【恒心】2015届河南省八市重点高中高三第二次联考数学(理科)试题及参考答案【扫描版】

合集下载

河南省八市重点高中2015届高三教学质量监测考试+数学(理)试题(解析版)

河南省八市重点高中2015届高三教学质量监测考试+数学(理)试题(解析版)

2015年河南省八市重点高中高考数学模拟试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x||x+1|≤2},B={x|y=lg(x2﹣x﹣2)},则A∩∁R B()A.[3,﹣1)B.[3,﹣1] C.[﹣1,1] D.(﹣1,1]【考点】:交、并、补集的混合运算.【专题】:集合.【分析】:求出集合A,B的等价条件,即可得到结论.【解析】:解:A={x||x+1|≤2}={x|﹣3≤x≤1},B={x|y=lg(x2﹣x﹣2)}={x|x2﹣x﹣2>0}={x|x >2或x<﹣1},则∁R B={x|﹣1≤x≤2},则A∩∁R B={x|﹣1≤x≤1},故选:C【点评】:本题主要考查集合的基本运算,要求熟练掌握集合的交并补运算,比较基础.2.(5分)如图所示的复平面上的点A,B分别对应复数z1,z2,则=()A.﹣2i B.2i C.2 D.﹣2【考点】:复数代数形式的乘除运算.【专题】:数系的扩充和复数.【分析】:由图求出z1,z2,代入后利用复数代数形式的乘除运算化简求值.【解析】:解:由图可知,z1=﹣1+i,z2=2+2i,则.故选:A.【点评】:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.(5分)设函数f(x),g(x)分别为定义在R上的奇函数和偶函数且满足f(x)+g(x)=x3﹣x2+1,则f(1)=()A.﹣l B.l C.﹣2 D.2【考点】:函数奇偶性的性质.【专题】:函数的性质及应用.【分析】:根据题意,计算出f(1)+g(1)、﹣f(1)+g(1)的值即可.【解析】:解:由题可知:f(1)+g(1)=1﹣1+1=1,f(﹣1)+g(﹣1)=﹣1﹣1+1=﹣1,由∵f(x),g(x)分别为定义在R上的奇函数和偶函数,∴﹣f(1)+g(1)=﹣1,所以f(1)=1,故选:B.【点评】:本题考查函数的奇偶性,属于基础题.4.(5分)已知双曲线=1(a>0,b>0)的离心率为2,则双曲线的渐近线方程为()A.B.C.D.【考点】:双曲线的简单性质.【专题】:计算题;圆锥曲线的定义、性质与方程.【分析】:根据题意,得双曲线的渐近线方程为y=±x,再由双曲线离心率为2,得到c=2a,由定义知b==a,代入即得此双曲线的渐近线方程.【解析】:解:∵双曲线C方程为:=1(a>0,b>0)∴双曲线的渐近线方程为y=±x又∵双曲线离心率为2,∴c=2a,可得b== a因此,双曲线的渐近线方程为y=±x故选:D.【点评】:本题给出双曲线的离心率,求双曲线的渐近线方程,着重考查了双曲线的标准方程与基本概念,属于基础题.5.(5分)某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有()A.12种B.24种C.36种D.72种【考点】:计数原理的应用.【专题】:计算题;概率与统计.【分析】:根据题意,分2步进行【分析】:①在4个人中任取2人,作为一个整体,②将这个整体与其他3人进行全排列,对应3个活动小组,分别计算这2步的情况数目,由分步计数原理计算可得答案.【解析】:解:根据题意,分析可得,4个人中有2个人分在同一个组,在4个人中任取2人,作为一个整体,有C42=6种情况,将这个整体与其他3人进行全排列,对应3个活动小组,有A33=6种情况,则共有6×6=36种不同的报名方法,故选:C.【点评】:本题考查分步计数原理的运用,关键是认真分析题意,确定计算的步骤.6.(5分)已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥外接球的体积是()A.B.C.D.【考点】:由三视图求面积、体积.【专题】:空间位置关系与距离.【分析】:由该棱锥的三视图判断出该棱锥的几何特征,以及相关几何量的数据,再求出该棱锥外接球的半径和体积.【解析】:解:由该棱锥的三视图可知,该棱锥是以边长为的正方形为底面,高为2的四棱锥,做出其直观图所示:则PA=2,AC=2,PC=,PA⊥面ABCD,所以PC即为该棱锥的外接球的直径,则R=,即该棱锥外接球的体积V==,故选:C.【点评】:本题考查了由三视图求几何体的外接球的体积,解题的关键是根据三视图判断几何体的结构特征及相关几何量的数据.7.(5分)执行如图的程序框图,当k的值为2015时,则输出的S值为()A.B.C.D.【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序框图,可得程序框图的功能是计算并输出S=0+++…+的值,用裂项法即可求值.【解析】:解:模拟执行程序框图,可得第一次循环,S=0+,n=1<2015;第二次循环,S=0++,n=2<2015;第二次循环,S=0++,n=3<2015;…当n=2015时,S=0+++…+=1﹣…+﹣=1﹣=,此时满足2015≥2015,退出循环,输出S的值为:.故选:C.【点评】:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型⇒③解模.8.(5分)已知,则=()A.B.C.D.【考点】:两角和与差的正弦函数;三角函数中的恒等变换应用.【专题】:三角函数的求值;三角函数的图像与性质.【分析】:首先对函数的关系式进行灵活的恒等变换,进一步利用诱导公式和2倍角公式进行变形,进一步求出结果.【解析】:解:===又由于===由==1﹣故原式=故选:B【点评】:本题考查的知识要点:三角函数关系式的恒等变换,诱导公式的应用,及相关的运算问题,主要考查学生对关系式的灵活变换能力.9.(5分)已知x,y满足区域D:,给出下面4个命题:p1:∀x,y∈D,2x﹣y≥2p2:∂x,y∈D,2x﹣y≤2p3:∂x,y∈D,p4:∀x,y∈D,,其中真命题是()A.p1,p3 B.p2,p3 C.p1,p4 D.p2,p4【考点】:简单线性规划.【专题】:计算题;作图题;不等式的解法及应用;简易逻辑.【分析】:由题意作出其平面区域,令z=2x﹣y,由几何意义可知﹣6≤z≤3;再由表示区域内的点(x,y)与定点(﹣2,﹣1)的连线的斜率,从而确定答案即可.【解析】:解:由题意作出其平面区域,如图所示的阴影部分△ABC,令z=2x﹣y,则由图象可知,直线2x﹣y﹣z=0经过点C时,z取得最大值,经过点A时,z取得最小值;由于C(2,1),A(﹣1,4);故﹣6≤z≤3;故p2:∂x,y∈D,2x﹣y≤2正确;而表示区域内的点(x,y)与定点(﹣2,﹣1)的连线的斜率,故结合图象可知,≤≤5,故p4:∀x,y∈D,正确;故选D.【点评】:本题考查了全称命题与特称命题的真假性的判断及简单线性规划,作图要细致认真,属于中档题.10.(5分)已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点坐标为(3,y0)时,△AEF为正三角形,则此时△OAB的面积为()A.B.C.D.【考点】:抛物线的简单性质.【专题】:综合题;圆锥曲线的定义、性质与方程.【分析】:过F作AE的垂线,垂足为H,则H为AE的中点,利用A点坐标为(3,y0),可求p,可得抛物线的方程,求出直线AF的方程,与抛物线方程联立求出A,B的坐标,即可求出△OAB的面积.【解析】:解:如图所示,过F作AE的垂线,垂足为H,则H为AE的中点,因为A点坐标为(3,y0),所以AE=3+,EH=p,所以2p=3+,所以p=2,所以y2=4x,此时A(3,2),k AF=,所以直线AF的方程为(x﹣1),代入抛物线方程可得3(x﹣1)2=4x,解得x=3或,所以y=2或﹣,所以△AOB的面积为=,故选:A.【点评】:本题考查抛物线的定义、标准方程,以及简单性质的应用,求出抛物线方程、直线AF的方程是解题的关键.11.(5分)已知函数f(x)=﹣5,若对任意的,都有f(x1)﹣g(x2)≥2成立,则a的取值范围是()A.(0,+∞)B.[1,+∞)C.(﹣∞,0)D.(﹣∞,﹣1]【考点】:利用导数研究函数的单调性;抽象函数及其应用.【专题】:函数的性质及应用;导数的综合应用.【分析】:根据不等式恒成立,利用参数分类法进行转化为a≥x﹣x2lnx在≤x≤2上恒成立,构造函数h(x)=x﹣x2lnx,求函数的导数,利用函数单调性和导数之间的关系求出函数的最值即可.【解析】:解:函数g(x)的导数g′(x)=3x2﹣2x=x(3x﹣2),∴函数g(x)在[,]上递减,则[,2]上递增,g([)=,g(2)=8﹣4﹣5=﹣1,若对任意的,都有f(x1)﹣g(x2)≥2成立,即当≤x≤2时,f(x)≥1恒成立,即恒成立,即a≥x﹣x2lnx在≤x≤2上恒成立,令h(x)=x﹣x2lnx,则h′(x)=1﹣2xlnx﹣x,h′′(x)=﹣3﹣2lnx,当在≤x≤2时,h′′(x)=﹣3﹣2lnx<0,即h′(x)=1﹣2xlnx﹣x在≤x≤2上单调递减,由于h′(1)=0,∴当≤x≤1时,h′(x)>0,当1≤x≤2时,h′(x)<0,∴h(x)≤h(1)=1,∴a≥1.故选:B.【点评】:本题主要考查不等式恒成立问题,构造函数利用参数分离法结合函数单调性和导数之间的关系转化为求函数的最值是解决本题的关键.12.