数控逐点比较法直线插补原理

合集下载

直线逐点比较插补原理的实现

直线逐点比较插补原理的实现

逐点比较插补原理的实现1 数字程序控制基础数字程序控制,就是计算机根据输入的指令和信息,控制生产机械按规定的工作程序、运动轨迹、运动距离和运动速度等规律自动地完成工作的自动控制。

世界上第一台数控机床是1992年由MIT伺服机构实验室开发出来的,主要的目的是为了满足高精度和高效率加工复杂零件的需要一般来说,三维轮廓零件,即使二维轮廓零件的的加工也是很困难的,而数控机床则很容易实现早期的数控(NC)以数字电路技术为基础,现在的数控(CNC)以计算机技术为基础。

数控系统由输入装置、输出装置、控制器、插补器等四部分组成。

随着计算机技术的发展,开环数字程序控制得到了广泛的应用,如各类数控机床、线切割机低速小型数字绘图仪等,它们都是利用开环数字程序控制原理实现控制的设备。

开环数字程序控制的结构如图1.1所示。

图1.1 开环数字程序控制的结构图这种结构没有反馈检测元件,工作台由步进电机驱动。

步进电机接收驱动电路发来的指令作相应的运动,把刀具移动到与指令脉冲相当的位置,至于刀具是否到达了指令脉冲规定的位置,它不作任何检查,因此这种控制的可靠性和精度基本上由步进电机和传动装置来决定。

开环控制结构简单、可靠性高、成本低、易于调整和维护等,应用最为广泛。

2 步进电机控制技术步进电机又叫脉冲电机,它是一种将电脉冲信号转换为角位移的机电式数模转换器。

在开环数字程序控制系统中,输出部分常采用它作为驱动元件。

步进电机接收计算机发来的指令脉冲,控制步进电机作相应的转动,步进电机驱动数控系统的工作台或刀具。

显然,指令脉冲的总数就决定了数控系统的工作台或刀具的总移动量,指令脉冲的频率就决定了移动的速度。

因此,指令脉冲能否被可靠地执行,基本上取决于步进电机的性能。

2.1 步进电机的工作原理步进电机的工作就是步进转动。

在一般的步进电机工作中,电源都是采用单极性的直流电源。

要使步进电机转动,就必须对步进电机定子的各相绕组以适当的时序进行通电。

数控机床插补原理

数控机床插补原理
将对应的位置增量数据(如、),再与采样所获得的实际位置反馈值 相比较,求得位置跟踪误差。位置伺服软件就根据当前的位置误差 计算出进给坐标轴的速度给定值,并将其输送给驱动装置,通过电 动机带动丝杠和工作台朝着减少误差的方向运动,以保证整个系统 的加工精度。由于这类算法的插补结果不再是单个脉冲,而是一个 数字量,所以,这类插补算法适用于以直流或交流伺服电动机作为 执行元件的闭环或半闭环数控系统中。
对圆弧,提供起点、终点、顺圆或逆圆、以及圆心相对于起点的位置。为满
足零件几何尺寸精度要求,必须在刀具(或工件)运动过程中实时计算出满足 线形和进给速度要求的若干中间点(在起点和终点之间),这就是数控技术中
插补(Interpolation)的概念。据此可知,插补就是根据给定进给速度和给定
轮廓线形的要求,在轮廓已知点之间,确定一些中间点的方法,这种方法称 为插补方法或插补原理。
Xm+1=Xm+1, Ym+1=Ym
新的偏差为
Fm+1=Ym+1Xe-Xm+1Ye=Fm-Ye
若Fm<0时,为了逼近给定轨迹,应向+Y方向进给一步,走一步后新的坐标值为
Xm+1=Xm, Ym+1=Ym +1
新的偏差为
Fm+1=Fm+Xe
4. 终点判别法
逐点比较法的终点判断有多种方法,下面主要介绍两种:
直到∑为零时,就到了终点。
2.2
不同象限的直线插补计算
上面讨论的为第一象限的直线插补计算方法,其它三个象
限的直线插补计算法,可以用相同的原理获得,表5-1列出了
四个象限的直线插补时的偏差计算公式和进给脉冲方向,计 算时,公式中Xe,Ye均用绝对值。
表1-1 四个象限的直线插补计算

