2019-2020学年江西师大附中高一(上)10月月考数学试卷

合集下载

江西师范大学附属中学2018-2019学年高一下期期中考试数学试题(附解析)

 江西师范大学附属中学2018-2019学年高一下期期中考试数学试题(附解析)
(1)根据频率分布直方图可求得分数在 之间的频率,由茎叶图可得分数在 之间的频数,从而可得全班人数;(2)由茎叶图可得分数在 之间的频数,利用频数除以组距可得矩形的高.
【详解】(1)根据频率分布直方图可得分数在 的频率为 ,
由茎叶图知分数在 之间的成绩为56与58,即频数为2,
所以全班人数 (人);
A.61.395尺B.61.905尺C.72.705尺D.73.995尺
【答案】A
【解析】
【分析】
先判断竹节长成等差数列,竹节圈长成等差数列,然后利用等差数列求和公式求解即可.
【详解】每节竹节间的长相差 尺,
设从地面往长,每节竹长为 ,
是以 为首项,以 为公差的等差数列,
由题意知竹节圈长,后一圏比前一圏细1分3厘,即 尺,
【解析】
【分析】
根据容量为 采用系统抽样法和分层抽样法,都不用剔除个体可得 为6的倍数,再利用样本容量为 时,采用系统抽样法需要剔除1个个体,验证排除即可.
【详解】因为采用系统抽样法和分层抽样法,不用剔除个体,
所以 为 的正约数,
又因为 ,
所以 为6的倍数,因此 ,
因为当样本容量为 时,若采用系统抽样法,则需要剔除1个个体,
7.将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )
A.甲队平均得分高于乙队的平均得分中乙
B.甲队得分的中位数大于乙队得分的中位数
C.甲队得分的方差大于乙队得分的方差
D.甲乙两队得分 极差相等
【答案】C
【解析】
【分析】
由茎叶图分别计算甲、乙的平均数,中位数,方差及极差可得答案.
③ , ,即 ,
则 , 最大角为锐角,即 是锐角三角形,③正确;

江西师大附中2020-2021学年高二上学期月考数学(理)试题

江西师大附中2020-2021学年高二上学期月考数学(理)试题
(注:如果 三个顶点坐标分别为 , , ,则 重心的坐标是 .)
21.一般地,对于直线 及直线 外一点 ,我们有点 到直线 的距离公式为: ”
(1)证明上述点 到直线 的距离公式
(2)设直线 ,试用上述公式求坐标原点 到直线 距离的最大值及取最大值时 的值.
22.蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆 的方程为 ,直线 与圆 交于 , ,直线 与圆 交于 , .原点 在圆 内.
4.A
【分析】
由已知条件可知圆心到 轴距离为 ,运用勾股定理和弦长公式求出圆的半径,进而可得圆的方程.
【详解】
已知圆 的圆心坐标为 ,则圆心到 轴距离为 ,
又因为 轴被 截得的弦长为 ,则运用勾股定理可得 ,
所以圆 的方程为 .
故选: .
【点睛】
本题考查了求圆的标准方程,求解过程中已知弦长求半径,可由弦长公式 逆用,结合勾股定理求出半径,进而得到圆的方程,本题较为基础.
3.直线 的倾斜角不可能为()
A. B. C. D.
4.已知圆 的圆心坐标为 ,且 轴被 截得的弦长为 ,则圆 的方程为()
A. B.
C. D.
5.已知圆 : ,点 在圆 内,则直线 : 与圆 的位置关系是()
A.相交B.相离C.相切D.不确定
6.若点 在圆 外,则实数 的取值范围是()
A. B.
C. D.
19.设 , 满足约束条件 .
(1)求目标函数 的最大值;
(2)若目标函数 的最大值为6,求 的最小值.
20.数学家欧拉在1765年提出:三角形的外心、重心位于同一直线上,这条直线被后人称之为三角形的欧拉线,若 的顶点 , ,且 的欧拉线的方程为 .