(5分)已知定义域为R的连续函数f(x),若f(x)满足对于∀x∈R,∂m∈R(m≠0),都有f(m+x)=﹣mf(x)成立,则称函数f(x)为“反m倍函数”,给出下列“反m倍函数”的结论:①若f(x)=1是一个“反m倍函数”,则m=﹣1;②f(x)=sinπx是一个“反1倍函数”;③f(x)=x2是一个“反m倍函数”;④若f(x)是一个“反2倍函数”,则f(x)至少有一个零点,其中正确结论的个数是()A.l B.2 C. 3 D. 4【考点】:抽象函数及其应用.【专题】:函数的性质及应用.【分析】:根据“反m倍函数”的定义分别进行判断即可.【解析】:解:根据“反m倍函数”的定义,∵∀x∈R,∂m∈R(m≠0),都有f(m+x)=﹣mf(x)成立,∴f(m+x)+mf(x)=0成立,①若f(x)=1,则f(x+m)+mf(x)=0,∴m+1=0,即m=﹣1,故①正确,②若f(x)=sinπx,则f(1+x)+f(x)=sinπ(x+1)+sinπx=﹣sinπx+sinπx=0,故②正确,③若f(x)=x2,则(x+m)2+mx2=0,即(m+1)x2+2mx+m2=0,则,此时方程无解,故不存在m,故③错误.④若f(x+2)+2f(x)=0,取x=0,若f(2),f(0)有一个为0即正确,若都不为0,则f (2),f(0)互为相反数,则f(2)f(0)<0,∴在区间(0,2)内一定有零点,故④正确,故正确的是①②④,故选:C.【点评】:本题主要考查命题的真假判断,根据抽象函数的表达式结合“反m倍函数”的定义是解决本题的关键.二、填空题:(本太题共4小题,每小题5分,共20分)13.(5分)已知的展开式中含x2项的系数为12,则展开式的常数项为160.【考点】:二项式系数的性质.【专题】:二项式定理.【分析】:先求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式中含x2项的系数,再根据x2项的系数为12,求得a的值,即可求得展开式中的常数项的值.【解析】:解:由于的展开式的通项公式为T r+1=•a r•x3﹣r,令3﹣r=2,可得r=1,故展开式中含x2项的系数为6a=12,可得a=2.再令3﹣r=0,可得r=3,故展开式的常数项为•23=160,故答案为:160.【点评】:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.14.(5分)已知不等式,照此规律,总结出第n(n∈N*)个不等式为1+<.【考点】:归纳推理.【专题】:推理和证明.【分析】:从已知的三个不等式分析,从左边各加数的分母以及右边分子与分母的关系入手得到规律.【解析】:解:由已知三个不等式可以写成1+,1+,1+,照此规律得到第n个不等式为1+<;故答案为:1+<(n∈N+).【点评】:本题考查了归纳推理;关键是由已知的三个不等式发现与序号的关系,总结规律.15.(5分)如图,已知Rt△ABC中,点O为斜边BC的中点,且AB=8,AC=6,点E为边AC上一点,且,若,则λ=.【考点】:平面向量数量积的运算.【专题】:平面向量及应用.【分析】:根据已知条件及图形得出:,,并且,所以由即可得到=﹣20,进行数量积的运算即可求得λ.【解析】:解:,;∵∠BAC=90°,∴;又;∴;∴.故答案为:.【点评】:考查向量加法的平行四边形法则,向量加法的几何意义,以及数量积的运算,两非零向量垂直的充要条件.16.(5分)巳知△ABC的内角A、B、C对应的边分别为a,b,c,且关于x的方程2a2+2x2+b2=2bx+2ax只有一个零点,,S△ABC=sinA•sinB,则边c=1.【考点】:余弦定理;正弦定理.【分析】:由关于x的方程的判别式等于零求得b=a;根据,求得cosC=﹣,C=;由正弦定理求得a=csinA,b=csinB,代入S△ABC=sinA•sinB,求得边c的值.【解析】:解:△ABC中,关于x的方程2a2+2x2+b2=2bx+2ax,即2x2﹣2bx﹣2ax+2a2+b2=0,根据此方程有唯一解,可得△=﹣8(2a2+b2)=0,∴b=a.又,∴3acosC+c•cosA=0,即3sinAcosC+sinCcosA=0,故2sinAcosC+sin(A+C)=0,即2acosC+b=0,即2acosC+a=0,∴cosC=﹣,C=.由余弦定理可得c2=a2+b2﹣2ab•cosC=5a2,∴c=a.∵==,∴a=csinA,b=csinB,∴S△ABC=sinA•sinB=•sinC=csinA•csinB,∴c2=1,∴c=1.【点评】:本题主要考查二次函数的性质,正弦定理和余弦定理的应用,属于中档题.三、解答题:(共4个小题,每1小题12分,共48分)17.(12分)已知数列{a n}的前n项和为S n,对于任意的正整数n,直线x+y=2n总是把圆平均分为两部分,各项均为正数的等比数列{b n}中,b6=b3b4,且b3和b5的等差中项是2a3.(1)求数列{a n},{b n}的通项公式;(2)若c n=a n b n,求数列{c n}的前n项和T n.【考点】:数列的求和.【专题】:点列、递归数列与数学归纳法.【分析】:(1)由直线与圆的位置关系可得S n=n2,所以a1=S1=1,所以a n=2n﹣1;由b6=b3b4,得b1=1,又b3和b5的等差中项是2a3,得q=2,从而;(2)根据T n=1+3×2+5×22+…+(2n﹣1)×2n﹣1,与2T n=2+3×22+5×23+…+(2n﹣1)×2n,可得﹣T n,即得T n=3+(2n﹣3)2n.【解析】:解:(1)由于x+y=2n总是将圆平均分为两部分,所以,即S n=n2,所以a1=S1=1,当n≥2时=2n﹣1,经检验n=1时也成立,所以a n=2n﹣1;等比数列{b n}中由于b6=b3b4,即,故b1=1,设公比q>0,由b3和b5的等差中项是2a3,及2a3=2×(2×3﹣1)=10,可知b3+b5=20,所以q2+q4=20,解得q=2,从而;(2)若c n=a n b n,则T n=a1b1+a2b2+…+a n b n,所以T n=1+3×2+5×22+…+(2n﹣1)×2n﹣1,2T n=2+3×22+5×23+…+(2n﹣1)×2n,两式相减,得﹣(2n﹣1)2n==﹣3+2×2n﹣(2n﹣1)2n=﹣3+(3﹣2n)2n,所以T n=3+(2n﹣3)2n.【点评】:本题考查等比数列的通项公式、等差中项的应用、错位相减法求和,考查转化与化归思想、运算求解能力和数据处理能力,属于中档题.18.(12分)某市在2 015年2月份的高三期末考试中对数学成绩数据统计显示,全市10000名学生的成绩服从正态分布N (115,25),现某校随机抽取了50名学生的数学成绩分析,结果这50名同学的成绩全部介于80分到140分之间现将结果按如下方式分为6组,第一组[80,90),第二组[90,100),…第六组[130,140],得到如右图所示的频率分布直方图(1)试估计该校数学的平均成绩(同一维中的数据用该区间的中点值作代表);(2)这50名学生中成绩在120分(含120分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X,求X的分布列和期望附:若,则P(u﹣ς<X<u+ς)=0.6826,P(u﹣2ς<X<u+2ς)=0.9544,P(u﹣3ς<X<u+3ς)=0.9974.【考点】:频率分布直方图;离散型随机变量的期望与方差.【专题】:应用题;概率与统计.【分析】:(1)根据频率和为1,求出成绩在[120,130)的频率,再计算这组数据的平均数;(2)根据正态分布的特征,计算50人中成绩在130分以上以及[120,140]的学生数,得出X的可能取值,计算对应的概率,列出X的分布列,计算期望值.【解析】:解:(1)根据频率分布直方图,得;成绩在[120,130)的频率为1﹣(0.01×10+0.024×10+0.03×10+0.016×10+0.008×10)=1﹣0.88=0.12;所以估计该校全体学生的数学平均成绩为85×0.1+95×0.24+105×0.3+115×0.16+125×0.12+135×0.08=8.5+22.8+31.5+18.4+15+10.8=107,所以该校的数学平均成绩为107;(2)因为=0.0013,根据正态分布:P(115﹣3×5<X<115+3×5)=0.9974,所以P(X≥130)=,又0.0013×10000=13,所以前13名的成绩全部在130分以上;根据频率分布直方图得,这50人中成绩在130分以上(包括130分)的有0.08×50=4人,而在[120,140]的学生共有0.12×50+0.08×50=10,所以X的可能取值为0、1、2、3,所以P(X=0)===,P(X=1)===,P(X=2)===,P(X=3)===;所以X的分布列为数学期望值为EX=0×+1×+2×+3×=1.2.【点评】:本题考查了频率分布直方图的应用问题,也考查了正态分布的应用问题,考查了离散型随机变量的分布列与期望的计算问题,是综合性题目.19.(12分)如图所示的多面体ABC﹣EFGH中,AB∥EG,AC∥EH,且△ABC与△EGH相似,AE⊥平面EFGH,EF=FG=,且AC=EH,AE=EG(1)求证,BF⊥EG;(2)求二面角F﹣BG﹣H的余弦值.【考点】:二面角的平面角及求法;直线与平面垂直的性质.【专题】:空间位置关系与距离;空间角.【分析】:(1)取EG的中点O,连结OF、OB,通过线面垂直的判定定理及性质定理即得结论;(2)以O为原点,以OF、OG、OB所在直线的方向分别为x、y、z轴的正方向建立空间直角坐标系,则所求值即为平面GBF的一个法向量与平面GBH的一个法向量的夹角的余弦值的绝对值的相反数,计算即可.