范围是(],2-∞-.…………………………………………………10分 23.解:(1)直线l 的普通方程,01323=--+y x 曲线C 的直角坐标方程422=+y x ;……………………………… 4分(2)曲线C 经过伸缩变换⎪⎩⎪⎨⎧==yy x x 2//得到曲线/C 的方程为4422=+y x ,则点M参数方程为002cos 4sin x y θθ=⎧⎨=⎩(θ为参数)0012y +得,0012y +==⋅+⋅θθsin 421cos 23)3sin(4cos 32sin 2πθθθ+=+∴0012y +的取值范围是[]4,4-……………………………10分。

赣州市2015年高三年级模底考试理科数学参考答案

赣州市2015年高三年级模底考试理科数学参考答案

赣州市2015年高三年级模底考试理科数学参考答案一、选择题 1~5.BADAC ; 6~10.BDCAC ; 11~12.CD . 12.解:当0a =时,[]()3,1,1f x x x =-∈-,显然满足,故0a =,排除A ,B ; 当32a =-时,339()22f x x x =-,22999()(1)222f x x x '=-=-,所以()f x 在[1,1]-上递减,所以min39()(1)322f x f ==-=-,满足条件,排除C ,故选D .二、填空题 13.80; 14.23-; 15.; 16.3+ 16.解:由已知得:232a a +=-,454a a +=,……,201220132012a a +=,201420152014a a +=-,把以上各式相加得:20151201410061008S a -=-+=-,所以2015110081007S a b =-=--,即11a b +=,所以11112()12a b a b a b a b+++=+11233a b a b=++≥+三、解答题 17.(1)由正弦定理得2sin sin cos sinB cos C B a Bb A-=…………………………………………2分sin cos sin cos A BB A=…………………………………………………………………………………3分所以2sin cos sin()sin C A A B C =+=……………………………………………………4分 因为sin 0C ≠,故1cos 2A =………………………………………………………………5分 所以π3A =……………………………………………………………………………………6分 (2)由sin 2sin C B =,得2c b =…………………………………………………………7分由条件3,a =,π3A =,所以由余弦定理得2222222cos 3a b c bc A b c bc b =+-=+-=………………………9分解得b c =12分 18.(1)证明:因为平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,AB AD ⊥ 所以AB ⊥平面PAD ………………………………………………………………………1分 又PD ⊂平面PAD ,所以PD AB ⊥……………………………………………………2分 又PD PB ⊥,所以PD ⊥平面PAB ………………………………3分 而PD ⊂平面PCD ,故平面PCD ⊥平面PAB ……………………4分 (2)如图,建立空间直角坐标系…………………………………5分 设2AD a =,则(,0,0)A a ,(,0,0)D a -(,2,0)B a ,(,2,0)C a -,(0,0,)P a ,(,1,0)E a …………………6分(,1,),(2,1,0)EP a a EC a =--=-u u r u u u r ,则0EP EC ⋅=u u r u u u r得a =1,0)CE =-u u u r,(EP =-uu r ……………………………………………………8分 设平面PEC 的一个法向量1111(,,)n x y z =u r,由1100n CP n EP ⎧⋅=⎪⎨⋅=⎪⎩u r uur u r uur得1111100y x z -=+-=⎪⎩ 令11x =,则1(1n =u r……………………………………………………………………9分CB =u u r,CP =-uur ,设平面PEC 的一个法向量2222(,,)n x y z =u u r , 由2200n BC n CP ⎧⋅=⎪⎨⋅=⎪⎩u u r uu u r u u r uu r得222200x x z =⎧⎪⎨-+=⎪⎩,令21y =,则1(0,1n =u r ……………………10分 设二面角E PC B --的大小为θ,则121212||cos |cos ,|||||n n n n n n θ⋅=<>=⋅u r u u ru r u u r u r u u r …………11分 故二面角E PC B --……………………………………………………12分 19.(1)因为“铅球”科目中成绩等级为E 的考生有16人,所以该班有160.280÷=人……………………………………………………………………2分 所以该班学生中“立定跳远”科目中成绩等级为A 的人数为80(10.3750.3750.1500.025)6⋅----=………………………………………………4分(2)设两人成绩之和为X ,则X 的值可以为16,17,18,19,20 …………………6分2621015(16)45C P X C ===,116221012(17)45C C P X C ===,11262222101013(18)45C C C P X C C ==+=11222104(19)45C C P X C ===,222101(20)45C P X C ===…………………………………………9分所以X 的分布列为……………………………………………10分所以1512134186161718192045454545455EX =⨯+⨯+⨯+⨯+⨯=…………………………11分 所以X 的数学期望为865……………………………………………………………………12分20.(1)设0000(,),(,)P x y Q x y --,则2222002()b y a x a=-……………………………………1分22000222000PA QAy y y b k k x a x a x a a⋅=⋅==--+-,依题意有2234b a =又1c =,所以解得224,3a b ==故E 的方程为22143x y +=……………………………………………………………………5分 (2)设直线MN 的方程为1x my =+,代入E 的方程得22(34)690m y my ++-= 设1122(,),(,)M x y M x y ,则12122269,3434m y y y y m m +=-=-++…………………………6分 直线MA 的方程为11(2)2y y x x =--,把3x =代入得111121C y y y x my ==-- 同理221D y y my =-………………………………………………………………………………7分所以1221212||||||()1C D y y CD y y m y y m y y -=-==-++………………………8分所以11||2S CD =2121||||2S AF y y =⋅-=………………………9分12S S -=(1)t t ≥,则221m t =-, 所以12262331tS S t t -=-+……………………………………………………………………10分 记26()331tf t t t =-+,则2226(31)()30(31)t f t t -'=+>+……………………………………11分 所以()f t 在[1,)+∞单调递增地,所以()f t 的最小值为3(1)2f = 故122S S -的最小值为32…………………………………………………………………12分 21.(1)因为2e (1)()()x x a f x x a +-'=+………………………………………………………1分而1(0)4f '=,所以2114a a -=,解得2a =………………………………………………2分 所以1(0)2f =,因此12b =………………………………………………………………3分由2e (1)()(2)x x f x x +'=+知,当1x >-时,()0f x '>,当1x <-且2x ≠-时,()0f x '<……………………………4分 故()f x 的单调增区间是(1,)-+∞,减区间是(,2)-∞-和(2,1)--………………………5分(2)所证不等式等价于21e (42x x x >+-……………………………………6分12x +,先证21e (2)(1)422x x x x >+++-…………………………………7分记221()e (2)(1)4e 2222x x x g x x x x x =-++-+=--+()e 22x g x x '=--,记()e 22x u x x =--,则()e 2x u x '=-由此可知,()u x 在(,ln 2)-∞上单调递减,在(ln 2,)+∞上单调递增 因为(1)(2)0u u ⋅<,(1)(0)0u u -⋅<,故()0g x '=在(0,)+∞只有一个零点11(12)x x <<………………………………………9分 且11e 22x x =+,所以()g x 在1(0,)x 递减,在1(,)x +∞递增所以当0x ≥时,1221111()()e 2240x g x g x x x x ≥=--+=->……………………………10分即21e (2)(1)422x x x x >+++-,又12x+>所以2211e (2)(1)4(4222x x x x x x >+++->+-………………………………11分即2e 8224x x x x ->++,故28()24x f x x ->+……………………………………12分 选做题22.(1)因为AB 为圆O 的一条直径,所以BF FH ⊥…………………………………2分 又DH BD ⊥,所以,,,B D H F 四点共圆…………………………………………………4分 (2)因为AH 与圆B 相切于点F ,由切割线定理得2AF AC AD =⋅,代入解得AD =4………………………………………5分所以1()1,12BD AD AC BF BD =-===…………………………………………………6分 又△AFB ∽△ADH ,所以DH ADBF AF=………………………………………………………7分由此得AD BFDH AF⋅==………………………………………………………8分连接BH ,由(1)知,BH 为△BDF 外接圆的直径,BH =9分故△BDF 的外接圆半径为2………………………………………………………………10分23.(1)12sin13522AOB S ∆=⨯⨯︒=…………………………………………………4分 (2)依题意知圆心到直线AB 的距离为3…………………………………………………5分 当直线AB 斜率不存在时,直线AB 的方程为2x =-,显然,符合题意,此时a =-………………………………………6分当直线AB 存在斜率时,设直线AB 的方程为(2)y k x =+ (7)分则圆心到直线AB 的距离d =………………………………………………………8分3=,无解…………………………………………………………………9分故a =-10分24.(1)当1a =时,13,01()1,02131,2x x f x x x x x ⎧⎪-≤⎪⎪=-<≤⎨⎪⎪->⎪⎩根据图易得()1f x ≤的解集为2{|0}3x x ≤≤(2)令()x ka k =∈R ,由2()f x a ≥对任意x ∈R 恒成立等价于|||21|||k k a +-≥对任意k ∈R 恒成立………6分由(1)知|||21|k k +-的最小值为12,所以1||2a ≤………………………………8分 故实数a 的取值范围为1122a -≤≤……………………………………………………10分 法(2) 易知min ()min (0),()2a f x f f ⎧⎫=⎨⎬⎩⎭,只需2(0)f a ≥且2()2a f a ≥,解得1122a -≤≤.。

