传热学第六章

合集下载

传热学第六章

传热学第六章

6. 对流换热基础理论6.1 知识结构1. 对流换热的特点;2. 换热系数h 及其影响因素; 3. 对流换热问题的数学描述:(1) 假设:不可压缩牛顿型流体,常物性,无内热源,忽略粘性耗散; (2) 方程组(换热、能量、动量、质量)各项物理涵义;(3) 平板层流强制对流的精确解(边界层理论,数量级分析简化); (4) 平板层流强制对流的近似解(边界层理论,边界层积分)。

4. 实验求解方法: (1) 相似原理相似性质:彼此相似的现象,其同名准则必定相等。

相似判据:同类现象,单值性条件相似,同名已定准则相等,则现象相似。

相似解:实验关联式(准则方程式)。

(2) 准则确定方法:方程分析法、量纲分析法。

(3) 实验数据处理:误差分析,作图法求系数,数据回归。

(4) 实验关联式应用条件:适用范围,定性温度,特征尺度,特征流速,修正系数(入口、弯道、特性)。

5. 对流换热中常用准则(Nu 、Re 、Gr 、Pr )的定义式及其物理涵义。

6.2 重点内容剖析6.2.1 概述对流换热——流体与固体壁面之间的热交换。

t h q t hA ∆=⇒∆=Φ…………(h 的定义式) (6-1) 一、任务求取 h=f (流体、物性、流态、换热面形状等)的具体表达式 二、思路(对流换热量=附壁薄层导热量)()t A h t t A h yt Ax w x y ∆=-=∂∂-=Φ∞=0λ (6-2)()x y x ytt h 0=∂∂∆-=⇒λ (6-3)式中:h x —— 局部表面传热系数λ —— 流体导热系数Δt —— 流体与壁面传热温差求取表面传热系数的问题←求取附面层温度变化率←求取流体温度场三、研究方法1·理论解——建立微分方程组→求解2·实验解—— 相似原理,量纲分析→实验准则→实验关联式四、影响对流换热的因素1· 流动的动力(1) 自然对流——由于流体各部分密度不同而引起的流动,其流动强度与受热不均匀程度、流体性质和空间大小及位置有关。

传热学第六章对流换热

传热学第六章对流换热

6个未知量::速度 u、v、w;温度 t;压力 p;对流 换热系数h
6个方程:换热微分方程式、能量微分方程、x、y、z 三个方向动量微分方程、连续性微分方程
1 能量微分方程 微元体的能量守恒: ——描述流体温度场 假设:(1)流体的热物性均为常量,流体不做功 (2)无化学反应等内热源 由导热进入微元体的热量Q1 +由对流进入微元 体的热量Q2 = 微元体中流体的焓增H
2t 2t 2t 微元体导热热量:Q1 x 2 y 2 z 2 dxdydzd
微元体对流换热收支情况:
在d时间内, 由 x处的截面热对流进入微元体的热量为
' Qx c tudydzd
在d时间内, 由 x dx处的截面热对流流出微元体的热量为
由连续性方程知此项为0
t t t Q2 c u v w dxdydzd x y z
在d时间内, 微元体中流体 温度改变了(t / ) d , 其焓增为
t H c dxdydzd
能量微分方程
t t t t 2t 2t 2t u v w 2+ 2 2 x y z c x y z
boundary layer)
由于粘性作用,流体流速在靠近壁面 处随离壁面的距离的减小而逐渐降低; 在贴壁处被滞止,处于无滑移状态。
流场可以划分为两个区:边界层区与主流区 边界层区:流体的粘性作用起主导作用
主流区:速度梯度为0,τ=0;可视为无粘性理想流体

u , 牛顿粘性定律 y
2)热边界层(Thermal boundary layer) 热边界层:当壁面与流体间有温差时,会产生温度梯度很大的 温度边界层 热边界层厚度t (温度边 界层):过余温度(t -tw ) 为来流过余温度(tf - tw ) 的99%处定义为t的外边 界