【解析】:(1)证明:∵AB∥EG,且△ABC∽△EGH,AC=EH,∴AB=EG,取EG的中点O,连结OF、OB,∴OB∥AE,又∵AE⊥平面EFGH,∴OB⊥平面EFGH,又∵EG⊂平面EFGH,∴OB⊥EG,又∵EF=FG=,∴OF⊥EG,∵OF∩OB=O,∴EG⊥平面OBF,∵BF⊂平面OBF,∴BF⊥EG;(2)解:由(1)知OF、OG、OB两两垂直,如图,以O为原点,以OF、OG、OB所在直线的方向分别为x、y、z轴的正方向建立空间直角坐标系,∵GH=1,EH=,∠EGH=90°,∴EG==2,∵EF=FG=,∴OF=1,∵AE=EG,∴OB=2,∴F(1,0,0),G(0,1,0),B(0,0,2),H(﹣1,1,0),∴=(1,﹣1,0),=(0,﹣1,2),=(﹣1,0,0),设平面GBF的一个法向量为=(x1,y1,z1),由,得,令z1=1,得=(2,2,1),设平面GBH的一个法向量为=(x2,y2,z2),同理可得=(0,2,1),∴===,由图可知,二面角F﹣BG﹣H为钝角,∴其余弦值为.【点评】:本题考查空间线面位置关系的判断及求二面角,考查空间想象能力、运算求解能力及推理论证能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆=1(a>b>0)的左右焦点分割为F1,F2,左右端点分别为曲A1,A2,抛物线y2=4x与椭圆相交于A,B两点且其焦点与F2重合,AF2=(Ⅰ)求椭圆的方程;(Ⅱ)过点作直线l与椭圆相交于P,Q两点(不与A1,A2重合),求与夹角的大小.【考点】:椭圆的简单性质.【专题】:计算题;压轴题;向量与圆锥曲线.【分析】:(Ⅰ)根据题意,设A(x0,y0),(x0>0,y0>0),求出抛物线y2=4x的焦点坐标,可得c2=1,进而分析可得A的坐标,代入椭圆的方程可得有+=1,解可得a2=4,进而可得b2=3,即可得椭圆的方程;(Ⅱ)根据题意,分两种情况讨论:①当直线l的斜率不存在时,l的方程为x=,②当直线l的斜率存在且不为0时,设其斜率为k,则直线的方程为y=k(x﹣);每种情况下求出与的值,再求其乘积均可得•=﹣1,由向量数量积的性质分析可得答案.【解析】:解:(Ⅰ)根据题意,设A(x0,y0),(x0>0,y0>0),抛物线y2=4x与椭圆相交于A,B两点且其焦点与F2重合,而抛物线y2=4x的焦点为(1,0),则C2=1,由题意可得AF2=x0+=x0+1=,故x0=;所以y02=4×=,则y0=,则A(,),有+=1,解可得a2=4,又由c2=1,则b2=3,故椭圆的方程为+=1;(Ⅱ)①当直线l的斜率不存在时,l的方程为x=,由于,可得=1﹣=,所以y=±,所以P(,)Q(,﹣),因为A 2(2,0),所以=﹣1,=1,所以•=﹣1,所以所以A2P与A2Q垂直,②当直线l的斜率存在且不为0时,设其斜率为k,则直线的方程为y=k(x﹣);联立可得,⇒49(3+4k2)x2﹣112k2x+16k2﹣12×49=0,设P(x1,y1),Q(x2,y2),A2(2,0),则x1+x2=,x1•x2=,=,═•==﹣1,所以A2P与A2Q垂直,综合可得所以与夹角的大小为90°.【点评】:本题考查直线与椭圆方程的综合运用,涉及抛物线的简单性质,解题注意圆锥曲线的方程的标准形式,本题求出抛物线的焦点是解题的突破点之一.21.(12分)已知函数f(x)=alnx﹣x+1,g(x)=﹣x2+(a+1)x+1.(1)若对任意的x∈[1,e],不等式f(x)≥g(x)恒成立,求实数a的取值范围;(2)若函数h(x)在其定义城内存在实数x0,使得h(x0+k)=h(x0)+h(k)(k≠0且为常数)成立,则称函数h(x)为保k阶函数,已知H(x)=f(x)﹣(a﹣1)x+a﹣1为保a阶函数,求实数a的取值范围.【考点】:利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】:导数的综合应用.【分析】:(1)把对任意的x∈[1,e],不等式f(x)≥g(x)恒成立,转化为a(x﹣lnx)≤x2﹣2x恒成立,再由x﹣lnx>0得恒成立.构造函数F(x)=,利用导数求其最小值得答案;(2)由H(x)=f(x)﹣(a﹣1)x+a﹣1=alnx﹣x+1﹣ax+x+a﹣1=alnx﹣ax+a(x>0),根据保a阶函数的概念列式,整理得到ln(x0+a)﹣(x0+a)+1=lnx0﹣x0+1+lna﹣a+1,即ln(x0+a)=lnx0+lna+1,转化为,由x0>0可得实数a的取值范围是.【解析】:解:(1)∵对任意的x∈[1,e],不等式f(x)≥g(x)恒成立,即alnx﹣x+1≥﹣x2+(a+1)x+1恒成立,a(x﹣lnx)≤x2﹣2x恒成立,∵x∈[1,e],∴lnx≤lne=1≤x,∵上式等号不能同时成立,∴lnx<x,即x﹣lnx>0,∴恒成立.令F(x)=,∴a≤F(x)min(x∈[1,e]),由于,由于1≤x≤e,∴x﹣1>0,x+2﹣2lnx=x+2(1﹣lnx)>0,∴F′(x)>0.∴函数F(x)=在区间[1,e]上单调递增,∴F(x)≥F(1)=.∴a≤﹣1;(2)∵H(x)=f(x)﹣(a﹣1)x+a﹣1=alnx﹣x+1﹣ax+x+a﹣1=alnx﹣ax+a(x>0),根据保a阶函数的概念,∴存在x0>0,使得H(x0+a)=H(x0)+H(a),即a[ln(x0+a)﹣(x0+a)+1]=a(lnx0﹣x0+1)+a(lna﹣a+1)=a(lnx0﹣x0+1+lna﹣a+1),∴ln(x0+a)﹣(x0+a)+1=lnx0﹣x0+1+lna﹣a+1,即ln(x0+a)=lnx0+lna+1,即,∴.∴,∵x0>0,∴a.∴实数a的取值范围是.【点评】:本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了数学转化与化归、分离参数等数学思想方法,着重考查恒成立问题的解法,难度较大.四、选做题:【选修4-1:几何证明选讲】(共1小题,满分10分)22.(10分)已知BC为圆O的直径,点A为圆周上一点,AD⊥BC于点D,过点A作圆O的切线交BC的延长线于点P,过点B作BE垂直PA的延长线于点E.求证:(1)PA•PD=PE•PC;(2)AD=AE.【考点】:与圆有关的比例线段.【专题】:选作题;推理和证明.【分析】:(1)证明△APD∽△BPE,可得AP•PE=PD•PB,因为PA,PB分别为圆O的切线与割线,所以PA2=PB•PC,两式相除,即可证明PA•PD=PE•PC;(2)连接AC,DE,证明A,D,B,E四点共圆且AB为直径,即可得出AD=AE.【解析】:证明:(1)因为AD⊥BP,BE⊥AP,所以△APD∽△BPE,所以,所以AP•PE=PD•PB,因为PA,PB分别为圆O的切线与割线,所以PA2=PB•PC,所以=,所以PA•PD=PE•PC;(2)连接AC,DE,因为BC为圆O的直径,所以∠BAC=90°,所以AB⊥AC.因为=,所以AC∥DE,所以AB⊥DE,因为AD⊥BP,BE⊥AP,所以A,D,B,E四点共圆且AB为直径,因为AB⊥DE,所以AD=AE.【点评】:本题考查三角形相似的判定与性质,考查四点共圆,考查学生分析解决问题的能力,属于中档题.五、选做题:【选修4-4:坐标系与参数方程】(共1小题,满分0分)23.已知曲线C的极坐标方程为:ρ2﹣2ρcosθ+4ρsinθ+1=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l经过点P(﹣1,1)且倾斜角为(Ⅰ)写出直线l的参数方程和曲线C的普通方程;(Ⅱ)设直线l与曲线C相交于A,B两点,求|PA|•|PB|的值.【考点】:简单曲线的极坐标方程.【专题】:坐标系和参数方程.【分析】:(I)由直线l经过点P(﹣1,1)且倾斜角为,可得直线l的参数方程为,(t为参数);把dr 曲线C的极坐标方程即可得到普通方程.(II)把直线l的参数方程代入曲线C的普通方程可得:=0,利用|PA|•|PB|=|t1t2|即可得出.【解析】:解:(I)∵直线l经过点P(﹣1,1)且倾斜角为,∴直线l的参数方程为,(t为参数);曲线C的极坐标方程为:ρ2﹣2ρcosθ+4ρsinθ+1=0,化为x2+y2﹣2x+4y+1=0,即(x﹣1)2+(y+2)2=4.(II)把直线l的参数方程代入曲线C的普通方程可得:=0,∴t1t2=9.∴|PA|•|PB|=|t1t2|=9.【点评】:本题考查了直线的参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.六、选做题:【选修4-5:不等式选讲】(共1小题,满分0分)24.已知函数f(x)=|x﹣2|+|x+1|(Ⅰ)解关于x的不等式f(x)≥4﹣x;(Ⅱ)a,b∈{y|y=f(x)},试比较2(a+b)与ab+4的大小.【考点】:绝对值不等式的解法.【专题】:函数的性质及应用;不等式的解法及应用.【分析】:(Ⅰ)对x讨论,当x<﹣1时,当﹣1≤x≤2时,当x>2时,去掉绝对值,解不等式,即可得到解集;(Ⅱ)由于f(x)≥3,则a≥3,b≥3,作差比较,注意分解因式,即可得到结论.【解析】:解:(Ⅰ)当x<﹣1时,f(x)=1﹣2x,f(x)≥4﹣x即为1﹣2x≥4﹣x,解得x≤﹣3,即为x≤﹣3;当﹣1≤x≤2时,f(x)=3,f(x)≥4﹣x即为3≥4﹣x,解得x≥1,即为1≤x≤2;当x>2时,f(x)=2x﹣1,f(x)≥4﹣x即为2x﹣1≥4﹣x,解得x≥,即为x>2.综上可得,x≥1或x≤﹣3.则解集为(﹣∞,﹣3]∪[1,+∞);(Ⅱ)由于f(x)≥3,则a≥3,b≥3,2(a+b)﹣(ab+4)=2a﹣ab+2b﹣4=(a﹣2)(2﹣b),由于a≥3,b≥3,则a﹣2>0,2﹣b<0,即有(a﹣2)(2﹣b)<0,则2(a+b)<ab+4.【点评】:本题考查绝对值不等式的解法,主要考查分类讨论的思想方法和作差法比较两数的大小,属于中档题.。