(完整版)江西师大附中2019-2020学年高一10月考数学试卷

(完整版)江西师大附中2019-2020学年高一10月考数学试卷

江西师大附中2019-2020高一年级10月月考数学试题命题人:郑辉平 审题人:朱涤非第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()()0112x f x x x -=+--的定义域为( ) A .[)1,+∞ B .()1,+∞C .()()1,22,+∞D .[)()1,22,+∞【答案】C2.图中阴影部分所表示的集合是( )A.()U B A CB. ()()C B B AC.()()U A C BD. ()()U A C B【答案】C3.给出下列关系式:2Q ; ②{1,2}{(1,2)}=; ③2{1,2}∈; ④{0}∅⊆,其中正确关系式的个数是( )A .0B .1C .2D .3【答案】C4.下列集合中子集个数最多的是( )A .{}2|320x N x x ∈++=B .{|x x 是边长分别为123,,的三角形}C .{|||1}x R x ∈=-D .{}∅【答案】D5.下列各组中的两个函数是同一函数的为( )A .(3)(5)(),()53x x f x g x x x +-==-+ B .2(),()f x x g x x == C .()25,()25f x x g x x =-=-D .33(),()f x x g t t ==【答案】D6.已知函数2()25f x x ax =-+,且其对称轴为1x =,则以下关系正确的是( )A. (3)(2)(8)f f f -<<B. (2)(3)(8)f f f <-<C. (3)(2)(8)f f f -=<D. (2)(8)(3)f f f <<-【答案】B 【解析】根据题意,函数52)(2+-=ax x x f ,其对称轴为1=x ,其开口向上,)(x f 在),1[+∞上单调递增,则有)8()5()3()2(f f f f <=-<,故选B.7.若()()()()⎩⎨⎧≥-<-=10,610,2x x f x x x f ,则(57)f 的值为( ) A. 1 B.3 C.5 D. 7【答案】D【解析】由题意得,729)9()45()51()57(=-==⋅⋅⋅===f f f f8.设}5,4,3,2,1{=U ,B A ,为U 的子集,若}2{=B A ,((){4}U A B =,()(){1,5}U U A B =,则下列结论正确的是( ) A .3,3A B ∉∉ B .3,3A B ∉∈ C .3,3A B ∈∉ D .3,3A B ∈∈ 【答案】C 9.若函数223,1()1,1x ax x f x ax x ⎧++≤=⎨+>⎩是减函数,则a 的取值范围是( )A.[3,1]--B.(,1]-∞-C.[1,0)-D.[2,0)- 【答案】A10.定义集合的商集运算为},,|{B n A m nm x x B A ∈∈==,已知集合}6,4,2{=A , },12|{A k k x x B ∈-==,则集合B AB 元素的个数为( ) A .7 B .8C .9D .10 【答案】A 【解析】由题意知,}2,1,0{=B ,}31,1,61,41,21,0{=A B,则}2,31,1,61,41,21,0{=B A B ,共有7个元素,选A.11.已知()x x f 23-=,()x x x g 22-=,()()()()()()(),,g x f x g x F x f x f x g x ≥⎧⎪=⎨<⎪⎩若若,则()x F 的最值是( )A.最大值为3-,最小值为1-B.最大值为727-,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值【答案】B 【解析】如图实线部分可知, 有最大值为727-,无最小值,故选B.12.已知函数1()()0()x f x x ⎧=⎨⎩为有理数为无理数,则关于函数有如下说法:①的图像关于y 轴对称; ②方程的解只有;③任取一个不为零的有理数T ,)()(x f T x f =+对任意的R x ∈恒成立; ④不存在三个点))(,(11x f x A ,))(,(22x f x B ,))(,(33x f x C ,使得ABC ∆为等边三 角形. ()f x ()f x (())f f x x =1x =。