传热学:第六章 热辐射及辐射传热

传热学:第六章 热辐射及辐射传热

本章总说明
❖ 物体的辐射特性包含发射特性和吸收特性 ❖ 课程中提到的温度包括两个: ❖ (1)工业高温,小于2000K——红外辐射 ❖ (2)太阳高温,近6000K——太阳辐射
6.1 热辐射的基本概念
6.1.1 热辐射
❖ 辐射——物体向外界以电磁波的方式发射携带 能量的粒子的过程
❖ 宏观-辐射是连续的电磁波传递能量的过程 ❖ 微观-辐射是不连续的光子传递能量的过程 ❖ 电磁波的本质是具有一定能量的光子(粒子),
❖ 引入立体角的目的是衡量表面辐射的方向特性 ❖ 表面在半球空间辐射的能量按不同方向分布的规
律只有对不同方位中相同的立体角来比较才有意 义
❖空间方位不同,可 以见到的辐射面积是 不同的
❖——表面的法线方 向最大
❖——切线方向最小,为零
❖ 表面在半球空间辐射的能量按不同方向分布的规 律只有在相同的辐射面积下来比较才有意义
❖ 几何上,“角”反映了在空间某一方向所占区域 的大小
❖ 平面几何中,用平面角表示在平面上所占区域的 大小
❖ 单位“弧度”
❖ 类似地,为了表示物体在三维空间中某一方向所 占空间的大小,引入“立体角”的概念
❖ 立体角(solid angle):球面面积As与球面半径 r2之比
❖ 单位:sr
As r2
❖ 波长不同,特性不同:
❖ ——短波的γ射线、X射线等,高能物理学家和
核工程师更感兴趣 ❖ ——波长在1mm-1m的电磁波称为微波,能穿
透塑料、陶瓷和玻璃等,但会被水等极性分子 吸收而产生内热源——微波炉的原理 ❖ ——波长大于1米的电磁波主要用于无线电技术 中 ❖ 热辐射中发出的电磁波通常称为热射线,本质 上也是电磁波
❖ 用“E”表示,W/m2 ❖ 辐射力表述了物体在一定温度下发射辐射能本

传热学第六章凝结与沸腾换热

传热学第六章凝结与沸腾换热
实验查明,几乎所有的常用蒸气,在洁净 的材料表面上都形成膜状凝结。
珠状凝结:凝结液体不能很好地润湿壁面,凝结 液体在壁面上形成一个个小液珠。珠状凝结时, 所形成的液珠不断长大,在非水平的壁面上,因 受重力作用,液珠长大到一定尺寸后就沿壁面滚 下。在滚下的过程中,一方面会合相遇的液珠, 合并成更大的液滴,另一方面也扫清了沿途的液 珠,更利于蒸汽的凝结。凝结液只是局部隔断了 蒸汽与壁面间的换热,因此其热阻要远小于膜状 凝结。
层的导热热阻是主要热阻这一特点,忽略次要因 素,是分析求解换热问题的一个典范。 Nusselt膜状理论:凝结换热系数h只决定于膜的 厚度。
合理简化假设: 1)常物性; 2)蒸汽静止,汽液界面上无对液膜的粘滞应力; 3)液膜的惯性力可以忽略;
4)汽液界面无温差,界面上液膜温度等于饱和温度,tδ=ts;
7.凝结表面的几何形状
纯净水蒸气凝结表面传热系数很大,凝结侧热阻不是主要部 分。若实际运行中有空气漏入,则表面传热系数明显下降。
对制冷剂凝结,主要热阻在凝结一侧,必须对凝结换热进行 强化。方法:
(1)用各种带有尖锋的表面,使在其上凝结的液膜减薄; (2)使已凝结的液体尽快从换热表面排泄掉。 (3)对水平管外凝结,可采用各种类型锯齿管或低肋管冷凝
亦适用。实验表明:当膜层Re<1600时为层流。
2.湍流膜状凝结换热实验关联式
Nu = Ga1/(
Prw Prs
)
1 4
(Re
3 4

253)
+
9200
式中:Ga — 伽里略数,Ga = gl 3 .
ν2
Prw — 以tw为定性温度的 Pr Ga、Re 、Prs — 以ts为定性温度
4.液膜过冷度及温度分布的非线性