河南省洛阳市2015届高三第二次统一考试数学理试题Word版含答案

河南省洛阳市2015届高三第二次统一考试数学理试题Word版含答案

2014—一2015学年高中三年级第二次统一考试数学试卷(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名,考号填写在答题卷上.2.考试结束,将答题卷交回.一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知i 是虚数单位,若复数z 满足zi =1+i ,则复数z 的实部与虚部之和为A .0B .1C .D .42.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x B},则 A -B =A .{x |x <-1}B .{x |-1≤x <0}C .{x |-1<x <0}D .{x |x ≤-1}3.若函数y =f (2x +1)是偶函数,则函数y =f (x )的图象的对称轴方程是A .x =1B .x =-1C .x =2D .x =-24.设等比数列{n a }的公比为q ,则“0<q <1”是“{n a }是递减数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知函数f (x )=2x ,g (x )=lgx ,若有f (a )=g (b ),则b 的取值范围是A .[0,+∞)B .(0,+∞)C .[1,+∞)D .(1,+∞)6.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +2a =2()b c +, 则cosA 等于A .45B .-45C .1517D .-15177.6(1)(2)x x +-的展开式中4x 的系数为 A .-100 B .-15 C .35 D .2208.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为A .115B .15C .14D .129.已知双曲线C :2221x a b2y -=(a >0,b >0),斜率为1的直线过双曲线C 的左焦点且与该曲线交于A ,B 两点,若OA uu r +OB uu u r 与向量n r =(-3,-1)共线,则双曲线C 的离心率为ABC .43D .3 10.设函数f (x )=x |x -a |,若对1x ,2x ∈[3,+∞),1x ≠2x ,不等式1212()()f x f x x x -->0恒成立,则实数a 的取值范围是A .(-∞,-3]B .[-3,0)C .(-∞,3]D .(0,3]11.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为A .1 B.2CD .12.已知点A 、B 、C 、D 均在球O 上,AB =BC,AC =3,若三棱锥D -ABCO 的表面积为A .36πB .16πC .12πD .163π 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.执行下面的程序,若输入的x =2,则输出的所有x 的值的和为________________.14.已知tan α,tan β分别是2lg(652)x x -+=0的两个实根,则tan (α+β)=_________. 15.已知向量a r ,满足|a r |=2,|b r |=1,且对一切实数x ,|a r +xb r |≥|a r +b r |恒成立,则a r ,b r 的夹角的大小为________________.16.已知F 1,F 2分别是双曲线22233x y a -=(a >0)的左,右焦点,P 是抛物线28y ax =与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为_____________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知正项数列{n a }的前n 项和为n S ,对n ∈N ﹡有2n S =2n n a a +.(1)求数列{n a }的通项公式;。