2021新教材人教版高中数学A版必修第一册模块练习题--3.2.2 奇偶性

2021新教材人教版高中数学A版必修第一册模块练习题--3.2.2 奇偶性

3.2.2奇偶性基础过关练题组一函数奇偶性的概念及其图象特征1.已知一个奇函数的定义域为{-1,2,a,b},则a+b等于()A.-1B.1C.0D.22.若y=f(x)(x∈R)是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是()A.(a,-f(a))B.(-a,-f(a))C.(-a,-f(-a))D.(a,f(-a))3.下列图象表示的函数中具有奇偶性的是()4.(2020北京通州高一上期末)能说明“若f(x)是奇函数,则f(x)的图象一定过原点”是假命题的一个函数是f(x)=.5.(1)如图①,给出奇函数y=f(x)的部分图象,试作出y轴右侧的图象并求出f(3)的值;(2)如图②,给出偶函数y=f(x)的部分图象,试作出y轴右侧的图象并比较f(1)与f(3)的大小.题组二函数奇偶性的判定6.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.是非奇非偶函数7.(2019四川雅安中学高一上第一次月考)下列函数中是偶函数,且在区间(0,1)上为增函数的是( ) A.y=|x| B .y=3-x C.y=1xD.y=-x 2+4 8.若函数f(x)={1,x >0,-1,x <0,则f(x)( )A.是偶函数B.是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数 9.判断下列函数的奇偶性: (1)f(x)=√x 2-1+√1-x 2;(2)f(x)=2x 2+2x x+1;(3)f(x)={x(1-x)(x <0),x(1+x)(x >0).题组三 函数奇偶性的综合运用10.已知函数f(x)=mx 2+nx+2m+n 是偶函数,其定义域为[m+1,-2n+2],则( )A.m=0,n=0B.m=-3,n=0C.m=1,n=0D.m=3,n=011.(2020广西柳州二中高一上月考)已知函数f(x)是定义在R 上的奇函数,当x ∈(-∞,0)时,f(x)=2x 3+x 2,则f(2)=( ) A.20 B.12 C.-20 D.-1212.(2020广东珠海高一上期末学业质量检测,)已知函数f(x)为R 上的奇函数,且在(-∞,0)上是增函数, f(5)=0,则xf(x)>0的解集是 .13.已知y=f(x)是奇函数,当x<0时,f(x)=x 2+ax,且f(3)=6,则a 的值为 .14.(2020广东湛江一中高一上期中)已知f(x),g(x)分别是定义在R 上的偶函数和奇函数,且f(x)-g(x)=x 3+x 2+1,则f(1)+g(1)= . 15.(2019天津南开高一上期末)已知f(x)是定义在R 上的偶函数,当x ≥0时, f(x)=x 2-2x.(1)求函数f(x)的解析式,并画出函数f(x)的图象;(2)根据图象写出f(x)的单调区间和值域.能力提升练题组一函数奇偶性的概念及其图象特征1.()已知y=f(x)是偶函数,其图象与x轴有4个交点,则方程f(x)=0的所有实数根之和是()A.4B.2C.1D.02.(多选)()若f(x)为R上的奇函数,则下列四个说法正确的是()A.f(x)+f(-x)=0B.f(x)-f(-x)=2f(x)C.f(x)·f(-x)<0D.f(x)=-1f(-x)3.()f(x)是定义在R上的奇函数,其在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.题组二函数奇偶性的判定4.(2020黑龙江哈三中高一上第一次阶段性验收,)下列函数是偶函数的是()A.f(x)=x3-1x B.f(x)=√1-x2|x-2|-2C.f(x)=(x-1)√1+x1-xD.f(x)=|2x+5|+|2x-5|5.()已知F(x)=(x3-2x)f(x),且f(x)是定义在R上的奇函数,f(x)不恒等于零,则F(x)为()A.奇函数B.偶函数C.奇函数或偶函数D.非奇非偶函数6.()已知f(x+y)=f(x)+f(y)对任意实数x,y都成立,则函数f(x)是()A.奇函数B.偶函数C.既是奇函数,也是偶函数D.既不是奇函数,也不是偶函数7.(多选)()设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.|f(x)|g(x)是奇函数B.f(x)|g(x)|是奇函数C.f(x)+|g(x)|是偶函数D.|f(x)|+g(x)是偶函数题组三函数奇偶性的综合运用8.(2020河北承德一中高一上月考,)若偶函数f(x)在(-∞,-1]上单调递增,则()A.f(-32)<f(-1)<f(2)B.f(-1)<f(-32)<f(2)C.f(2)<f(-1)<f(-32)D.f(2)<f(-32)<f(-1)9.(2020黑龙江大庆实验中学高一上月考,)函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-1)≤1的x的取值范围是()A.[-2,2]B.[-1,1]C.[0,2]D.[1,3]10.(2020河南郑州高一上期末,)已知定义在R上的奇函数f(x)满足f(x+4)=f(x)恒成立,且f(1)=1,则f(3)+f(4)+f(5)的值为(深度解析)A.-1B.1C.2D.011.(2020江西临川一中高一上月考,)已知函数f(x)与g(x)分别是定义域上的奇函数与偶函数,且f(x)+g(x)=x2-1x+1-2,则f(2)=()A.-23B.73C.-3D.11312.(2019四川成都高一上期末调研,)已知f(x)是定义在R 上的奇函数,且当x ≥0时, f(x)={-x,0≤x ≤1,-1,1<x <2,x -3,x ≥2.若对任意的x ∈R,不等式f(x)>f(x-√2a)恒成立,则实数a 的取值范围是 . 13.(2019天津河西高一上期末,)(1)若奇函数f(x)是定义在R 上的增函数,求不等式f(2x-1)+f(3)<0的解集;(2)若f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是增函数,求不等式f(2x-1)-f(-3)<0的解集.14.