第三章 数控插补原理

第三章 数控插补原理

解:插补完这段直线刀具沿X和Y轴应走的总步数为 = x e + y e =5 + 3=8。 Y 刀具的运动轨迹如图 E(5,3) 3
2 1 O 1 2 3 4 5 X
第二节 基准脉冲插补
插补运算过程见表:
循环序号 偏差判别 F ≥0 坐标进给 +X 偏差计算 Fi+1=Fi-ye
教案 3
终点判别
m
Y
m(Xm,Ym) B(XB,YB)
+Y2
2 m-R
若Fm=0,表示动点在圆弧上;
若Fm>0,表示动点在圆弧外; 若Fm<0,表示动点在圆弧内。
Rm
R A(XA,YA)
第Ⅰ象限逆圆弧
X
第二节 基准脉冲插补
2)坐标进给
教案 3
与直线插补同理,坐标进给应使加工点逼近给定圆弧,规定如下: 当Fm≥0时,向-X方向进给一步; 当Fm<0时,向+Y方向进给一步。
教案 3
若Fi=0,表示动点在直线OE上,如P; 若Fi>0,表示动点在直线OE上方,如P′; 若Fi<0,表示动点在直线OE下方,如P″。
O
xi 第Ι象限直线
X
第二节 基准脉冲插补
2)坐标进给
教案 3
坐标进给应逼近给定直线方向,使偏差缩小的方向进给一步,由插补装 置发出一个进给脉冲控制向某一方向进给。
教案 3
直线线型 进给方向 偏差计算 直线线型
L1、L4 L2、L3 +X -X Fi+1=Fi-ye L1、L2 L3、L4
偏差计算
Fi+1=Fi+xe
注:表中L1、L2、L3、L4分别表示第Ⅰ、第Ⅱ、 第Ⅲ、第Ⅳ象限直线,偏差计算式中xe、ye均代 入坐标绝对值。

3.1数控插补原理(2)逐点比较法

3.1数控插补原理(2)逐点比较法

开始 初始化 Xe→X,Ye→Y 0→Fi ,N =|Xe|+|Ye|
Y 进给方向:+X
F≥0 N 进给方向: +Y
Fi- Ye → Fi+1
Fi+ Xe → Fi+1
N = N -1
N =0
N
Y 结束
继续
逐点比较法Ⅰ象限直线插补流程图
例题:设欲加工第一象限直线OE,起点为坐标原点,
终点坐标为Xe=4,Ye=3,用逐点比较法插补之,并画出
+Y F6 F5 2Y5 1 4
-X F7 F6 2X6 1 1
8
F7>0
-X
F8 F7 2X7 1 0
坐标计算
X0=4,Y0=0 X1=3,Y1=0 X2=3,Y2=1 X3=3,Y3=2 X4=3,Y4=3 X5=2,Y5=3 X6=2,Y6=4 X7=1,Y7=4
X8=0,Y8=4
Fi 0, 朝 x 增大方向, Fi1 Fi ye Fi 0, 朝 y 增大方向, Fi1 Fi xe
5.2 脉冲增量插补 其它象限插补流程:
3.逐点比较法Ⅰ象限逆圆插补
(1)基本原理
①偏差判别 关键:寻找偏差函数F(x,y)
当动点N(Xi,Yi)位于圆弧上时有下式成立
Y
E(XeYe) Nˊ
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧外侧时,有下式成立
X i2 Yi2 Xe2 Ye2 R2
当动点N(Xi,Yi)在圆弧内侧时,有下式成立
O
N(Xi,Yi) R
N〞 S(XSYS)
X
X i2 Yi2 Xe2 Ye2 R2
I象限逆圆与动点之间的关系

逐点比较法插补原理实验报告

逐点比较法插补原理实验报告

南昌航空大学实验报告年月日课程名称:数控技术实验名称:逐点比较法插补原理班级:姓名:同组人:指导老师评定:签名:一、实验的目的与要求1.目的①掌握逐点比较法插补的原理及过程;②掌握利用计算机高级语言,设计及调试“插补运算轨迹”模拟画图的程序设计方法;③进一步加深对插补运算过程的理解;二、实验仪器计算机一台三、实验原理①逐点比较法插补运算的原理首先粗略的简单介绍一下机床是如何按照规定的图形加工出所需的工件的。