河南省郑州市2015年高中毕业年级第二次质量预测试卷(理)

河南省郑州市2015年高中毕业年级第二次质量预测试卷(理)

2015年高中毕业年级第二次质量预测理科数学 参考答案一、选择题BCDC BDDC ADCA二、填空题13.2; 14. )161,0(±;15. 1-; 16. (2) (3) (4). 三、解答题17.解:(Ⅰ)设等差数列公差为d ,由题意知0>d , 因为1143,25,a a a +成等比数列,所以11324)25(a a a =+, )101)(21()327(2d d d ++=+∴,即,04536442=+-d d 所以),2215(23舍去-==d d ……… 4分 所以213-=n a n . ……… 6分 (Ⅱ))231131(34)23)(13(411+--=+-==+n n n n a a b n n n , ……… 8分 所以41111112().32558313232n n T n n n =-+-++-=-++.18. (1)证明:取AC 中点O ,连接O A 1,因为平面⊥ABC 平面C C AA 11,AC O A ⊥1,所以⊥O A 1平面ABC所以⊥O A 1BC .又AC BC ⊥,所以⊥BC 平面C C AA 11,所以BC AC ⊥1 .……… 4分在菱形C C AA 11中,C A AC 11⊥.所以⊥AC 平面BC A 1,所以11AC B A ⊥.……… 6分 (2)以点O 为坐标原点,建立如图所示的空间直角坐标系O 则)0,1,0(-A ,)0,1,2(B ,)0,1,0(C ,)3,2,0(1C , )0,2,2(=,(11BB CC ==,设),,(z y x =是面11A ABB 的一个法向量,则0,01=⋅=⋅BB m AB m , B 1即220,0,x y y +=⎧⎪⎨=⎪⎩ 取1-=z可得(3,1).m =-- ……… 10分又)0,0,1(E ,所以)3,2,1(1-=EC ,所以直线1EC 与平面11A ABB 所成的角的正弦值 |||||,cos |sin 11m EC m EC ⋅=><=θ=1442. ……… 12分 19.解:(1)恰好一个是以300元价格购买的顾客,另一个以100元价格购买的顾客的概率是A,则1142268().15C C P A C ==……… 3分 (2)设销售A 商品获得的利润为ξ(单位:元),依题意, 视频率为概率,为追求更多的利润,则商店每天购进的A 商品的件数取值可能为4件,5件,6件.当购进A 商品4件时,1504600,E ξ=⨯=当购进A 商品5件时,(150450)0.315050.7690.E ξ=⨯-⨯+⨯⨯=当购进A 商品6件时,100706150100)505150(3.0)5024150(x x E -⨯⨯+⨯-⨯+⨯⨯-⨯=ξ =x 2780- ……… 9分 由题意6902780≤-x ,解得45x ≥,又知1003070x ≤-=,所以x 的取值范围为[]45,70,x ∈*N . ……… 12分 20.解:(1)因为椭圆)0,0(1:2222>>=+b a by a x C ,由题意得 422121=⨯⨯=∆b c S F BF , 22==a c e ,222c b a +=, 所以解得所以2284a b ⎧=⎨=⎩椭圆C 的方程为22184x y +=……… 4分 (2)假设存在圆心在原点的圆222r y x =+,使得该圆的任意一条切线与椭圆C 恒有两个交点N M ,,-=+,所以有0=⋅,设),(),,(2211y x N y x M ,当切线斜率存在时,设该圆的切线方程为y kx m =+,解方程组22184x y y kx m +==+⎧⎪⎨⎪⎩得222()8x kx m ++=,即222(12)4280k x kmx m +++-=,则△=222222164(12)(28)8(84)0k m k m k m -+-=-+>,即22840k m -+> )21(2)82)(21(4164222222,1k m k m k km x +-+-±-=;2182,2142221221km x x k km x x +-=+-=+∴ ……… 6分 22222222212121212222(28)48()()()121212k m k m m k y y kx m kx m k x x km x x m m k k k --=++=+++=-+=+++ 要使0=⋅ON OM ,需12120x x y y +=,即2222228801212m m k k k--+=++, 所以223880m k --=,所以223808m k -=≥又22840k m -+>,所以22238m m ⎧>⎨≥⎩, 所以283m ≥,即3m ≥3m ≤-,因为直线y kx m =+为圆心在原点的圆的一条切线,所以圆的半径为r =,222228381318m m r m k ===-++,r =, 所求的圆为2283x y +=, ……… 10分 此时圆的切线y kx m =+都满足3m ≥3m ≤-, 而当切线的斜率不存在时切线为x =与椭圆22184x y +=的两个交点为或(满足0=⋅, 综上, 存在圆心在原点的圆2283x y +=满足条件. . ……… 12分21.解:(1)由已知得函数()f x 的定义域为}1|{>x x11)('-+=x a x f =11-+-x a ax 当0≥a 时,0)('>x f 在定义域内恒成立,)(x f 的单调增区间为),1(+∞,当0<a 时,由0)('=x f 得111>-=ax 当)11,1(a x -∈时,0)('>x f ;当),11(+∞-∈ax 时,0)('<x f ()f x 的单调增区间为)11,1(a -,减区间为),11(+∞-a.……… 5分 (2)由(1)知当ea -=11时,()f x 的单调增区间为),1(e ,减区间为),(+∞e . 所以0)1ln(1)()(max <-+-==e ee ef x f 所以)1ln(1)(|)(|---=-≥e e e e f x f 恒成立,当e x =时取等号. 令)(x g =x bx x 2ln 2+,则2ln 1)('x x x g -= ……… 7分 当e x <<1时,/()0g x >;当x e >时,/()0g x <从而()g x 在),1(e 上单调递增,在(,)e +∞上单调递减 所以,21)()(max b e e g x g +== ……… 10分 所以,存在x 使得不等式11|)(|--e x f ≤x bx x 2ln 2+成立 只需)1ln(1---e e e 1--e e 21b e +≤ 即:22ln(1).b e e ≥--- ……… 12分 22.(10分)选修4-1:几何证明选讲解:(1)证明:连结BE ,由题意知ABE ∆为直角三角形.因为90ABE ADC ∠=∠=0,AEB ACB ∠=∠, ABE ∆∽ADC ∆, 所以AB AE AD AC =,即AB AC AD AE ⋅=⋅. 又AB BC =,所以AC BC AD AE ⋅=⋅. ……… 5分(2)因为FC 是圆O 的切线,所以2FC FA FB =⋅, 又22,2==CF AF ,所以2,4=-==AF BF AB BF ,因为ACF FBC ∠=∠,又CFB AFC ∠=∠,所以AFC ∆∽CFB ∆.所以AF AC FC BC =,得2=⋅=CFBC AF AC ,sin 414sin ,42cos AEB ACD ACD ∠==∠∴=∠ 7144sin =∠=∴AEB AB AE ……… 10分 23.(10分)选修4-4:坐标系与参数方程解(1)由ααsin cos 3+=x 得1cos sin 32cos 2)sin cos 3(222++=+=αααααx ,所以曲线M 可化为21y x =-,]2,2[-∈x ,由sin()4πρθ+=sin cos θρθ=, 所以sin cos t ρθρθ+=,所以曲线N 可化为x y t +=. ……… 5分(2)若曲线M ,N 有公共点,则当直线N 过点)3,2(时满足要求,此时5=t ,并且向左下方平行运动直到相切之前总有公共点,相切时仍然只有一个公共点,联立21x y t y x +=⎧⎨=-⎩,得210x x t +--=, 14(1)0t ∆=++=,解得54t =-,综上可求得t 的取值范围是545≤≤-t . ……… 10分 24.(本小题满分10分)选修4—5:不等式选讲解:(I )不等式14)(--<x x f ,即4123<-++x x , 当32-<x 时,即,4123<+---x x 解得,3245-<<-x 当132≤≤-x 时,即,4123<+-+x x 解得,2132<≤-x 当1>x 时,即,4123<-++x x 无解, 综上所述)21,45(-∈x .……… 5分 (Ⅱ)411))(11(11≥+++=++=+n m m n n m n m n m ,令⎪⎪⎪⎩⎪⎪⎪⎨⎧>---≤≤-++--<++=+--=--=a x a x a x a x x a x x a x x f a x x g ,22,32,24,32,2223)()( 32-=∴x 时,a x g +=32)(max ,要使不等式恒成立, 只需432)(max ≤+=a x g 即3100≤<a . ……… 10分。