传热学-6 单相流体对流传热特征数关联式

传热学-6 单相流体对流传热特征数关联式
注意:与受迫流动换热的区别 无限空间自由流动换热:空间大,自由流动不受 干扰。例:加热炉炉墙对外散热,管外散热及建 筑墙表面对外散热
有限空间自由流动换热:空间小,自由流动还受空 间的形状、尺寸的影响。
6-3 自然对流传热
竖板(竖管) 水平管 水平板 竖直夹层 横圆管内侧
流体与固体壁面之间的自然对流换热过程
(3)入口段,入口段热边界层厚度薄,局部表面传 热系数大。 入口段长度 x: x/d ≈ 0.05RePr (层流) x/d ≈ 60 (湍流)
6-1 管内强迫对流传热
(4) 管内流动的换热边界条件有两种: 恒壁温 tw=const 和恒热流 qw=const。
湍流:除液态金属外,两种边界条件的差别可忽略。 层流:两种边界条件下的换热系数差别明显。
柱的外径 d
(3)体胀系数:理想气体
V
1 T
其它流体(查物性参数表)
6-3 自然对流传热
注意:
(1)竖圆柱按上表与竖壁用同一个关联式只限于以
下情况:
d H
35 GrH1 4
(2)对竖平板、竖圆柱和横圆柱对应的 c和 n 查P155表6-6
6-3 自然对流传热
② 均匀热流 Nu B(Gr Pr)m
Re f Prf
d l
10
6-1 管内强迫对流传热
此经验公式误差较大,因为它没有考虑自由流 动换热的影响,对于流速低、温差大、管径粗的情 况是很难维持纯粹的受迫层流流动。此时自由流动 的影响不能忽略,必须加以修正。
6-1 管内强迫对流传热
四 过渡区( 2200 <Re < 104)强迫对流传热 准则方程式:
(5)自然对流的准则方程式:Nu=f (Gr, Pr);

传热学-第六章 单相对流

传热学-第六章 单相对流

8
a 基本依据: 定理,即一个表示n个物理量间关系的 量纲一致的方程式,一定可以转换为包含 n - r 个独立 的无量纲物理量群间的关系。r 指基本量纲的数目。
b 优点: (a)方法简单;(b) 在不知道微分方程的情况 下,仍然可以获得无量纲量 c 例题:以圆管内单相强制对流换热为例
(a)确定相关的物理量
相似原理将回答上述问题
2
2 相似原理的研究内容:研究相似物理现象之间的关系,
(1)物理现象相似:对于同类的物理现象,在相应的时刻与相 应的地点上与现象有关的物理量一一对应成比例。
(2)同类物理现象:用相同形式并具有相同内容的微分方程式 所描写的现象。
3 物理现象相似的特性
(1)同名特征数对应相等;
实验验证范围为: l / d 60,
Prf 0.7 ~ 16700, Ref 104。
32
(3)采用米海耶夫公式:
Nuf

0.021 Ref0.8
Prf0.43


Prf Prw
0.25


定性温度为流体平均温度 tf ,管内径为特征长度。
实验验证范围为: l / d 50,
式中,qm 为质量流量; tf、tf 分别为出口、进口截面上
的平均温度; tm 按对数平均温差计算:
tm

tf tf
ln ttww

tf tf

28
二. 管内湍流换热实验关联式 实用上使用最广的是迪贝斯-贝尔特公式:
Nuf 0.023 Ref0.8 Prfn
德拉[cd] 因此,上面涉及了4个基本量纲:时间[T],长度[L],质 量[M],温度[]
r=4