江西省南昌市2015届高三一模考试数学(理科)

江西省南昌市2015届高三一模考试数学(理科)

2015 届南昌市第一次模拟考试数学试卷(理科) 参考答案
一、选择题 1 题目 答案
理科一模
2 A
3 A
4 A
5 C
6 C
7 B
8 B
9 B
10 C
11 B
12 A
5
D
二、填空题 13.
3 4
14. 4
15. [
2 10 , ] 3 3
16 ( 1,0) (0,)
三、解答题 17. (Ⅰ)解:等差数列 {a n } , a1 1 , S 3 6 , d 1 ,故 a n n ………3 分
A. 2 或
3
B. 2 或
A.2 个 9. 给出下列命题
B.3 个
C.4 个
D.5 个
5 2 3 4 5 ① 若 (1 x) a 0 a1 x a 2 x a3 x a 4 x a5 x ,则 | a1 | | a2 | | a3 | | a4 | | a5 | 32
12.设函数 f ( x ) ( x a ) 2 (ln x 2 2a) 2 , 其中 ( x 0, a R ) ,存在 x0 使得 f ( x0 ) 实数 a 值是 A.
4 成立,则 5
1 5
B.
2 5
C.
1 2
D. 1
第Ⅱ卷
本卷包括必考题和选考题两个部分。第(13)题—第(21)题为必考题,每个考生都必须作答。 第(22)题—第(24)题为选考题,考生根据要求作答。 二.填空题:本大题共四小题,每小题 5 分。 13. a, b.c, d 四封不同的信随机放入 A, B, C , D 4 个不同的信封里,每个信封至少有一封信。其中 a 没有放入 A 中的概率是 14. 直三棱柱 ABC A1 B1C1 中, BAC 90 0 ,矩形 BCC1 B1 的面积为 2 ,则直三棱柱

江西省南昌市2015届高三第二次模拟考试数学理科试题有答案(扫描版)

江西省南昌市2015届高三第二次模拟考试数学理科试题有答案(扫描版)