【Word版】河南省八市重点高中2015届高三教学质量监测考试数学(理)Word版含解析

【Word版】河南省八市重点高中2015届高三教学质量监测考试数学(理)Word版含解析

河南省八市重点高中教学质量监测考试理科数学命题:汉文化百校联盟 审题:石家庄一中 石家庄二中 正定中学注意事项:1.本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第1卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题耳的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符台题目要求的.(1)已知集合 {}{}2|12,|lg(2)A x x B x y x x =+≤==--,则(A)[3,-1) (B)[3,-1] (C)[-1,1] (D)(-1,1](2)如图所示的复平面上的点A ,B 分别对应复数 12,z z ,则12z z = (A)-2i (B)2i(C)2 (D) -2(3)设函数()f x ,g(x)分别为定义在R 上的奇函数和偶函数且满足32()()1f x g x x x +=-+ 则 (1)f =(A)-l (B)l (C)-2 (D) 2 (4)已知双曲线 22221(0,0)x y a b a b-=>>的曲离心率为2,则双曲线的渐近线方程为(A) y =(B) 3y x =±(C) 2y x =±(D) y = (5)某校为了提倡素质教育,丰富学生们的课外活动分别成立绘画,象棋和篮球兴趣小组,现有甲,乙,丙、丁四名同学报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同的报名方法有(A)12种 (B)24种 (C)36种 (D)72种(6)已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥外接球的体积是 (A) 43π (B)83π(C) (D)(7)执行右面的程序框图,当k 的值为2015时,则输出的S 值为(A)20132014(B) 20142015(C) 20152016(D) 20162017 (8)已知 1sin()cos 63παα+-=,则 2sin cos()6πα+= (A) 518- (B) 518 (C ) 79- (D) 79 (9)已知x ,y 满足区域 30:22010x y D x y x y +-≤⎧⎪+-≥⎨⎪--≤⎩,给出下面4个命题:1:,,22p x y D x y ∀∈-≥ 2:,,22p x y D x y ∃∈-≤311:,,23y p x y D x +∃∈<+ 411:,,23y p x y D x +∀∈≥+ 其中真命题是 (A) 13p p , (B) 23p p , (C) 14p p , (D) 24p p ,(10)已知抛物线 22(0)y px p =>的焦点为F ,准线为 l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点坐标为 0(3,)y 时,△AEF 为正三角形,则此时△OAB 的面积为(A)3 (B) (C)3(D) 3(11)已知函数 32()ln ,()5a f x x x g x x x x =+=--,若对任意的 121,,22x x ⎡⎤∈⎢⎥⎣⎦,都有12()()2f x g x -≥ 成立,则a 的取值范围是(A) (0,)+∞ (B) [)1,+∞(c) (,0)-∞ (D) (],1-∞-(12)已知定义域为R 的连续函数 ()f x ,若 ()f x 满足对于 ,(0)x R m R m ∀∈∃∈≠,都有()()f m n mf x +=-成立,则称函数 ()f x 为“反m 倍函数”,给出下列“反m 倍函数”的结论:①若 ()1f x =是一个“反m 倍函数”,则 1m =-;②()sin f x x π=是一个“反1倍函数”;③ 2()f x x =是一个“反m 倍函数”;④若()f x 是一个“反2倍函数”,则()f x 至少有一个零点,其中正确结论的个数是(A)l (B)2 (C)3 (D)4 第Ⅱ卷本卷包括必考题和选考题两部分。

2015年普通高中高三第二次联合考试理科数学附答案

2015年普通高中高三第二次联合考试理科数学附答案

BA BC 2 ,则 ABC 的面积为 (
A. 2
2
) C. 2 2 D. 4 2
B.
3 2
(10)已知抛物线 y =2px(p>0)与双曲线 2- 2=1(a>0,b>0)有相同的焦点 F,点 A 是两曲线的一个交点,且 AF⊥x 轴,则双曲线的离心率为( ( ) A. 2+2 B. 5+1 C. 3+1
2015 年普通高中高三第二次联合考试理科数学
注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上。 2. 回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号框 涂黑。如 需改动,用橡皮擦干净后,再选涂其它答案标号框。写在本试卷上无效。 3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束后,将本试卷和答题卡一并交回。
D. 1,1
第Ⅱ卷
本卷包括必考题和选考题两部分。 第 13 题~第 21 题为必考题, 每个试题考生都必须做 答。第 22 题~第 24 题为选考题,考生根据要求做答。 二、填空题:本大题共 4 小题,每小题 5 分。
(13)若复数 z
(a 2 4) (a 2)i 为纯虚数,则
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只 有一项是符合题目要求的。
(1)设集合 A
x y lg(3 2x),集合 B y y
B. (﹣∞,1] C.