传热学第六章

传热学第六章
定性温度: Prw的定性温度为tw,其它物性的定性温度为t.。 式中C和.m的数值列于下表。
第六章 单相对流传热的实验关联式
第六章 单相对流传热的实验关联式
外掠平板流动
内部流动
6-3 内部强制对流换热实验关联式
6.3.1. 管槽内强制对流流动与换热的特点 1.两种流态
6.3.1.管槽内强制对流流动与换热的特点 2. 入口段与充分发展段
流动进口段与充分发展段
管内等温层流流动充分发展段具有以下特征: (a) 沿轴向的速度不变,其它方向的速度为零; (b) 圆管横截面上的速度分布为抛物线形分布;
6-2
可见,对于圆形管道,边界条件不同,对流换热强度也不同:
qw = 常数,Nu = 4.36,tw = 常数,Nu = 3.66。
6.3.3 管内层流强制对流换热关联式
对于长管,可以利用表中的数值进行计算。对于 短管,进口段的影响不能忽略,可用齐德-泰特关系式 计算等壁温管内层流换热的平均努塞尔数:
在计算弯管内的对流换热时, 应在直管基础上加乘弯管修正因
子c R 。
6.3.2 管内湍流强制对流换热关联式
6.3.2 管内湍流强制对流换热关联式
对上述公式的几点说明:
1)上述公式都属于经验公式,当采用公式进行对流换热计算 时,要注意每个公式的使用条件;
2)在对流换热的研究中,曾经提出过数以十计的关联式,以 上几个公式只是有代表性的几个;
相似原理指导下的实验研究仍然是解决复杂对 流换热问题的可靠方法。 相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
6-1 相似原理与量纲分析
6-1 相似原理与量纲分析
6.1.1物理现象相似的定义

传热学-第6章-单相对流传热的实验关联式

传热学-第6章-单相对流传热的实验关联式
4 6
0.25
0.14
10 Ref 1.75 10 ; 0.6 Prf 700; 适用参数范围:
定性温度:进出口截面流体平均温度的算术平均值 tf
L d
50
特征长度:管内径d
说明: (1) 非圆形截面的槽道,采用当量直径de 作为特征尺度; (2) 入口段效应则采用修正系数乘以各关联式; (3) 螺旋管中的二次环流的影响,也采用修正系数乘以 各关联式。 (4)短管修正
入口段长度
层流 紊流
l 0.05 RePr d
l 60 平均表面传热系数不需考虑入口效应 d
(3)热边界条件——均匀壁温和均匀热流两种 湍流:除液态金属外,两种条件的差别可不计 层流:两种边界条件下的换热系数差别明显。
(4)特征速度——取截面的平均流速,并通过流量获得
二、 影响管内对流换热的几个因素
二、管内强迫对流传热特征数关联式
换热计算时,先计算Re判断流态,再选用公式 1. 紊流——迪图斯-贝尔特(Dittus-Boelter)关联式:
Nuf 0.023Re Pr
0.8 f
n f
0.4 n 0.3
(tw tf ) (tw tf )
适用的参数范围: 104 Ref 1.2 105 ; 0.7 Prf 120;
y 0
t h t y tw