2015 年 高 三 测 试 卷数学(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分.13.214.13π 15.1316.2212x y -= 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由点,C B 的坐标可以得到34AOC π∠=,23AOB π∠=,…………………2分 所以cos cos()COB AOC AOB ∠=∠+∠1()2222=-⨯--4=-;……6分 (Ⅱ)因为c =23AOB π∠=,所以3C π=,所以2sin sin a b A B ===,………8分所以22sin 2sin()3a b A A π+=+-2sin()6A π=+,2(0)3A π<<,……………………11分 所以当3A π=时,a b +最大,最大值是12分18.解:(Ⅰ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,所以运动会期间至少两天空气质量优良的概率是2713P =.…………………………………6分(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3;………………………………………………7分(0)P ξ==113,(1)P ξ==613,(2)P ξ==613,(3)P ξ==113,……………………9分所以随机变量ξ的分布列是:随机变量ξ的数学期望是1661012313131313E ξ=⨯+⨯+⨯+⨯=2113.……………………12分 19.(Ⅰ)证明:在梯形ABCD 中,因为2AD DC CB ===,4AB =,4212cos 22CBA -∠==,所以60,ABC ∠=︒由余弦定理求得AC=90ACB ∠=︒即BC⊥又因为平面AEFC ⊥平面ABCD ,所以BC ⊥平面所以BC AG ⊥,………………………………………3分 在矩形AEFC 中,tan 1AE AGE EG ∠==,4AGE π∴∠=tan 1CF CGF GF ∠==,4CGF π∠=,所以2CGF AGE π∠+∠=,即AG CG ⊥,所以AG ⊥平面BCG ;……………………………………………………………………………6分(Ⅱ)FC AC ⊥,平面AEFC ⊥平面ABCD ,所以FC ⊥平面ABCD , 以点C 为原点,,,CA CB CF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则)(0,0,0),(0,2,0),1,0)C A B D-,G ,…………………………8分平面BCG 的法向量(3,0,GA =,设平面GCD 的法向量(,,)n x y z =,则0n CG n CD ⎧⋅=⎪⎨⋅=⎪⎩,从而00x z y +=⎧⎪-=,令1x =则(1,3,1)n =-,…………………………………………………………………………10分 所以cos ,n GA <>==,…………………………………………………11分 而二面角D —GCB 为钝角, 故所求二面角的余弦值为.………………………………………………………………12分 20.解:(Ⅰ)当l 垂直于OD 时||AB 最小,因为||OD =2r ==,…………………………………2分因为圆1C 222:(0)x y r r +=>的一条直径是椭圆2C 的长轴,所以2a =,又点D 在椭圆22222:1(0)x y C a b a b +=>>上,所以291414b b+=⇒=, 所以圆1C 的方程为224x y +=,椭圆2C 的方程为22143x y +=;………………………5分 (Ⅱ)椭圆2C 的右焦点F 的坐标是(1,0),当直线m 垂直于x 轴时,||PQ = ||4MN =,四边形PMQN 的面积S =当直线m 垂直于y 轴时,||4PQ =,||3MN =,四边形PMQN 的面积6S =,…………6分……………………10分当直线m 不垂直于坐标轴时,设n 的方程为(1)y k x =-(0)k ≠,此时直线m 的方程为1(1)y x k=--, 圆心O 到直线m的距离为:d =,所以||PQ ==,…………8分 将直线n 的方程代入椭圆2C 的方程得到:()22224384120k x k x k +-+-=,||MN =所以:四边形PMQN 的面积1||||2S PQ MN =⋅===∈,综上:四边形PMQN的面积的取值范围是.…………………………………………12分21.解:(Ⅰ)21221'()22x ax f x x a x x-+=+-=(0)x >,记2()221g x x ax =-+………1分 (一)当0a ≤时,因为0x >,所以()10g x >>,函数()f x 在(0,)+∞上单调递增;……2分(二)当0a <≤时,因为24(2)0a =-≤△,所以()0g x ≥,函数()f x 在(0,)+∞上单调递增;…………………………………………………………………………………………………3分(三)当a >0()0x g x >⎧⎨>,解得x∈,所以函数()f x 在区间上单调递减,在区间(0,),()2a a +∞上单调递增.…………………………5分(Ⅱ)由(1)知道当(1a ∈时,函数()f x 在区间(0,1]上单调递增, 所以(0,1]x ∈时,函数()f x的最大值是(1)22f a =-,对任意的a ∈,都存在0(0,1]x ∈使得不等式20()ln()f x a m a a +>-成立,等价于对任意的(1a ∈,不等式222ln ()a a m a a -+>-都成立,……………………………………6分即对任意的(1a ∈,不等式2ln (2)20a ma m a +-++>都成立, 记2()ln (2)2h a ama m a =+-++,则(1)0h =,1(21)(1)'()2(2)a ma h a ma m a a --=+-+=,因为(1a ∈,所以210a a->, 当1m ≥时,对任意(1a ∈,10ma ->,所以'()0h a >,即()h a 在区间上单调递增,()(1)0h a h >=成立;…………………………………………………………………………9分 当1m <时,存在0(1a ∈使得当0(1,)a a ∈时,10ma -<,'()0h a <,()h a 单调递减,从而()(1)0h a h <=,所以(1a ∈时,()0h a >不能恒成立.综上:实数m 的取值范围是[1,)+∞.……………………………………………………………12分 22.解:AF 是圆的切线,且18,15AF BC ==,∴由切割线定理得到2218(15)12AF FB FC FB FB FB =⋅⇒=⋅+⇒=,…………………3分 ,AB AD ABD ADB =∴∠=∠,则,//FAB ABD AF BD ∠=∠∴,…………………………………………………………………6分 又//AD FC ,∴四边形ADBF 为平行四边形.12,,18AD FB ACF ADB F ACAF ==∠=∠=∠∴==,//,18AE ADAD FC AE BC∴=-,解得8AE =。

2015年江西省南昌市高考数学二模试卷(理科)

2015年江西省南昌市高考数学二模试卷(理科)