A. [ 0, )
3 2
(2) 若命题 p 为真命题,命题 q 为假命题,则以下为真命题的是(
A. p q

河南省八市重点高中联考2015届高考数学模拟试卷理含解析

河南省八市重点高中联考2015届高考数学模拟试卷理含解析

河南省八市重点高中联考2015届高考数学模拟试卷(理科)一、选择题:本大题共12小题,每小题3分,共60分1.已知集合A={x|4≤2x≤16},B={a,b},若A⊆B,则实数a﹣b的取值范围是( ) A.(﹣∞,﹣2] B.[﹣2,+∞)C.(﹣∞,2] D.[2,+∞)2.设a∈R,若(a﹣i)2i(i为虚数单位)为正实数,则a=( )A.2 B.1 C.0 D.﹣13.设S n为等差数列{a n}的前n项和.若a4<0,a5>|a4|,则使S n>0成立的最小正整数n 为( )A.6 B.7 C.8 D.94.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.如果的值为( )A.B.C.﹣D.﹣6.已知点A、O、B为平面内不共线的三点,若A i(i=1,2,3,…,n)是该平面内的任一点,且有•=•,则点A i(i=1,2,3,…,n)在( )A.过A点的抛物线上B.过A点的直线上C.过A点的圆心的圆上D.过A点的椭圆上7.已知函数f(x)=x2﹣2ax+2a2﹣2(a≠0),g(x)=﹣e x﹣,则下列命题为真命题的是( )A.∀x∈R,都有f(x)<g(x)B.∀x∈R,都有f(x)>g(x)C.∃x0∈R,使得f(x0)<g(x0)D.∃x0∈R,使得f(x0)=g(x0)8.非零向量,满足2•=,||+||=2,则,的夹角θ的最小值为( ) A.B.C.D.9.如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为( )A.B.3πC.D.2π10.已知直线(m+2)x+(m+1)y+1=0上存在点(x,y)满足,则m的取值范围为( )A.[﹣,+∞)B.(﹣∞,﹣] C.[﹣1,] D.[﹣,]11.已知椭圆+=1(a>b>0,c为椭圆的半焦距)的左焦点为F,右顶点为A,抛物线y2=(a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率是( ) A.B.C.D.12.设集合A n={x|(x﹣1)(x﹣n2﹣4+lnn)<0},当n取遍区间(1,3)内的一切实数,所有的集合A n的并集是( )A.(1,13﹣ln3)B.(1,6)C.(1,+∞)D.(1,2)二、填空题:本大题共四个题,每小题5分,请将答案写在答案卡相应的位置上.13.观察下列等式,24=7+934=25+27+2944=61+63+65+67…照此规律,第4个等式可为__________.14.已知圆C:x2+y2﹣2ax+2ay+2a2+2a﹣1=0与直线l:x﹣y﹣1=0有公共点,则a的取值范围为__________.15.将函数f(x)=sin(2x+)向右平移个单位,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)与x=﹣,x=,x轴围成的图形面积为__________.16.已知数列{a n}的通项为a n=sin(+)+(n∈N*),则数列{a n}中最小项的值为__________.三、解答题.本题共6小题,共70分17.已知函数f(x)=x2+(lga+2)x+lgb满足f(﹣1)=﹣2且对于任意x∈R,恒有f(x)≥2x成立.(1)求实数a,b的值;(2)解不等式f(x)<x+5.18.如图,在△ABC中,D为边AB上一点,DA=DC.已知B=,BC=1.(Ⅰ)若DC=,求角A的大小;(Ⅱ)若△BCD面积为,求边AB的长.19.已知函数f(x)=(x﹣2)2,f′(x)是函数f(x)的导函数,设由a1=3,a n+1=a n﹣,(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.20.在三棱柱ABC﹣A1B1C1中,已知AA1=8,AC=AB=5,BC=6,点A1在底面ABC的射影是线段BC的中点O,在侧棱AA1上存在一点E,且OE⊥B1C.(1)求证:OE⊥面BB1C1C;(2)求平面A1B1C与平面B1C1C所成锐二面角的余弦值的大小.21.如图,已知椭圆C:=1(a>b>0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O 为坐标原点,求证:|OR|•|OS|为定值.22.已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2).(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)证明:对于任意的t>﹣2,总存在x0∈(﹣2,t),满足=(t﹣1)2,并确定这样的x0的个数.河南省八市重点高中联考2015届高考数学模拟试卷(理科)一、选择题:本大题共12小题,每小题3分,共60分1.已知集合A={x|4≤2x≤16},B={a,b},若A⊆B,则实数a﹣b的取值范围是( ) A.(﹣∞,﹣2] B.[﹣2,+∞)C.(﹣∞,2] D.[2,+∞)考点:集合的包含关系判断及应用.专题:计算题;集合.分析:先化简A,注意运用指数函数的单调性解不等式,再根据集合的包含关系,求出a,b 的范围,运用不等式的性质,求出a﹣b的取值范围.解答:解:集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4],∵A⊆B,B=[a,b],∴a≤2,b≥4,∴a﹣b≤2﹣4=﹣2,即a﹣b的取值范围是(﹣∞,﹣2].故选:A.点评:本题考查集合的包含关系及应用,考查指数不等式的解法,注意运用指数函数的单调性,同时必须掌握不等式的性质是解题的关键.2.设a∈R,若(a﹣i)2i(i为虚数单位)为正实数,则a=( )A.2 B.1 C.0 D.﹣1考点:复数的基本概念.专题:计算题.分析:化简复数到最简形式,由题意知,此复数的实部大于0,虚部等于0,解出a的值.解答:解:∵(a﹣i)2i=(a2﹣1﹣2ai)i=2a+(a2﹣1)i 为正实数,∴2a>0,且(a2﹣1)=0,∴a=1,故选B.点评:本题考查两个复数代数形式的乘法,复数为正实数的条件.3.设S n为等差数列{a n}的前n项和.若a4<0,a5>|a4|,则使S n>0成立的最小正整数n 为( )A.6 B.7 C.8 D.9考点:等差数列的通项公式.专题:等差数列与等比数列.分析:根据给出的已知条件,得到a5+a4>0,然后由等差数列的前n项和公式,结合等差数列的性质得答案.解答:解:在等差数列{a n}中,∵a4<0,a5>|a4|,得a5>0,a5+a4>0,,.∴使S n>0成立的最小正整数n为8.故选:C.点评:本题考查等差数列的通项公式,考查了等差数列的性质,是基础题.4.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l考点:平面与平面之间的位置关系;平面的基本性质及推论.专题:空间位置关系与距离.分析:由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.解答:解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选D.点评:本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.如果的值为( )A.B.C.﹣D.﹣考点:同角三角函数基本关系的运用.专题:计算题.分析:由题意求出的范围,确定的符号,求出cosθ,利用二倍角公式求出的值.解答:解:因为,所以cosθ=﹣,,,所以=﹣=﹣;故选D.点评:本题是基础题,考查三角函数的化简求值,注意角的范围的确定,三角函数的值的符号的确定,考查计算能力.6.已知点A、O、B为平面内不共线的三点,若A i(i=1,2,3,…,n)是该平面内的任一点,且有•=•,则点A i(i=1,2,3,…,n)在( )A.过A点的抛物线上 B.过A点的直线上C.过A点的圆心的圆上 D.过A点的椭圆上考点:向量的物理背景与概念.专题:平面向量及应用.分析:根据题意,得出⊥,即得出点A i(i=1,2,3,…,n)在过A点的直线上.解答:解:根据题意,得有•=•,∴(﹣)•=0;•=0,∴⊥;∴点A i(i=1,2,3,…,n)在过A点的直线上.故选:B.点评:本题考查了平面向量的应用问题,解题时应根据向量的运算法则,寻求解答问题的途径,从而解答问题,是基础题.7.已知函数f(x)=x2﹣2ax+2a2﹣2(a≠0),g(x)=﹣e x﹣,则下列命题为真命题的是( )A.∀x∈R,都有f(x)<g(x)B.∀x∈R,都有f(x)>g(x)C.∃x0∈R,使得f(x0)<g(x0)D.∃x0∈R,使得f(x0)=g(x0)考点:全称命题;特称命题.专题:简易逻辑.分析:求出两个函数的值域,然后判断选项即可.解答:解:函数f(x)=x2﹣2ax+2a2﹣2=(x﹣a)2+a2﹣2≥a2﹣2>﹣2,g(x)=﹣e x﹣=﹣(e x+)≤﹣2,显然∀x∈R,都有f(x)>g(x),故选:B.点评:本题考查函数的值域命题的真假的判断,基本知识的考查.8.非零向量,满足2•=,||+||=2,则,的夹角θ的最小值为( ) A.B.C.D.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量的数量积的定义和向量的平方即为模的平方,可得2cosθ=||•||,再由基本不等式,可得cosθ≤,结合余弦函数的性质,即可得到所求最小值.解答:解:非零向量,满足2•=,|即有2||•||•cosθ=||2•||2,即2cosθ=||•||,由||+||=2,则||•||≤()2=1,即有cosθ≤,由于0≤θ≤π,则≤θ≤π,则当||=||=1时,,的夹角θ取得最小值为.故选C.点评:本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,以及基本不等式的运用,属于基础题.9.