y 0
根据物理量场相似的定义
t h t y y0 tw
Ch Cl t h t y C tw
ChCl 1 C
二、 相似原理
相似原理主要包含以下内容:
物理现象相似的定义; 物理现象相似的性质; 相似特征数之间的关系; 物理现象相似的条件 。 (1)物理现象相似的定义 物理现象的相似以几何相似为前提。两个同类图形对应 尺度成同一比例,则这两个同类图形几何相似。几何相似的两 个图形中对应的空间点之间的距离必然成同一比例。 物理现象相似——同类物理现象之间所有同名物理量场都相 似,即同名的物理量在所有对应时间、对应地点的数值成比例。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凝汽器
17
2. 蒸气流速: 前面的理论分析忽略了蒸气流速的影响。
u 向上 液膜增厚 h ;u 液膜破裂 h u 向下 液膜减薄 h ; u 液膜破裂 h
3. 过热蒸气: 实验证实 h-h’ 代替 r 即可
4. 液膜过冷度及温度分布的非线形: 只要用r’ 代替计算公式中的 r,即可:
c1
0
u g(l v ) (y 1 y 2 )
2l
2
t y
c1
t c1 y c2
y 0, t tw, c2 tw y , t ts , ts c1 tw
c1
ts
tw
t
tw
y
(ts
tw
)
7
?x 处的质量流量
M
dM
0
0 ludy
l (l v )g y 1 y 2 dy
59.1
说明原来假设液膜为层流成立。换热量可按牛顿冷却公 式计算:
hA(ts tw ) 1.57 10 4 0.32 2 2.83 10 3 W
凝结蒸汽量为:
qm
r
2.83 103 2257 103
1.25 103
4.5kg/h
16
§ 7-3 影响膜状凝结因素的讨论
1. 不凝结气体:
7)v<<l, l可忽略不计;8)液膜表面平整无波动。
5
3.数学描述:
取如右图所示的坐标系, 因为液膜具有边界层的特性, 故满足边界层微分方程组, 但要加上重力项。
u v 0 x y
l u
u x
v
u y
dp dx
l g
l
2u y 2
u
t x
v t y
al
2t y 2
p 0 y
Bernoulli方程 边界层外
一、 定义: 物质由液态变为气态时发生的换热叫沸腾换热。 应用:电站中的水冷壁;工业锅炉中的省煤器;烧开水;
冰箱中氟里昂的蒸发等。
22
二、 沸腾换热的分类
1. 按流动动力分
a). 大容器(或池)沸腾(Pool boiling):
加热壁面沉浸在有自由表面液体中所发生的沸腾。
b). 强制对流沸腾(Forced convection boiling):
r r 0.68cp (ts tw ) 18
5. 管子排数
n排 特征长度 d nd
由于凝结液落下时要产生 飞溅以及对液膜的冲击扰 动,会使 h 增大。
6. 管内冷凝
19
7. 凝结表面情况
凝结换热的放热系数一般比较大,故在常规冷凝器中
其热阻不占主导地位。但实际运行中凝汽器的泄漏是不 可避免的,空气的漏入使冷凝器平均表面传热系数明显 下降。实践表明,采用强化措施可以收到实际效益。某 些制冷剂的冷凝器中,强化有更大现实意义。
液体的主体温度等于相应压力下饱和温度时的沸腾换热。
例如烧开水
23
三、大容器饱和沸腾曲线
4个区域(电阻丝加热) A 区 t<4℃ 自然对流
pure convection 过热液体对流到自由液 面后蒸发 B,C核态沸腾区 Nucleate boiling B 孤立汽泡区 individual bubble regime 汽泡彼此不干扰 对液体扰动大 换热强 C 汽块区 Continuous column
第七章
凝结与沸腾换热
(Condensation And Boiling Heat Transfer)
1
§7-1 凝结换热现象
一、凝结换热 • 蒸汽在凝结过程中与固体壁面发生的换热。 •各种液体 二、凝结换热的分类
1. 膜状凝结(filmwise condensation): 在壁面形成完整的液膜的凝结。
强化的原则:尽量减薄粘滞在换热表面上液膜的厚度。
实现的方法:
尖锋的表面
使凝结液尽快从换热表面上排泄掉
如低肋管、纵向沟槽等
表面改性,使膜状凝结变为珠状凝结
表面涂层(油脂、纳米技术)、离子注入
20
21
§ 7-4 沸腾换热现象
(Boiling heat transfer phenomena)
沸腾与前面介绍的凝结正好是正反两个过程 许多学科中正反过程的(物理机制)公式是一样的 传热有时不一样(管内强制对流) 沸腾比凝结复杂得多