(2020安徽师大附中高一上月考,)已知函数f(x)=ax+b1+x 2是定义在(-1,1)上的奇函数,且f (12)=25.(1)求函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数; (3)解关于实数t 的不等式f(t-1)+f(t)<0.15.(2020山东菏泽高一上期末联考,)已知函数f(x)=x 2+2a-3x是奇函数.(1)求函数f(x)的解析式;(2)若函数f(x)在(0,√p)上单调递增,试求p的最大值.16.()设函数f(x)=x2-2|x-a|+3,x∈R.(1)王鹏同学认为,无论a取何值,f(x)都不可能是奇函数.你同意他的观点吗?请说明你的理由;(2)若f(x)是偶函数,求a的值;(3)在(2)的情况下,画出y=f(x)的图象并指出其单调递增区间.深度解析答案全解全析基础过关练1.A因为该奇函数的定义域为{-1,2,a,b},且奇函数的定义域关于原点对称,所以a与b中一个等于1,一个等于-2,所以a+b=1+(-2)=-1,故选A.2.B∵f(x)为奇函数,∴f(-a)=-f(a),∴点(-a,-f(a))在函数y=f(x)的图象上.3.B选项A中的图象关于原点或y轴均不对称,故排除;选项C、D中的图象所示的函数的定义域不关于原点对称,不具有奇偶性,故排除;选项B中的图象关于y轴对称,其表示的函数是偶函数.故选B.(答案不唯一)4.答案1x,答案不唯一.解析举出x=0不在定义域内的奇函数即可,如f(x)=1x5.解析(1)由奇函数的性质可作出它在y轴右侧的图象,如图①所示,易知f(3)=-2.(2)由偶函数的性质可作出它在y轴右侧的图象,如图②所示,易知f(1)>f(3).6.B∵x∈(-a,a),其定义域关于原点对称,且F(-x)=f(-x)+f(x)=F(x),∴F(x)是偶函数.7.A选项A中,函数y=|x|为偶函数,且在区间(0,1)上为增函数,故A符合题意;选项B中,函数y=3-x为非奇非偶函数,且在区间(0,1)上为减函数,故B不符合题意;选项C中,函数y=1为奇函数,且在区间(0,1)上为减x函数,故C不符合题意;选项D中,函数y=-x2+4为偶函数,在区间(0,1)上为减函数,故D不符合题意.8.B作出函数f(x)的图象,如图所示,可以看出该图象关于原点对称,故f(x)为奇函数.9.解析(1)依题意得x2-1≥0,且1-x2≥0,即x=±1,因此函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0.∵f(-x)=-f(x),f(-x)=f(x),∴f(x)既是奇函数又是偶函数.(2)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.(3)易得函数f(x)的定义域是D=(-∞,0)∪(0,+∞),关于原点对称.任取x∈D,当x>0时,-x<0,∴f(-x)=(-x)[1-(-x)]=-x(1+x)=-f(x);当x<0时,-x>0,∴f(-x)=-x(1-x)=-f(x),∴f(x)为奇函数.10.B由f(x)=mx2+nx+2m+n是偶函数,得n=0.又函数的定义域为[m+1,-2n+2],所以m+1=2n-2,则m=-3.11.B由题意得f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.12.答案(-∞,-5)∪(5,+∞)解析∵f(x)为R上的奇函数,∴f(0)=0.∵f(x)在(-∞,0)上是增函数,f(5)=0,∴f(x)在(0,+∞)上是增函数,f(-5)=0.可大致用图象表示:∵xf(x)>0等价于x与f(x)同号,且均不为0,∴结合图象知解集是(-∞,-5)∪(5,+∞).13.答案5解析因为f(x)是奇函数,所以f(-3)=-f(3)=-6,所以(-3)2+a×(-3)=-6,解得a=5.14.答案1解析由题意可得f(1)+g(1)=f(-1)-g(-1)=(-1)3+(-1)2+1=1.15.解析(1)∵x≥0时,f(x)=x2-2x,∴当x<0时,-x>0,∴f(-x)=x2+2x,∴f(-x)=f(x)=x 2+2x. 故函数f(x)的解析式为 f(x)={x 2-2x,x ≥0,x 2+2x,x <0,函数f(x)的图象如图所示.(2)由(1)中函数的图象可知,函数f(x)的单调递增区间为[-1,0],[1,+∞);单调递减区间为(-∞,-1],[0,1].函数f(x)的值域为[-1,+∞).能力提升练1.D 因为y=f(x)是偶函数,所以y=f(x)的图象关于y 轴对称,所以f(x)=0的所有实数根之和为0.2.AB ∵f(x)在R 上为奇函数,∴f(-x)=-f(x),∴f(x)+f(-x)=f(x)-f(x)=0,故A 正确; f(x)-f(-x)=f(x)+f(x)=2f(x),故B 正确;当x=0时,f(x)·f(-x)=0,故C 不正确;当x=0时,f(x)f(-x)的分母为0,无意义,故D 不正确.3.解析 (1)根据奇函数的图象关于原点对称,可得f(x)的图象如图所示.(2)xf(x)>0即图象上点的横坐标与纵坐标同号,且均不为0.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).4.D 在选项A 中,f(x)=x 3-1x(x ≠0), f(-x)=-x 3+1x,f(-x)=-f(x),是奇函数;在选项B 中,f(x)=√1-x 2|x -2|-2=√1-x 2-x(-1≤x ≤1,x ≠0),f(-x)=√1-x 2x, f(-x)=-f(x),是奇函数;在选项C 中,f(x)=(x-1)·√1+x 1-x(-1≤x<1),是非奇非偶函数;在选项D中,f(x)=|2x+5|+|2x-5|(x ∈R), f(-x)=|-2x+5|+|-2x-5|=|2x+5|+|2x-5|, f(x)=f(-x),是偶函数,故选D.5.B 依题意得F(x)的定义域为R,且F(-x)=(-x 3+2x)f(-x)=(x 3-2x)f(x)=F(x),所以F(x)为偶函数,故选B. 6.A 令x=y=0,得f(0)=f(0)+f(0), 所以f(0)=0.