2015年江西省南昌市高考数学二模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.i为虚数单位,=()A.3+4iB.4+3iC.-iD.+i【答案】D【解析】解:===.故选:D.利用复数的运算法则即可得出.本题考查了复数的运算法则,属于基础题.2.已知集合A={x|x2-2x>0},B={x|log2(x+1)<1},则A∩B等于()A.(-∞,0)B.(2,+∞)C.(0,1)D.(-1,0)【答案】D【解析】解:由A中不等式变形得:x(x-2)>0,解得:x<0或x>2,即A=(-∞,0)∪(2,+∞),由B中不等式变形得:log2(x+1)<1=log22,即0<x+1<2,解得:-1<x<1,即B=(-1,1),则A∩B=(-1,0),故选:D.求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.下列结论错误的是()A.命题:“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”B.“a>b”是“ac2>bc2”的充分不必要条件C.命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”D.若“p∨q”为假命题,则p,q均为假命题【答案】B【解析】解:A.命题:“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”,正确;B.“a>b”是“ac2>bc2”必要不充分条件,不正确;C.“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”,正确;D.若“p∨q”为假命题,则p,q均为假命题,正确.故选:B.A.利用逆否命题的定义即可判断出真假;B.利用不等式的性质、充要条件定义,即可判断出真假;C.利用命题的否定定义,即可判断出真假;D.利用复合命题真假的判定方法,即可判断出真假.本题考查了简易逻辑的判定方法、不等式的性质,考查了推理能力,属于基础题.4.将函数y=sin(2x-)的图象向左移动个单位,得到函数y=f(x)的图象,则函数y=f (x)的一个单调递增区间是()A.[-,]B.[-,0]C.[-,]D.[,]【答案】C【解析】解:将函数y=sin(2x-)的图象向左移动个单位,得到函数y=f(x)=sin(2x+-)=sin(2x+)的图象.故由2k≤2x+≤2kπ,k∈Z可解得函数y=f(x)的单调递增区间是:k≤x≤kπ,k∈Z.故当k=0时,x∈[-,].故选:C.根据函数y=sin(2x-)的图象向左平移个单位,得到函数y=f(x)的图象,确定函数f(x)的解析式,从而可得函数f(x)的一个单调递增区间.本题考查图象的变换,考查三角函数的性质,解题的关键是熟悉变换的方法,确定函数的解析式,属于基本知识的考查.5.若实数x,y满足条件,则z=x-3y的最小值为()A.-5B.-3C.1D.4【答案】A【解析】解:作出约束条件所对应的可行域(如图),变形目标函数可得y=x-z,平移直线y=x可知,当直线经过点A(1,2)时,截距-z取最大值,z取最小值,代值计算可得z的最小值为z=1-3×2=-5故选:A作出可行域,变形目标函数,平移直线y=x可得当直线经过点A(1,2)时,截距-z取最大值,z取最小值,代值计算可得.本题考查简单线性规划,准确作图是解决问题的关键,属中档题.6.已知{a n}是等差数列,a3=5,a9=17,数列{b n}的前n项和S n=3n,若a m=b1+b4,则正整数m等于()A.29B.28C.27D.26【答案】A【解析】解:假设a n=a0+(n-1)d,可知a9-a3=6d=12,则d=2,而a3=5,则a0=1.所以b1=S1=3,b4=S4-S3=54,则b1+b4=57,因此a m=a0+(m-1)d=1+2(m-1)=57=b1+b4,从而可得m=29.故选:A.利用{a n}是等差数列,a3=5,a9=17,求出a0=1,d=2,求出b1+b4=57,即可求出m.本题考查等差数列的通项,考查学生的计算能力,比较基础.7.下列程序图中,输出的B是()A.-B.-C.0D.【答案】C【解析】解:模拟执行程序框图,可得A=,i=1A=,B=-,i=2,满足条件i≤2015,A=π,B=0,i=3,满足条件i≤2015,A=,B=,i=4,满足条件i≤2015,A=,B=-,i=5,满足条件i≤2015,A=2π,B=0,i=6,满足条件i≤2015,…观察规律可知,B的取值以3为周期,由2015=3×671+2,故有B=-,i=2015,满足条件i≤2015,B=0,i=2016,不满足条件i≤2015,退出循环,输出B的值为0.故选:C.模拟执行程序框图,依次写出每次循环得到的A,B,i的值,观察规律可知B的取值以3为周期,故当i=2015时,B=0,当i=2016时不满足条件i≤2015,退出循环,输出B的值为0.本题主要考查了循环结构的程序框图,依次写出每次循环得到的A,B,i的值,观察规律可知B的取值以3为周期是解题的关键,属于基本知识的考查.8.安排A、B、C、D、E、F六名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A不安排照顾老人甲,义工B不安排照顾老人乙,安排方法有()种.A.30B.40C.42D.48【答案】C【解析】解:当A照顾老人乙时,共有种不同方法;当A不照顾老人乙时,共有种不同方法.∴安排方法有24+18=42种.故选:C.根据义工A,B有条件限制,可分A照顾老人乙和A不照顾老人乙两类分析,A照顾老人乙时,再从除B外的4人中选1人,则甲和丙为;A不照顾老人乙时,老人乙需从除A、B外的4人中选2人,甲从除A外的剩余3人中选2人.本题考查有条件限制排列组合问题,关键是正确分类,是基础的计算题.9.已知函数f(x)=,,>,函数g(x)是周期为2的偶函数,且当x∈[0,1]时,g(x)=2x-1,则函数y=f(x)-g(x)的零点个数是()A.5B.6C.7D.8【答案】B【解析】解:函数y=f(x)-g(x)的零点就是函数y=f(x)与y=g(x)图象的交点.在同一坐标系中画出这两个函数的图象:由图可得这两个函数的交点为A,O,B,C,D,E,共6个点.所以原函数共有6个零点.故选:B.函数y=f(x)-g(x)的零点就是函数y=f(x)与y=g(x)图象的交点,因此分别作出这两个函数的图象,然后据图判断即可.本题考查了利用数形结合的思想解决函数零点个数的判断问题,同时考查了函数的零点,方程的根以及函数图象的交点之间关系的理解.10.某几何体的三视图如图所示,则该几何体的体积是()A.2B.C.4D.【答案】B【解析】解:由三视图知:几何体是四棱锥,如图所示,ABCD的面积为2×=2,△SAD中,SD=AD=,SA=2,∴cos∠SDA==,∴sin∠SDA=,∴S△SAD==2设S到平面ABCD的距离为h,则=2,∴h=所以几何体的体积是=,故选:B.由三视图知:几何体是四棱锥,如图所示,求出相应数据即可求出几何体的体积.本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是关键.11.已知函数f(x)=+sinx(e为自然对数的底),则函数y=f(x)在区间[-,]上的大致图象是()A. B. C. D.【答案】A【解析】解:由函数f(x)=+sinx(e为自然对数的底),x∈[-,],可得y′=+cosx≥+=≥=0,而上述式子中的两个等号不能同时成立,故有y′>0,故函数y在区间[-,]上单调递增,故选:A.求得函数的导数y′的解析式,再利用基本不等式求得在区间[-,]上,y′>0,可得函数y在区间[-,]上单调递增,结合所给的选项,得出结论.本题主要考查导数公式,利用导数研究函数的单调性,基本不等式的应用,函数的图象特征,属于中档题.12.已知数列{a n}满足a1=1,|a n-a n-1|=(n∈N,n≥2),且{a2n-1}是递减数列,{a2n}是递增数列,则12a10=()A.6-B.6-C.11-D.11-【答案】D【解析】解:由|a n-a n-1|=,则|a2n-a2n-1|=,|a2n+2-a2n+1|=,∵数列{a2n-1}是递减数列,且{a2n}是递增数列,∴a2n+1-a2n-1<0,且a2n+2-a2n>0,则-(a2n+2-a2n)<0,两不等式相加得a2n+1-a2n-1-(a2n+2-a2n)<0,即a2n-a2n-1<a2n+2-a2n+1,又∵|a2n-a2n-1|=>|a2n+2-a2n+1|=,∴a2n-a2n-1<0,即,同理可得:a2n+3-a2n+2<a2n+1-a2n,又|a2n+3-a2n+2|<|a2n+1-a2n|,则a2n+1-a2n=,当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,…,,,这2m-1个等式相加可得,a2m-a1=-()+(),∴=.∴12a10=.故选:D.根据数列的单调性和|a n-a n-1|=,由不等式的可加性,求出a2n-a2n-1=和a2n+1-a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的偶数项对应的通项公式,则12a10可求.本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.二、填空题(本大题共4小题,共20.0分)13.已知向量=(1,),向量,的夹角是,•=2,则||等于______ .【答案】2【解析】解:∵||=又∵即:∴故答案为:2由向量的坐标可求的向量的模再由向量数量积的定义即可得出答案.本题考察了向量的坐标以及向量数量积的定义,求出的模是关键,属于基础题.14.若在圆C :x 2+y 2=4内任取一点P (x ,y ),则满足 < > 的概率= ______ .【答案】【解析】解:满足< >的区域如图面积为=(x -x 3)| =, 由几何概型公式可得在圆C :x 2+y 2=4内任取一点P (x ,y ),则满足< >的概率为 ; 故答案为:.分别求出圆的面积以及满足不等式组的区域面积,利用几何概型公式解答.本题考查了几何概型的公式运用;关键是利用定积分求出区域的面积.利用几何概型公式解答.15.观察下面数表:设1027是该表第m 行的第n 个数,则m +n 等于 ______ . 【答案】 13【解析】解:根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数, 第一行1个数,第二行2=21个数,且第1个数是3=22-1第三行4=22个数,且第1个数是7=23-1第四行8=23个数,且第1个数是15=24-1…第10行有29个数,且第1个数是210-1=1023,第2个数为1025,第三个数为1027;所以1027是第10行的第3个数,所以m =10,n =3,所以m +n =13; 故答案为:13.根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数,第一行1个数,第二行2个数,第三行4个数,第四行8个数,…第10行有29个数,分别求出左起第1个数的规律,按照此规律,问题解决 本题主要考查归纳推理的问题,关键是根据数表,认真分析,找到规律,然后进行计算,即可解决问题.16.过原点的直线l与双曲线C:-=1(a>0,b>0)的左右两支分别相交于A,B两点,F(-,0)是双曲线C的左焦点,若|FA|+|FB|=4,=0.