p gv x 0
dp dx
v g
(l
v )g
l
2u y 2
0
2t y 2
0
y 0, u 0, t tw,
y ,
du 0, dy
t ts 6
4. 求解
du dyg(l lv )yc1
u
g(l 2l
v )
y2
c1 y
c2
y 0, u 0 c2 0
du dy
g(l v) l
Ja
r
1
c p (ts tw )
惯性力项及液膜过冷度的影响均可略而不计。
13
实验表明,液膜由层流转变为湍流的临界雷诺数为 1600。
二、 湍流膜状凝结换热:
对于Re >1600 的湍流液膜,热量的传递除了靠近壁面极薄的层 流底层仍依靠导热方式外,层流底层以外以湍流传递为主,换热比 层流时大为增强。对于底部已达到湍流状态的竖壁凝结换热,其沿 整个壁面的平均表面传热系数按下式计算:
• 珠状凝结的特点是小液珠在壁面形成、长大、脱落,沿途清扫液 珠,壁面裸露,蒸气直接与壁接触,凝结成新的液珠。 • 在珠状凝结时,蒸气与冷却壁之间没有液膜热阻,故传热大的加 强,一般
hd 5 10hf
• 珠状凝结好 • 难于获得
4
§7-2 膜状凝结分析解及实验关联式
一、纯净蒸气层流膜状凝结分析解 凝结换热是一个非常复杂的现象,如要考虑所有因素将无法进
dp dx
l g
sin
l
1
2u y 2
h
0.943
rg3l
2 l
l L(ts
s
in
tw )
4
水平管 Nusselt 采用图解积分得
1
hH
0.729
rg3l l d (ts
2 l
tw
)
4
球表面
hH 0.77L / d 1/ 4
hV
当 L / d 2.85时, hH hV
1
hS
1/
4
1.13
9.8 2257103 985.42 2.825104 0.3 (100
0.683 98)
1/
4
1.57 10 4 W/(m2 K)
15
核算Re准则:
Re 4hL(ts tw )
r
Re
4 1.57 10 4 0.3(100 98) 2257 10 6 2.825 10 4
2. 珠状凝结(dropwise condensation): 凝结液以液珠的形式向下滚落时形成的对流换热。
2
是否形成膜状凝结主要取决于凝结液的润湿能力,而润湿能力 又取决于表面张力。表面张力小的润湿能力强。实践表明,几乎所 有的常用蒸气在纯净条件下在常用工程材料洁净表面上都能得到膜 状凝结。
3
• 在工业中常用流体的润湿能力都比较强。凝结时,先在壁面上凝 结成液体,沿壁面下流,逐渐形成液膜。 • 膜状凝结时,壁面总被液膜覆盖,凝结时放出的潜热必须穿过液 膜才能传到壁面上,故液膜是换热的主要热阻。
0.826
rg3l l d (ts
2 l
tw
)
4
10
6. 几点说明
定性温度,除r 用 ts 外其余皆为(tw+ts)/2
公式使用范围,层流 Re<1600
Reynolds Number
Re de uL
当量直径
de
4f U
4W
W
4
Re 4 uL 4M
h(ts tw )L rM
regime扰动更强q上升
CD
F
AB
E
24
D过度沸腾 Transition boiling regime 汽泡迅速形成,许多汽泡连成一片,在壁面上形成一层汽
膜,汽膜的导热系数低,q
稳定膜态沸腾 Stable film boiling regime 汽泡的产生和脱离速度几乎不变,在壁面上形成稳定的汽膜
由于不凝结气体形成气膜,故:
1).蒸气要扩散过气膜,形成阻力;
2).气膜导致蒸气分压力降低,从而使 ts 降低:
h
1.13
rg3l l L(t s
2 l
tw
)
1/
4
q
h(t s
tw)
1.13
rg3l l L
2 l
1/ 4 (t s
tw )3/4
ts q
严重性:1% 的不凝结气体能使 h降低 60%
行分析。传热学中惯用的方法是进行简化,忽略次要因素,突出主 要因素,使理论分析可以进行。Nusselt 1916年成功地用理论分析 法求解了膜状凝结问题。下面即为此理论:
1. 物理问题:蒸气在冷壁面凝结,形成液膜,蒸气凝结将热量传 给冷壁面,求换热系数。
2. 基本假设:
1)常物性;2)蒸气是静止的,汽液界面上无对液膜的粘滞应 力; 3)液膜惯性力可以忽略; 4)汽液界面上无温差,界面上液 膜温度等于饱和温度;5)膜内温度分布是线形的,即认为液膜内 的热量转移只有导热,而无对流作用;6)液膜的过冷度可以忽略;
u 2 L2 uL
重力 惯性力 粘性力 粘性力
Jacob Number
Ja
r cp (ts tw )
潜热 显热
Condensation
Number
相关文档
最新文档