又因为f(x-x)=f(x)+f(-x)=0,所以f(-x)=-f(x),所以f(x)是奇函数,故选A. 7.BD A 中,令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|·g(x)=h(x),∴A 中函数是偶函数,A 错误;B 中,令h(x)=f(x)|g(x)|,则h(-x)=f(-x)·|g(-x)|=-f(x)|g(x)|=-h(x),∴B 中函数是奇函数,B 正确;C 中,由f(x)是奇函数,可得f(-x)=-f(x),由g(x)是偶函数,可得g(-x)=g(x),由f(-x)+|g(-x)|=-f(x)+|g(x)|知C 错误;D 中,由|f(-x)|+g(-x)=|-f(x)|+g(x)=|f(x)|+g(x),知D 正确.故选BD.8.D 由f(x)是偶函数且在(-∞,-1]上单调递增,得f(x)在[1,+∞)上单调递减, f (-32)=f (32),f(-1)=f(1),又因为2>32>1,所以f(2)<f (32)<f(1),即f(2)<f (-32)<f(-1),故选D. 9.C 因为f(x)为奇函数,且f(1)=-1,所以f(-1)=1, 所以-1≤f(x-1)≤1等价于f(1)≤f(x-1)≤f(-1).由函数f(x)在(-∞,+∞)上单调递减,可得-1≤x-1≤1,解得0≤x ≤2. 故选C.10.D ∵f(x)是R 上的奇函数, f(1)=1, ∴f(-1)=-f(1)=-1, f(0)=0.依题意得f(3)=f(-1+4)=-f(1)=-1,f(4)=f(0+4)=f(0)=0,f(5)=f(1+4)=f(1)=1. 因此, f(3)+f(4)+f(5)=-1+0+1=0,故选D.陷阱提示 在有关奇函数f(x)的求值问题中,要注意当f(x)在x=0处有意义时, f(0)=0这个特殊情况,否则可能会出现已知条件不足,导致问题解决不了的情况. 11.A ∵f(x)+g(x)=x 2-1x+1-2①,∴f(-x)+g(-x)=(-x)2-1-x+1-2=x 2-1-x+1-2,又∵函数f(x)与g(x)分别是定义域上的奇函数与偶函数, ∴f(-x)=-f(x),g(-x)=g(x), ∴f(-x)+g(-x)=-f(x)+g(x)=x 2-1-x+1-2②, 联立①②消去g(x),得f(x)=-12x+2+1-2x+2,∴f(2)=-12×2+2+1-2×2+2=-23.故选A.12.答案 (3√2,+∞)解析 由已知条件画出函数f(x)的图象(图中实线部分),若对任意的x ∈R,不等式 f(x)>f(x-√2a)恒成立,则函数f(x)的图象始终在函数f(x-√2a)的图象的上方.当a<0时,将函数f(x)的图象向左平移,不能满足题意,故a>0,将函数f(x)图象向右平移时的临界情况是当D 点与B 点重合,且临界情况不满足题意,由图可知,向右平移的√2a 个单位长度应大于6,即√2a>6,解得a>3√2,故答案为(3√2,+∞).13.解析 (1)由题知f(x)为奇函数,且在R 上是增函数,则f(2x-1)+f(3)<0⇒f(2x-1)<-f(3)⇒f(2x-1)<f(-3)⇒2x-1<-3,解得x<-1,即不等式的解集为(-∞,-1).(2)由题知f(x)是定义在R 上的偶函数,且在区间[0,+∞)上是增函数, 则f(2x-1)-f(-3)<0⇒f(2x-1)<f(3)⇒f(|2x-1|)<f(3)⇒|2x-1|<3,解得-1<x<2, 即不等式的解集为(-1,2). 14.解析 (1)因为函数f(x)=ax+b 1+x 2是定义在(-1,1)上的奇函数,所以f(0)=0,得b=0. 又知f (12)=25,所以12a 1+14=25,解得a=1,所以f(x)=x1+x 2.(2)证明:∀x 1,x 2∈(-1,1),且x 1<x 2,则f(x 2)-f(x 1)=x 21+x 22-x 11+x 12=(x 2-x 1)(1-x 1x 2)(1+x 12)(1+x 22),由于-1<x 1<x 2<1,所以-1<x 1x 2<1,即1-x 1x 2>0, 所以(x 2-x 1)(1-x 1x 2)(1+x 12)(1+x 22)>0,即f(x 2)-f(x 1)>0,所以f(x)在(-1,1)上是增函数.(3)因为f(x)是奇函数, 所以f(-x)=-f(x),所以f(t-1)+f(t)<0等价于f(t-1)<-f(t)=f(-t),即f(t-1)<f(-t), 又由(2)知f(x)在(-1,1)上是增函数,所以{-1<t -1<1,-1<-t <1,t -1<-t,解得0<t<12,即原不等式的解集为{t |0<t <12}.15.解析 (1)因为函数f(x)=x 2+2a -3x是奇函数,所以f(x)=-f(-x),即x 2+2a -3x=-x 2+2a+3x,化简得a=0, 所以f(x)=x 2+2-3x.(2)f(x)=x 2+2-3x =-13(x 2+2x)=-13·(x +2x ),任取x 1,x 2∈(0,+∞)且x 1≠x 2,则Δf(x)Δx=f(x 2)-f(x 1)x 2-x 1=-13(x 2+2x 2)-[-13(x 1+2x 1)]x 2-x 1=-13(x 2-x 1+2x 2-2x 1)x 2-x 1=-13·(x 2-x 1)(1-2x 1x 2)x 2-x 1=-13·x 1x 2-2x 1x 2.因为x 1,x 2∈(0,+∞),所以x 1x 2>0. 当x 1,x 2∈(0,√2]时,x 1x 2-2<0,从而Δf(x)Δx>0;当x 1,x 2∈[√2,+∞)时,x 1x 2-2>0,从而Δf(x)Δx<0.因此f(x)在(0,√2]上是增函数, f(x)在[√2,+∞)上是减函数.由题知f(x)在(0,√p]上单调递增,所以√p的最大值为√2,即p的最大值为2.16.解析(1)我同意王鹏同学的观点.理由如下:假设f(x)是奇函数,则由f(a)=a2+3,f(-a)=a2-4|a|+3,可得f(a)+f(-a)=0,即a2-2|a|+3=0,显然a2-2|a|+3=0无解,∴f(x)不可能是奇函数.(2)若f(x)为偶函数,则有f(a)=f(-a),即a2+3=a2-4|a|+3,解得a=0.经验证,此时f(x)=x2-2|x|+3是偶函数.(3)由(2)知f(x)=x2-2|x|+3,其图象如图所示,由图可得,其单调递增区间是(-1,0)和(1,+∞).解题模板利用奇偶性确定函数解析式中参数的值时,选择题、填空题中可用特殊值法简化运算;解答题中要结合定义写出完整的解题过程,若用特殊值法得到参数的值仍需要进一步证明.。