则双曲线C的方程= ______ .【答案】【解析】解:设|FB|=x,则|FA|=4-x,∵过原点的直线l与双曲线C:-=1(a>0,b>0)的左右两支分别相交于A,B两点,F(-,0)是双曲线C的左焦点,∴|AB|=2,∵=0,∴x2+(4-x)2=12,∴x2-4x+2=0,∴x=2±,∴|FB|=2+,|FA|=2-,∴2a=|FB|-|FA|=2,∴a=,∴b=1,∴双曲线C的方程为.故答案为:.设|FB|=x,则|FA|=4-x,利用勾股定理,建立方程,求出|FB|=2+,|FA|=2-,可得a,b,即可得出结论.本题考查双曲线方程与性质,考查学生的计算能力,确定几何量是关键.三、解答题(本大题共8小题,共94.0分)17.已知△ABC是圆O(O为坐标原点)的内接三角形,其中A(1,0),B(-,-),角A,B,C的对边分别为A,B,C.(Ⅰ)若点C的坐标是(-,),求cos∠COB;(Ⅱ)若点C在优弧上运动,求a+b的最大值.【答案】解:(Ⅰ)由点C,B的坐标可以得到∠AOC=,∠AOB=,…(2分)所以cos∠COB=cos(∠AOC+∠AOB)=-×=-;…(6分)(Ⅱ)因为c=,∠AOB=,所以C=,所以,…(8分)所以a+b=2sin A+2sin(-A)=2sin(A+),(0<A<),…(11分)所以当A=时,a+b最大,最大值是2.…(12分)【解析】(Ⅰ)由点C,B的坐标可以得到∠AOC,∠AOB,即可由cos∠COB=cos(∠AOC+∠AOB)得解.(Ⅱ)由正弦定理可得a+b=2sin A+2sin(-A)=2sin(A+),由题意求得角C可得A的范围,从而可求a+b的最大值.本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于基本知识的考查.18.如图是某市11月1日至15日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200,表示空气质量重度污染,该市某校准备举行为期3天(连续3天)的运动会,在11月1日至11月13日任选一天开幕(Ⅰ)求运动会期间至少两天空气质量优良的概率;(Ⅱ)记运动会期间,空气质量优良的天数为ξ,求随机变量ξ的分布列和数学期望【答案】解:(Ⅰ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,所以运动会期间至少两天空气质量优良的概率是P2=.…(6分)(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3;…(7分)P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,…(9分).所以随机变量ξ的分布列是:随机变量ξ的数学期望是E ξ=0×+1×+2×+3×=.…(12分) 【解析】(Ⅰ)说明该校运动会开幕日共有13种选择,列出运动会期间至少两天空气质量优良的数目,然后求解概率.(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3,求出概率,得到ξ的分布列,然后求解期望.本题考查古典概型的概率的求法,离散型随机变量的分布列以及期望的求法,考查计算能力.19.如图,梯形ABCD 中,DC ∥AB ,AD=DC=CB=2,AB=4,矩形AEFC 中,AE= ,平面AEFC ⊥平面ABCD ,点G 是线段EF 的中点(Ⅰ)求证:AG ⊥平面BCG(Ⅱ)求二面角D-GC-B 的余弦值.【答案】(Ⅰ)证明:在梯形ABCD 中,因为AD=DC=CB=2,AB=4,所以∠ABC=60°, 由余弦定理求得AC=2 , 从而∠ACB=90°, 即BC ⊥AC ,又因为平面AEFC ⊥平面ABCD , 所以BC ⊥平面AEFC , 所以BC ⊥AG ,在矩形AEFC 中,tan ∠AGE=, 则∠AGE=,tan ∠CGF=,则∠CGF=, 所以∠CGF+∠AGE=,即AG ⊥CG ,所以AG ⊥平面BCG ;(Ⅱ)FC ⊥AC ,平面AEFC ⊥平面ABCD , 所以FC ⊥平面ABCD ,以点C 为原点,CA ,CB ,CF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则C (0,0,0),A (2 ,0,0),B (0,2,0),D ( ,-1,0),G ( ,0, ),平面BCG 的法向量 =( ,0,- ), 设平面GCD 的法向量 =(x ,y ,z ),则,从而,令x=1,则y=,z=-1,则=(1,,-1),所以cos<,>==,而二面角D-GCB为钝角,故所求二面角的余弦值为-.【解析】(Ⅰ)根据线面垂直的判定定理证明AG⊥CG,即可证明AG⊥平面BCG(Ⅱ)建立空间直角坐标系,利用向量法即可求二面角D-GC-B的余弦值.本题主要考查空间线面垂直的判定,以及二面角的求解,利用向量法是解决二面角的常用方法.20.已知圆C1:x2+y2=r2(r>0)的一条直径是椭圆C2:+=1(a>b>0)的长轴,过椭圆C2上一点D(1,)的动直线l与圆C1相交于点A、B,弦AB长的最小值是(1)圆C1和椭圆C2的方程;(2)椭圆C2的右焦点为F,过点F作两条互相垂直的直线m、n,设直线m交圆C1于点P、Q,直线n与椭圆C2于点M、N,求四边形PMQN面积的取值范围.【答案】解:(1)由题意可得a=r,点D在圆内,当AB⊥C1D时,直线AB被圆截得的弦长最短,且为2=2=,解得r=2,即a=2,点D代入椭圆方程,有+=1,解得b=,则有圆C1的方程为x2+y2=4,椭圆C2的方程为+=1;(2)设过点F(1,0)作两条互相垂直的直线m:y=k(x-1),直线n:y=-(x-1),圆心C1到直线m的距离为d=,则|PQ|=2=2,由y=-(x-1)和椭圆+=1,可得(3k2+4)y2-6ky-9=0,判别式显然大于0,y1+y2=,y1y2=-,则|MN|=•=,则有四边形PMQN面积为S=|PQ|•|MN|=•2•=12•=12•,由于k2>0,即有1+k2>1,S>12×=6,且S<12×=4,则四边形PMQN面积的取值范围是(6,4).【解析】(1)由题意可得a=r,点D在圆内,当AB⊥C1D时,直线AB被圆截得的弦长最短,由弦长公式计算即可得到r=2,再将D的坐标代入椭圆方程,即可求得b,进而得到圆和椭圆的方程;(2)设出直线m,n的方程,运用圆和直线相交的弦长公式和直线和椭圆方程联立,运用韦达定理和弦长公式,分别求得|PQ|,|MN|,再由四边形的面积公式,化简整理计算即可得到取值范围.本题考查直线和圆、椭圆的位置关系,同时考查直线被圆、椭圆截得弦长的问题,运用圆的垂径定理和弦长公式,以及韦达定理是解题的关键.21.已知函数f(x)=lnx+x2-2ax+1(a为常数)(1)讨论函数f(x)的单调性;(2)若对任意的a∈(1,),都存在x0∈(0,1]使得不等式f(x0)+lna>m(a-a2)成立,求实数m的取值范围.【答案】解:函数f(x)=lnx+x2-2ax+1(a为常数)(1)f′(x)=+2x-2a=,x>0,①当a≤0时,f′(x)>0成立,若f′(x)≥0,则2x2-2ax+10≥0,△=4a2-8,当-时,f′(x)≥0恒成立,所以当a时,f(x)在(0,+∞)上单调递增,②当a>时,∵2x2-2ax+10≥0,x>或0<<2x2-2ax+10<0,<<,∴f(x)在(0,),()上单调递增,在(,)单调递减,(2)∵a∈(1,),+2x-2a>0,∴f′(x)>0,f(x)在(0,1]单调递增,f(x)max=f(1)=2-2a,存在x0∈(0,1]使得不等式f(x0)+lna>m(a-a2)成立,即2-2a+lna>m(a-a2),∵任意的a∈(1,),∴a-a2<0,即m>恒成立,令g(a)=,∵m>恒成立最后化简为g′(a)==∵任意的a∈(1,),>0,∴g(a)=,a∈(1,)是增函数.∴g(x)<g()=+=∴实数m的取值范围m≥【解析】(1)求解f′(x)=+2x-2a=,x>0,判断2x2-2ax+10的符号,分类得出①当a≤0时,f′(x)>0成立,当-时,f′(x)≥0恒成立,即可得出当a时,f(x)在(0,+∞)上单调递增,②当a>时,求解不等式2x2-2ax+10≥0,2x2-2ax+10<0,得出f(x)在(0,),()上单调递增,在(,)单调递减,(2)f(x)max=f(1)=2-2a,存在x0∈(0,1]使得不等式f(x0)+lna>m(a-a2)成立,即2-2a+lna>m(a-a2),m>恒成立,构造函数g(a)=,利用导数求解即可转化为最值即可判断.利用导数工具讨论函数的单调性,是求函数的值域和最值的常用方法,同学们在做题的同时,可以根据单调性,结合函数的草图来加深对题意的理解.22.在圆内接四边形ABCD中,AC与BD交于点E,过点A作圆的切线交CB的延长线于点F.若AB=AD,AF=18,BC=15,求AE的长.【答案】解:∵AF是圆的切线,且AF=18,BC=15,∴由切割线定理可得AF2=FB•FC,∴182=FB(FB+15),∴FB=12,∵AB=AD,∴∠ABD=∠ADB,∵AF是圆的切线,∴∠FAB=∠ADB,∴∠FAB=∠ABD,∴AF∥BD,∵AD∥FC,∴四边形ADBF为平行四边形,∴AD=FB=12,∵∠ACF=∠ADB=∠F,∴AC=AF=18,∵,∴,∴AE=8.故答案为:8.【解析】由切割线定理,求出FB,再证明四边形ADBF为平行四边形,求出AD=AB,利用,可求AE的长.本题考查与圆有关的比例线段,考查切割线定理,考查学生的计算能力,属于中档题.23.以平面直角坐标系的原点为极点,以x轴的正半轴为极轴建立极坐标系,已知圆O 的参数方程是和直线l的极坐标方程是ρsin(θ-)=.(Ⅰ)求圆O和直线l的直角坐标方程;(Ⅱ)求直线l与圆O公共点的一个极坐标.【答案】解:(Ⅰ)圆O的参数方程可以化为:,所以圆O的直角坐标方程是:.转化为:x2+y2-x-y=0直线l的极坐标方程可以化为:,所以直线l的直角坐标方程为:x-y+1=0;(Ⅱ)由,解得:,故直线l与圆O公共点为(0,1),该点的一个极坐标为(1,).【解析】(Ⅰ)首先把圆的参数方程转化为直角坐标方程,进一步把标准形式转化为一般式,再把直线的极坐标形式转化为直角坐标的形式.(Ⅱ)利用两个方程建立方程组,解出交点坐标,最后把直角坐标形式转化为极坐标的形式.本题考查的知识要点:极坐标方程与直角坐标方程的互化,直线与圆的位置关系,解方程组的应用,点的直角坐标和极坐标的互化,主要考查学生的应用能力.24.设函数f(x)=|2x+1|-|x-3|.(Ⅰ)解不等式f(x)>0;(Ⅱ)已知关于x的不等式a-3|x-3|<f(x)恒成立,求实数a的取值范围.【答案】解:(Ⅰ)不等式f(x)>0等价于|2x+1|>|x-3|,两边平方得:4x2+4x+1>x2-6x+9,即3x2-10x-8>0,解得x<-或x>4,所以原不等式的解集是:(-∞,-)∪(4,+∞);(Ⅱ)不等式a-3|x-3|<f(x)等价于a<|2x+1|+2|x-3|,因为|2x+1|+2|x-3|≥|(2x+1)-2(x-3)|=7,即有a<7.所以a的取值范围是(-∞,7).【解析】(Ⅰ)运用两边平方法,去绝对值,再由二次不等式的解法,即可得到所求解集;(Ⅱ)运用参数分离和不等式恒成立思想方法,由绝对值不等式的性质,求得右边的最大值,即可得到所求a的范围.本题考查绝对值不等式的解法,主要考查绝对值不等式的性质和平方法解绝对值的方法,考查运算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