例如,现在要加工一段圆弧(图2-1),起点为A,终点为B,坐标原点就是圆心,Y轴、X轴代表纵、横拖板的方向,圆弧半径为R。

如从A点出发进行加工,设某一时刻加工点在M1,一般来说M1和圆弧有所偏离。

因此,可根据偏离的情况确定下一步加工进给的方向,使下一个加工点尽可能向规定图形(即圆弧)靠拢。

若用R M1表示加工点M1到圆心O的距离,显然,当R M1<R时,表示加工点M1在圆内,这时应控制纵拖板(Y拖板)向圆外进给一步到新加工点M2,由于拖板被步进电机带动,进给一步的长度是固定的(1微米),故新的加工点也不一定正好在圆弧上。

同样,当M2≥R时,表示加工点M2在圆外或圆上,这时应控制横拖板(X拖板)向圆内进给一步。

如此不断重复上述过程,就能加工出所需的圆弧。

图2-1 插补原理可以看出,加工的结果是用折线来代替圆弧,为了清楚起见,在图2-1中,每步的步长画的很大,因此加工出来的折线与所需圆弧的误差较大。

若步长缩小,则误差也跟着缩小,实际加工时,进给步长一般为1微米,故实际误差时很小的。

②计算步骤由上述可以看出,拖板每进给一步都要完成四个工作节拍。

偏差判别:判别偏差符号,确定加工点是在要求图形外还是在图形内。

工作台进给:根据偏差情况,确定控制X坐标(或Y坐标)进给一步,使加工点向规定的图形靠拢,以缩小偏差。

偏差计算:计算进给一步后加工点与要求图形的新偏差,作为下一步偏差判别的依据。

终点判断:判定是否到达终点,如果未达到终点,继续插补,如果以到达终点,停止插补。

数控机床的工作原理

数控机床的工作原理

终点判别 N=12
N=12-1=11 N=12-2=10 N=12-3=9 N=12-4=8 N=12-5=7 N=12-6=6 N=12-7=5 N=12-8=4 N=12-9=3 N=12-10=2 N=12-11=1 N=12-12=0
圆弧插补的象限处理
四个象限圆弧插补进给方向和偏差计算
其他象限的圆弧插补以|Xi|和|Yi|代替Xi和Yi。
-X
F2,2=F2,1+|Xe|=2 F3,2=F2,2-|Ye|=-1
n=3+1=4<N n=4+1=5<N
6
F3,2=-
+Y
1<0
F3,3=F3,2+|Xe|=3
n=5+1=6<N
2. 逐点比较法圆弧插补
如右图所示逆圆弧AE,C、D、B点分别在圆弧的外、
内部和圆弧上。
C点在圆弧的外部,则有
y
(X
+ΔX -ΔX -ΔX
Fi1 Fi 2Yi 1 Yi1 Yi 1
+ΔY -ΔY +ΔY
NR3(逆)
+ΔX
-ΔY
圆弧插补举例
用逐点比较法加工第二象限顺圆弧AB,起点为A (-5,0),终点为B(-3,4)

偏差判别



偏差计算
终点判别
0
F5,0=0
N=6
1
F5,0=0
+X
2
F4,0=-9<0
N=6-1=5 N=6-2=4 N=6-3=3 N=6-4=2 N=6-5=1 N=6-6=0
A(-4,3)
插补轨迹
y
y B(-3,4)

逐点比较法的概念基本原理及特点

逐点比较法的概念基本原理及特点

逐点比较法的概念基本原理及特点早期数控机床广泛采用的方法,又称代数法、醉步伐,适用于开环系统。

1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。

每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。

逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。

特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。

逐点比较法直线插补(1)偏差函数构造对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye若刀具加工点为Pi(X i,Y i),则该点的偏差函数F i可表示为若F i= 0,表示加工点位于直线上;若F i> 0,表示加工点位于直线上方;若F i< 0,表示加工点位于直线下方。

(2)偏差函数字的递推计算采用偏差函数的递推式(迭代式)既由前一点计算后一点Fi =Yi Xe -XiYe若F i>=0,规定向+X 方向走一步Xi+1 = Xi +1Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye若F i<0,规定+Y 方向走一步,则有Yi+1 = Yi +1Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe(3)终点判别直线插补的终点判别可采用三种方法。