最新-公司理财(罗斯光盘) 精品

最新-公司理财(罗斯光盘) 精品

公司理财(罗斯光盘)篇一:罗斯《公司理财》(第9版)网授精讲班江西省南昌市2019-2019学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11已知,,是单位圆上互不相同的三点,且满足?,则?的最小值为()????141.?23.?4.?1.?【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

???【易错点】1.不能正确用,,表示其它向量。

????2.找不出与的夹角和与的夹角的倍数关系。

2019-2020学年北京师大附中高一(上)第一次月考数学试卷及答案

2019-2020学年北京师大附中高一(上)第一次月考数学试卷及答案

2019-2020学年北京师大附中高一(上)第一次月考数学试卷一、选择题共8小题,每小题4分,共32分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(4分)设集合A={0,1,2,3},集合B={2,3,4},则A∩B=()A.{2,3}B.{0,1}C.{0,1,4}D.{0,1,2,3,4} 2.(4分)命题“∃x0∈R,x02+x0+1<0”的否定为()A.不存在x0∈R,B.∃x0∈R,C.∀x∈R,x2+x+1<0D.∀x∈R,x2+x+1≥03.(4分)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC ⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(4分)对于任意实数a,b,c,d以下四个命题中,其中正确的有()①ac2>bc2,则a>b,②若a>b,c>d,则a+c>b+d;③若a>b,c>d,则ac>bd;④若a>b,则.A.4个B.3个C.2个D.1个5.(4分)已知正数x,y满足xy=16,则x+y()A.有最大值4B.有最小值4C.有最大值8D.有最小值8 6.(4分)如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁I S D.(M∩P)∪∁I S 7.(4分)已知集合A={a﹣2,a2+4a,10},若﹣3∈A,则实数a的值为()A.﹣1B.﹣3C.﹣3或﹣1D.无解8.(4分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙二、填空题共8小题,每小题4分,共32分9.(4分)不等式组的解集为.10.(4分)若集合A={x||x﹣1|<1},B={x|x2﹣x=0},则A∪B=.11.(4分)关于x的不等式ax2+bx+2>0的解集是{x|﹣1<x<2},则a+b=.12.(4分)已知x>1,当x=时,则有最小值为.13.(4分)若不等式ax2+ax﹣1>0的解集为∅,则实数a的取值范围是.14.(4分)已知集合A={x|<0},若1∉A,则实数a的取值范围为.15.(4分)已知集合A={x|x<a},B={x|x2﹣5x+4≥0},若P:“x∈A”是Q:“x∈B”的充分不必要条件,则实数a的取值范围为.16.(4分)设a+b=2019,b>0,则当a=时,+取得最小值.三、解答题共4小题,共36分。