保密★启用前2015年江西省高考适应性测试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2. 回答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答且卡一并交回.第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|05}A x x =<<,2{|230}B x x x =-->,则AB =R ð A . (0,3) B . (3,5)C . (1,0)-D .(0,3]2.复数1i (0)z a a a a=+∈≠R 且对应的点在复平面内位于A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 3.命题“2,x x x ∀∈≠R ”的否定是A .2,x x x ∀∉≠R B .2,x x x ∀∈=R C . 2,x x x ∃∉≠R D .2,x x x ∃∈=R 4.已知函数2()f x x -=,3()tan g x x x =+,那么 A. ()()f x g x ⋅是奇函数 B. ()()f x g x ⋅是偶函数 C. ()()f x g x +是奇函数 D. ()()f x g x +是偶函数 5.已知等比数列{}n a 中,2109a a =,则57a a +A. 有最小值6B. 有最大值6C. 有最小值6或最大值6-D.有最大值6- 6.下列程序框图中,则输出的A 值是A .128B .129C .131D .1347.已知函数()sin()f x x ωϕ=+(0,2πωϕ><)的部分图像如图所示,则()y f x = 的图象可由cos 2y x = 的图象 A .向右平移3π个长度单位 B .向左平移3π个长度单位 C .向右平移6π个长度单位 D .向左平移6π个长度单位 8.已知抛物线:C 24y x =,那么过抛物线C 的焦点,长度为不超过 2015的整数的弦条数是A . 4024B . 4023C .2012D .20159.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。