1)判断插补或进给的总步数:;2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。

(4)逐点比较法直线插补举例对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。

终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。

逐点比较法圆弧插补3.逐点比较法圆弧插补(1)偏差函数任意加工点P i(X i,Y i),偏差函数F i可表示为若F i=0,表示加工点位于圆上;若F i>0,表示加工点位于圆外;若F i<0,表示加工点位于圆内(2)偏差函数的递推计算1)逆圆插补若F≥0,规定向-X方向走一步若F i<0,规定向+Y方向走一步2)顺圆插补若F i≥0,规定向-Y方向走一步若F i<0,规定向+y方向走一步(3)终点判别1)判断插补或进给的总步数:⎩⎨⎧+-=-+-=-=++12)1(122211iiiiiiiXFRYXFXX⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧+-=--+=-=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiXFRYXFXXbabaYYXXN-+-=baxXXN-=bayYYN-=2) 分别判断各坐标轴的进给步数;(4)逐点比较法圆弧插补举例对于第一象限圆弧AB ,起点A (4,0),终点B (0,4)4.逐点比较法的速度分析fN V L式中:L —直线长度;V —刀具进给速度;N —插补循环数;f —插补脉冲的频率。

2.逐点比较法直线插补

2.逐点比较法直线插补
Y
A(6,4) 4
3
2
1
O
1 2 3 4 5 6X
机电工程学院
步数
起点0 1 2 3 4 5 6 7 8 9 10
偏差判别
F0,0=0 F1,0<0 F1,1>0 F2,1<0 F2,2>0 F3,2=0 F4,2<0 F4,3>0 F5,3<0 F5,4>0
Y
4
3
2
1
坐标进给
+X +Y +X +Y +X +X +Y +X +Y +X
XeY-XYe=0
(3)若P2点在直线下方,则有
XeY-XYe<0

因此,可以构造偏差函数为:
F X eY XY e
P1 E(Xe,Ye)
P(X,Y) P2 X
图5-5
机电工程学院
对于第一象限直线,其偏差符号与进给方向的关系为:
F=0时,表示动点在OE上,如点P,可向+X向进给,也可向+Y向
进给。
Y
右图中AB为第一象限顺圆弧SR1
若F≥0时,动点在圆弧上或圆 弧外,向-Y向进给,计算出新点 的偏差;
若F<0,表明动点在圆内, 向+X向进给,计算出新一点的 偏差;
O
如此走一步,算一步,直至 终点。
A F≥0 SR1
F<0 B X
图5-11 顺圆弧插补
机电工程学院
下面推导第一象限顺圆SR1偏差计算递推公式
Fi X eYi X iYe
机电工程学院
若Fi≥0,表明Pi(Xi,Yi)点在OE直线上方或在直线 上,应沿+X向走一步,假设坐标值的单位为脉冲当量,
走步后新的坐标值为(Xi+1,Yi+1),且Xi+1=Xi+1, Yi+1=Yi , 新点偏差为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逐点比较法直线插补原理的理解
姓 名 学 号 专业班级 所在学院 指导教师
xxx xx xx dzkdzsc lmh
课本(机床数控技术第二版)P184
对于第二象限,只要用 x 取代x,就可以变换到第一象限。三,四象限同理。 As I see it:判别式 F y x x y
e e
Why? 理一:
对于第二象限
对于第一象限 若 F≥ 0时,刀具向x方向进1, 偏差值
F i 1 , j x e y j ( x i 1) y e
若F≥ 0时,刀具向-x方向进1,偏差值
Fi 1, j x e y j x i 1 y e
x e y j ( x i 1) y e
i i
xe y j xi y e xe Fi , j x e
Fi , j 1 Fi , j x e
( x i 1)
xi 1
同理对第三,四象限得课本表3-8的规律。
Conclusion对所有象限的判别式:
F y xe x ye
That’s all ! Thank you!
y
为什么 y x x y 0 ? a e a e

ya xa
x
y x
y a xe xa ye
ya xa ye xe

ye xe
ka ke
同理
ka ke
ya xa ye xe
F y a xe xa ye 0
判别式 理由二:“递推法”
F y xe x ye
xe y j xi y e y e
xe y j xi y e y e
Fi , j y e
Fi , j y e
若F< 0时,刀具向y方向进1,偏差值
F i , j 1 x e ( y j 1) x i y e
若F< 0时,刀具向y方向进1,偏差值 x 1 ( x 1)
相关文档
最新文档