【学期】江西师大附中2020学年高一上学期10月月考数学试卷版含答案

【学期】江西师大附中2020学年高一上学期10月月考数学试卷版含答案

【关键字】学期江西师大附中高一年级数学月考试卷命题人:吴小平审题人:黄润华2017.10一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选项符合题意)1.设则下列结论中正确的是()A. B. C. D.2. 已知集合,则=()A. B. C. D.3. 已知全集则集合A的真子集共有()个A. 3B.C. 8D. 74. 下列四个函数:(1),(2),(3),(4),其中定义域与值域相同的是()A. (1)(2)B. (1)(2)(3)C. (1)(4)D. (1)(3)(4)5.若()A. B. C. 3 D.36. 已知A,B是非空集合,定义,()A. B. C. D.7. 已知函数上为增函数,则的取值范围是()A. B. C. D.8. 设函数的值为()A. aB. bC. a,b中较小的数D.a,b中较大的数9. 下列四个函数中,在上为增函数的是()A. B. C. D.10. 设集合,则下列关系中成立的是()A. B. C. D.11. 定义在[1,1]上的函数,则不等式的解集为()A. B. C. D.12.设与是定义在同一区间上的两个函数,若对任意的都有则称和在上是“和谐函数”,区间为“和谐区间”,设在区间上是“和谐函数”,则它的“和谐区间”可以是()A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合若,则实数a的取值范围为.14. 函数的值域为.15. 已知集合A,B均为全集的子集,且=16. 已知函数恒成立,则实数m的取值范围为三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17. 设全集,集合,集合.求18. 已知全集(1)若,求实数q的取值范围;(2)若中有四个元素,求和q的值.19. 已知函数(1)若,试判断并用定义证明的单调性; (2)若,求的值域. 20. 已知函数(1)解不等式;(2)求在上的最大值. 21. 已知集合(1)若时,求实数a 的取值范围; (2)若时,求实数a 的取值范围. 22. 设二次函数满足下列条件:①对恒成立; ②对恒成立.(1)求的值; (2)求的解析式;(3)求最大的实数(1)m m >,使得存在实数t ,当[1,]x m ∈时,()f x t x +≤恒成立.高一数学10月考试答案13. [1,)-+∞ 14. 1[,)2+∞15. {}3 16. (3,)+∞17. 解:|1|221213x x x -<⇒-<-<⇒-<<,(1,3),(0,4)A B ∴=-=18.解:(1)A =∅,41329|,,1,,51525q q R q q q q ⎧⎫∈≠≠≠≠⎨⎬⎩⎭且;(2)45q =或1315q =或2925q =.19. 解:(1)当1a =时,9()|1|1[1,6]f x x x x =--+∈9911x x x x=--+=-递增证:任取12,[1,6]x x ∈且12x x < 则1221212121129()99()()()x x f x f x x x x x x x x x --=--+=--=21129()[1]0x x x x -+> 21()()()f x f x f x ∴>∴在[1,6]上单调递增.(2)当8a =时,999()|8|88816()f x x x x x x x=--+=--+=-+令9t x x=+[1,6]x ∈[6,10]t ∴∈()16[6,10]f x y t ∴==-∈ 所以()f x 的值域为[6,10].20. 解:(1)2()()|2||4|(2)4x f x g x x x x x x x ≥⎧>⇒->+⇔⎨->+⎩或42(2)4x x x x -≤<⎧⎨->+⎩或4(2)4x x x x <-⎧⎨---⎩22340x x x ≥⎧⇒⎨-->⎩或24240x x x -≤<⎧⎨-+<⎩或24340x x x <-⎧⎨--<⎩ 214x x x ≥⎧⇒⎨<->⎩或或42x x φ-≤<⎧⎨∈⎩或414x x <-⎧⎨-<<⎩4x ⇒>(2)222(2)()|2|2(2)x x x f x x x x x x ⎧-≥⎪=-=⎨-+<⎪⎩①当01a <<时,2()()2f x f a a a ==-+大②当11a ≤≤()(1)1f x f ==大③当1a >2()()2f x f a a a ==-大21.解:{}0(,2)(1,2),|()(2)00(2,)0a B a a A B x x a x a a B a a a B φ>=⎧⎪==--<⇒<=⎨⎪==⎩当时当时当时(1)01122a A B a a a >⎧⎪⊆⇒≤⇒=⎨⎪≥⎩由已知得(2)当A B =∅时若0a A B ≤=∅时,1022122a A B a a a a >=∅≥≤⇒≥≤时,使,则或或 综上:122a a ≥≤或22.解:(1)当x=1时,1(1)1(1)1f f ≤≤⇒=(2)由已知可得()1,122b f x x b a a=-∴-=-⇒=的轴……①由(1)11f a b c =⇒++=……②由()f x x ≥恒成立2(21)130ax a x a ⇒+-+-≥对R 恒成立则201(21)4(13)04a a a a a >⎧⎪⎨∆=---≤⇒=⎪⎩由22211()1)2131)22f x x ax ax a x ≤+⇒++-≤+(恒成立(对x R ∈恒成立2(21)4160a x ax a ⇒-++-≤恒成立则2221012164(21)(16)01(41)04a a a a a a a -<⎧⎪⎧⎪<⎪⎨⎪∆=---≤⇒⎨⎪⎪⎪-≤⇒=⎪⎩⎩131,1244b c ∴==-=,221111()(1)4244f x x x x ∴=++=+ (3)21()(1),()[1,]4f x t x t f x t x m ∴+=+++≤使在恒成立,则使()y f x t =+的图像在y x =的下方,且m 最大,则1,m 为()f x t x +=的两个根 由21(1)1(2)1044f t t t t +=⇒+=⇒==-或此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

湖南师范大学附属中学2019-2020学年高一上学期第一次月考数学试题(含解析)

湖南师范大学附属中学2019-2020学年高一上学期第一次月考数学试题(含解析)