现从该小组中选出3位同学分别到,,A B C 三地进行社会调查,若选出的同学中男女均有,则不同安排方法有 A. 70种 B. 140种 C. 840种 D. 420种10.已知函数1()ln 2xf x x =-(),若实数x 0满足01188()log sin log cos88f x ππ>+,则0x 的取值范围是A .(,1)-∞B .(0,1)C .(1,)+∞D .1(,)2+∞11.已知函数22,20()1ln,021x x x f x x x ⎧-+-≤≤⎪=⎨<≤⎪+⎩,若()|()|g x f x ax a =--的图像与x 轴有3个不同的交点,则实数a 的取值范围是A. 1(0,)eB. 1(0,)2eC. ln 31[,)3e D. ln 31[,)32e12.某几何体三视图如图所示,则该几何体的体积为 A .23 B .1 C .43 D .32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22-第24题为选考题,考生根据要求作答.二.填空题:本大题共4小题,每小题5分.13. 41(2)x x-+展开式中的常数项为 .14. 已知向量(2,1)=a ,(1,3)=-b ,若存在向量c ,使得6⋅=a c ,4⋅=b c ,则c = .15.若变量y x ,满足约束条件1,,3215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则42x yw =⋅的最大值是 .2正视图侧视图俯视图FE DC B AABCD A 1B 1C 116.对椭圆有结论一:椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,过点2(,0)a P c的直线l 交椭圆于,M N 两点,点M 关于x 轴的对称点为'M ,则直线'M N 过点F 。