16.已知函数
f
x
2, x m
x
2
4
x
2,
x
,若方程
m
f
x
x有
3
个不等实根,则实数
m
的取值范围是
____________.
三、解答题:本大题共 6 个小题,共 70 分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分 10 分)
已知集合 A
x 5x 3 4x
,集合 B
x
x2 m
值域也是a,b ,则称函数 F x 是区间 D 上的“优函数”,区间a,b 称为 F x 的“等域区间”.
(1)已知函数 f x 3 x 2 是区间0, 上的“优函数”,求 f x 的“等域区间”;
(2)是否存在实数 k,使函数 g x x2 k 是区间 , 0 上的“优函数”?若存在,求 k 的取值范围;
当 x 0 时, f (x) x(2 x) x(x 2) ,由图知, f (x) 单调递减,选 A.
4
7.C 【解析】法一:因为 f ( 2) 2, f (2) 2 ,则 f [ f ( 2)] 2 ,所以 a 2 ,选 C.
法二:令 f f (a) t ,则 f (t) 2 .因为当 t 0 时, f (t) t2 0 ,所以 t2 t 2(t 0) ,
m 1 2m 1, 若 B ,则 m 1 2, 解得 2 m 3 ,所以 m 的取值范围是 (, 3],选 A.
2m 1 5,
9.B 【解析】因为函数 y 1 的定义域是 (, a) (a, ) ,且在区间 (a, ) 上是减函数,则 xa
a 0 ,且 (1, ) (a, ) ,所以 0 a 1,选 B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年江西师大附中高一(上)10月月考数学试卷
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.函数 的定义域为()
A. B. C. D.
2.如图,那么阴影部分所表示的集合是()
A. B. C. D.
3.给出下列关系式:① ;② = ;③ ;④ ,其中正确关系式的个数是()
①函数 的图象关于 轴对称;
②函数 的值域是 ;
③函数 在 上是增函数;
④函数 与 在 上有 个交点.
其中正确说法的序号是________.
说明:“正三角形 沿 轴滚动”包括沿 轴正方向和沿 轴负方向滚动.沿 轴正方向滚动指的是先以顶点 为中心顺时针旋转,当顶点 落在 轴上时,再以顶点 为中心顺时针旋转,如此继续.类似地,正三角形 可以沿 轴负方向滚动.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
其中正确的个数是()
A. B. C. D.
二、填空题:本大题共4小题,每小题5分,共20分.
已知集合 = ,则 =________.
已知集合 = , = , 是从 到 的一个映射,若 ,则 中的元素 的原象为________.
若函数 的定义域为 ,值域为 ,则 的取值范围是________.
如图放置的边长为 的正三角形 沿 轴滚动,记滚动过程中顶点 的横、纵坐标分别为 和 ,设 是 的函数,记 ,则下列说法中:
8.设 = , , 为 的子集,若 = , = , = ,则下列结论正确的是()
A. , B. , C. , D. ,
9.若函数 是减函数,则 的取值范围是()
A. B. C. D.
10.定义集合的商集运算为 ,已知集合 = , = ,则集合 元素的个数为()
A. B. C. D.
11.已知 , , 则 的最值是( )
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
A.最大值为 ,无最小值B.最大值为 ,最小值
C.既无最大值,也无最小值D.最大值为 ,无最小值
12.已知函数 ,则关于函数有如下说法:
① 的图象关于 轴对称;
②方程 ( )= 的解只有 = ;
③任取一个不为零的有理数 , = 对任意的 恒成立;
④不存在三个点 ( ), ( ), ( ),使得 为等边三角形.
(1)判定函数 = 在 的单调性,并用定义证明;
(2)设方程 = 有四个不相等的实根 .
①证明: = ;
②在 是否存在实数 , ,使得函数 在区间 单调,且 的取值范围为 ,若存在,求出 的取值范围;若不存在,请说明理由.
参考答案与试题解析
2019-2020学年江西师大附中高一(上)10月月考数学试卷
(1)试写出该种商品的日销售额 与时间 的函数表达式;
(2)求该种商品的日销售额 的最大值与最小值.
已知二次函数 的最小值为 ,且 = = .
(1)求函数 的解析式;
(2)若 ,试求 = 的最小值;
(3)若在区间 上, = 的图象恒在 = 的图象上方,试确定实数 的取值范围.
已知定义在区间 上的函数 = ,
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
5.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
6.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
7.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
8.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
9.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
10.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
11.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
12.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
二、填空题:本大题共4小题,每小题5分,共20分.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
已知全集 = , = , =
(1)求 = ;
(2)求 .
已知集合 = , = , = , = .
(1)求 ;
(2)若 = ,求实数 的取值范围.
已知函数
Ⅰ 求 的值;
Ⅱ 求 的值;
Ⅲ 当 时,求函数 的值域.
经市场调查,某超市的一种小商品在过去的近 天内的销售量(件)与价格(元)均为时间 (天)的函数,且日销量近似满足 = (件),当日价格近似满足 (元).
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
2.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
3.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
4.
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【解析】
此题暂无解析
【解答】
此题暂无解答
A. B. C. D.
4.下列集合中子集个数最多的是()
A.
B.
C.
D.
5.下列各组中的两个函数是同一函数的为()
A. = , B. , =
C. = , = D. = ,
6.已知函数 = ,且其对称轴为 = ,则以下关系正确的是()
A. = B.
C. D.
7.若 ,则 的值为()
A. B. C. D.
相关文档
最新文档