类比该结论,对双曲线有结论二,根据结论二知道:双曲线22':13x C y -=的右焦点为F ,过点3(,0)2P 的直线与双曲线'C 右支有两交点,M N ,若点N的坐标是,则在直线NF 与双曲线的另一个交点坐标是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且1232,8,24a a a ===,1{2}n n a a +-为等比数列.(Ⅰ)求证:{}2n n a 是等差数列;(Ⅱ)求1nS 的取值范围.18. (本小题满分12分)某校进行教工趣味运动会,其中一项目是投篮比赛,规则是:每位教师投二分球四次,投中三个可以再投三分球一次,投中四个可以再投三分球三次,投中球数小于3则没有机会投三分球,所有参加的老师都可以获得一个小奖品,每投中一个三分球可以再获得一个小奖品。

某位教师二分球的命中率是12,三分球的命中率是13. (Ⅰ)求该教师恰好投中四个球的概率; (Ⅱ)记该教师获得奖品数为ξ,求随机变量ξ的分布列和数学期望. 19.(本小题满分12分)如图,已知在直三棱柱111ABC A B C -中, 12AB AA ==,3ACB π∠=,点D 是线段BC 的中点. (Ⅰ)求证:1AC ∥平面1AB D ;(Ⅱ)当三棱柱111ABC A B C -的体积最大时,求直线1A D 与平面1AB D所成角θ的正弦值.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别是12(1,0),(1,0)F F -,直线l 的方程是4x =,点P 是椭圆C 上动点(不在x 轴上),过点2F 作直线2PF 的垂线交直线l 于点Q ,当1PF 垂直x 轴时,点Q 的坐标是(4,4).(Ⅰ)求椭圆C 的方程; (Ⅱ)判断点P 运动时,直线PQ 与椭圆C 的公共点个数,并证明你的结论.21.(本小题满分12分) 已知函数ln ()a x bf x x+=(其中20a a ≤≠且),函数()f x 在点(1,(1))f 处的切线过点(3,0). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 与函数2()2g x a x x=+--的图像在(0,2]有且只有一个交点,求实数a 的取值范围.请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分, 做答时请写清题号.22.(本小题满分10分)选修41-:几何证明选讲如图,圆内接四边形ABCD 的边BC 与AD 的延长线交于点E ,点F 在BA 的延长线上.(Ⅰ)若21,31==EA ED EB EC ,求ABDC的值; (Ⅱ)若CD EF //,证明:FB FA EF ⋅=2.23.(本小题满分10分)选修44-;坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知某圆的极坐标方程为:24cos 20ρρθ-+=.(Ⅰ)将极坐标方程化为普通方程;(Ⅱ)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.24.(本小题满分10分)选修45-:不等式选讲 已知函数()||f x x =,()|4|g x x m =--+ (Ⅰ)解关于x 的不等式[()]20g f x m +->;(Ⅱ)若函数()f x 的图像恒在函数()g x 图像的上方,求实数m 的取值范围.B 1OC 1B 1A 1D CBA2015年江西省高考适应性测试参考答案理科数学一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

二.填空题:本大题共4小题,每小题5分。

13. 70 14. (2,2) 15.512 16.9(,)55-三、解答题:解答应写出文字说明,证明过程或演算步骤。

17.解:(Ⅰ) 2124a a -=,3228a a -=,11242n n n a a -+∴-=⨯11122n n n n a a ++∴-=,{}2nna 是以1为首项,公差1d =的等差数列 …………6分 (Ⅱ)2n n a n =⨯, 231222322n n S n =⨯+⨯+⨯++⨯……..①234121222322n n S n +=⨯+⨯+⨯++⨯……..②, 由①-②得 1(1)22n n S n +=-+………8分当1n ≥时, 11(1)20n n n S S n ++-=+>,{}n S 从第1项开始递增, 11(0,]2n S ∴∈…………12分 18.解:(Ⅰ)该位教师投中四个球可以分为两个互斥事件,投中三个二分球一个三分球、投中四个二分球,所以概率是344341112()()()2323P C =⨯⨯+⨯=11108; ……………4分(Ⅱ)ξ可能取值有1,2,3,4,344411(1)1()()22P C ξ==-⨯-344341212()()()2323C +⨯⨯+⨯=377432,344124311112(2)()()()23233P C C ξ==⨯⨯+⨯⨯⨯19=,4223112(3)()()233P C ξ==⨯⨯⨯172=,4311(4)()()23P ξ==⨯1432=, ……………9分所以ξ的分布列是数学期望是432972432E ξ=+++=5348。

……………12分19.(Ⅰ)证明:记11ABAB O =,OD 为三角形1A BC 的中位线,1AC ∥OD ,⊆OD 平面1AB D , ⊄C A 1平面1AB D , 所以1AC ∥平面1AB D ………4分 (Ⅱ)当三棱柱111ABC A BC -的底面积最大时,体积最大,22242cos32AB AC BC AC BC AC BC AC BC AC BCπ==+-⋅⋅≥⋅-⋅=⋅当AC BC =,三角形ABC 为正三角形时取最大值………7分设点1A 到平面1AB D 的距离为d ,由1111A AB D C AB D B ACD V V V ---==得 111136AB D S d AD DB d d ⋅=⋅=⇒=△ ………10分 1sin 35d A D θ===………12分(另解)(Ⅱ)依题意,如图以D 为原点,直线DA ,DC 分别为x,y 系,则),2,0,3(),2,1,0(),0,1,0(),0,0,3(11A B B A --设面D AB 1的法向量为(,,)n x y z =,⎪⎩⎪⎨⎧=+-=⋅==⋅02031z y DB n x DA n 设1,2==z y ,)1,2,0(=∴, ………10分 )2,0,3(1=∴DA35352||sin 1===∴θ ………12分20.解:(Ⅰ)由已知得1c =,当1PF x ⊥轴时,点2(1,)b P a-, 由220F P F Q ⋅=得2(2)(41)40b a--+=222302320b a a a ⇒-=⇒--=, 解得2a =,b =C 的方程是22143x y +=。

相关文档
最新文档