如图,平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,则该球的体积为( )A.B.3πC.D.2π考点:球内接多面体;球的体积和表面积.专题:计算题;压轴题.分析:说明折叠后几何体的特征,求出三棱锥的外接球的半径,然后求出球的体积.解答:解:由题意平面四边形ABCD中,AB=AD=CD=1,,将其沿对角线BD折成四面体A′﹣BCD,使平面A′BD⊥平面BCD,若四面体A′﹣BCD顶点在同一个球面上,可知A′B⊥A′C,所以BC 是外接球的直径,所以BC=,球的半径为:;所以球的体积为:=.故选A点评:本题是基础题,考查折叠问题,三棱锥的外接球的体积的求法,考查计算能力,正确球的外接球的半径是解题的关键.10.已知直线(m+2)x+(m+1)y+1=0上存在点(x,y)满足,则m的取值范围为( )A.[﹣,+∞)B.(﹣∞,﹣] C.[﹣1,] D.[﹣,]考点:简单线性规划.专题:不等式的解法及应用.分析:将直线进行整理,得到直线过定点(﹣1,1),作出不等式组对应的平面区域,根据条件得到A.B应该在直线l的两侧或在直线l上,即可得到结论.解答:解:∵直线l:(m+2)x+(m+1)y+1=0等价为m(x+y)+(2x+y+1)=0,即,解得,∴直线过定点P(﹣1,1),作出不等式组对应的平面区域(阴影部分ABC),要使直线(m+2)x+(m+1)y+1=0上存在点(x,y)满足,则必有点A(1,2),B(1,﹣1)在l的两侧或在l上.得[(m+2)×1+(m+1)×2+1]•[(m+2)×1+(m+1)×(﹣1)+1]≤0,即2(3m+5)≤0,解得.故m的取值范围为(﹣∞,﹣],故选:B.点评:本题主要考查线性规划的应用,根据条件求出直线过定点,以及利用不等式组作出平面区域是解决本题的关键.11.已知椭圆+=1(a>b>0,c为椭圆的半焦距)的左焦点为F,右顶点为A,抛物线y2=(a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率是( ) A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆方程求出F和A的坐标,由对称性设出B、C的坐标,根据平行四边形的性质求出横坐标,代入抛物线方程求出B的纵坐标,将点B的坐标代入椭圆方程,化简整理得到关于椭圆离心率e的方程,即可得到该椭圆的离心率.解答:解:由题意得,椭圆+=1(a>b>0,c为半焦距)的左焦点为F,右顶点为A,则A(a,0),F(﹣c,0),∵抛物线y2=(a+c)x与椭圆交于B,C两点,∴B、C两点关于x轴对称,可设B(m,n),C(m,﹣n)∵四边形ABFC是平行四边形,∴2m=a﹣c,则,将B(m,n)代入抛物线方程得,n2=(a+c)m=(a+c)(a﹣c)=(a2﹣c2),∴,则不妨设B(,),再代入椭圆方程得,+=1,化简得,即4e2﹣8e+3=0,解得e=或1(舍去),故选:D.点评:本题考查椭圆、抛物线的标准方程,以及它们的简单几何性质,平行四边形的性质,主要考查了椭圆的离心率e,属于中档题.12.设集合A n={x|(x﹣1)(x﹣n2﹣4+lnn)<0},当n取遍区间(1,3)内的一切实数,所有的集合A n的并集是( )A.(1,13﹣ln3) B.(1,6)C.(1,+∞)D.(1,2)考点:函数的值域;并集及其运算.专题:函数思想;函数的性质及应用.分析:先求不等式的解集,再构造函数求出所有函数的值域再求值域的并集就可以了.解答:解:(x﹣1)(x﹣n2﹣4+lnn)=0的两根为x1=1,,又n2+4﹣lnn>1,∴,设f(n)=n2+4﹣lnn,n∈(1,3),则,在n∈(1,3)时f′(n)>0,∴f(n)在区间(1,3)上单调递增,即f(n)<f(3)=13﹣ln3,所以集合A n的并集为(1,13﹣ln3).故选:A.点评:本题利用构造函数,求函数的值域,注意先要求出不等式的解集,再求解集的并集.本题对初学者来讲有一定的难度,属于中档题.二、填空题:本大题共四个题,每小题5分,请将答案写在答案卡相应的位置上.13.观察下列等式,24=7+934=25+27+2944=61+63+65+67…照此规律,第4个等式可为54=121+123+125+127+129.考点:归纳推理.专题:推理和证明.分析:观察可知每一行的数字都是连续的奇数,且奇数的个数等于所在的行数,每行的第一数字为行数+1的3次方减去所在行数,解答:解:观察可知每一行的数字都是连续的奇数,且奇数的个数等于所在的行数,每行的第一数字为行数+1的3次方减去所在行数,设行数为n,用a n1表示每行的第一个数,则a n1=(n+1)3﹣n,因此第4行的第一个数为:(4+1)3﹣4=121,则第4个等式为54=121+123+125+127+129,故答案为:54=121+123+125+127+129.点评:本题解答的关键是发现规律,利用规律找出一般的解决问题的方法,进一步解决问题即可.14.已知圆C:x2+y2﹣2ax+2ay+2a2+2a﹣1=0与直线l:x﹣y﹣1=0有公共点,则a的取值范围为[﹣,).考点:圆的一般方程.专题:直线与圆.分析:若圆C:x2+y2﹣2ax+2ay+2a2+2a﹣1=0与直线l:x﹣y﹣1=0有公共点,则,解得a的取值范围.解答:解:圆C:x2+y2﹣2ax+2ay+2a2+2a﹣1=0的圆心坐标为(a,﹣a),半径r=,若圆C:x2+y2﹣2ax+2ay+2a2+2a﹣1=0与直线l:x﹣y﹣1=0有公共点,则,解得:a∈[﹣,),故答案为:[﹣,)点评:本题考查的知识点是直线与圆的位置关系,圆的一般式方程,解答时易忽略1﹣2a>0,而造成错解.15.将函数f(x)=sin(2x+)向右平移个单位,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)与x=﹣,x=,x轴围成的图形面积为.考点:函数y=Asin(ωx+φ)的图象变换.专题:导数的综合应用;三角函数的图像与性质.分析:数f(x)=sin(2x+)向右平移个单位,推出函数解析式,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,利用积分求函数y=g(x)与x=﹣,x=,x轴围成的图形面积.解答:解:将函数f(x)=sin(2x+)向右平移个单位,得到函数=sin(2x﹣π)=﹣sin2x,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)=﹣sinx的图象,则函数y=﹣sinx与x=﹣,x=,x轴围成的图形面积:﹣+=﹣cosx+cosx=+1=.故答案为:.点评:本题是中档题,考查三角函数图象的平移伸缩变换,利用积分求面积,正确的变换是基础,合理利用积分求面积是近年2015届高考必考内容.16.已知数列{a n}的通项为a n=sin(+)+(n∈N*),则数列{a n}中最小项的值为.考点:数列递推式.专题:等差数列与等比数列.分析:由已知得n=4k,k∈N*时,a n=sin+;n=4k+1,k∈N*时,a n=sin()+;n=4k+2,k∈N*时,a n=sin()+;n=4k+3,k∈N*时,a n=sin()+.由此能求出数列{a n}中最小项的值.解答:解:∵a n=sin(+)+(n∈N*),∴n=4k,k∈N*时,a n=sin+=,n=4k+1,k∈N*时,a n=sin()+=,n=4k+2,k∈N*时,a n=sin()+=,n=4k+3,k∈N*时,a n=sin()+=.∴数列{a n}中最小项的值为.故答案为:.点评:本题考查数列中最小项的值的求法,是中档题,解题时要认真审题,注意正弦函数的周期性质的合理运用.三、解答题.本题共6小题,共70分17.已知函数f(x)=x2+(lga+2)x+lgb满足f(﹣1)=﹣2且对于任意x∈R,恒有f(x)≥2x成立.(1)求实数a,b的值;(2)解不等式f(x)<x+5.考点:一元二次不等式的解法;二次函数的性质;函数最值的应用.专题:综合题.分析:(1)由f(﹣1)=﹣2,代入函数解析式得到关于lga与lgb的等式记作①,化简后得到关于a与b的等式记作②,又因为f(x)≥2x恒成立,把f(x)的解析式代入后,令△≤0得到关于lga与lgb的不等式,把①代入后得到关于lgb的不等式,根据平方大于等于0,即可求出b的值,把b的值代入②即可求出a的值;(2)由(1)求出的a与b的值代入f(x)的解析式中即可确定出f(x)的解析式,然后把f(x)的解析式代入到f(x)<x+5中,得到关于x的一元二次不等式,求出一元二次不等式的解集即可.解答:解(1)由f(﹣1)=﹣2知,lgb﹣lga+1=0①,所以②.又f(x)≥2x恒成立,f(x)﹣2x≥0恒成立,则有x2+x•lga+lgb≥0恒成立,故△=(lga)2﹣4lgb≤0,将①式代入上式得:(lgb)2﹣2lgb+1≤0,即(lgb﹣1)2≤0,故lgb=1即b=10,代入②得,a=100;(2)由(1)知f(x)=x2+4x+1,f(x)<x+5,即x2+4x+1<x+5,所以x2+3x﹣4<0,解得﹣4<x<1,因此不等式的解集为{x|﹣4<x<1}.点评:此题考查学生掌握不等式恒成立时所满足的条件,以及会求一元二次不等式的解集,是一道中档题.18.如图,在△ABC中,D为边AB上一点,DA=DC.已知B=,BC=1.(Ⅰ)若DC=,求角A的大小;(Ⅱ)若△BCD面积为,求边AB的长.考点:正弦定理;解三角形.专题:解三角形.分析:(1)在△BCD中,由正弦定理得到:,计算得到∠BDC,又由DA=DC,即可得到∠A;(2)由于△BCD面积为,得到,得到BD,再由余弦定理得到,再由DA=DC,即可得到边AB的长.解答:解:(1)在△BCD中,B=,BC=1,DC=,由正弦定理得到:,解得,则∠BDC=60°或120°.又由DA=DC,则∠A=30°或60°.(2)由于B=,BC=1,△BCD面积为,则,解得.再由余弦定理得到=,故,又由AB=AD+BD=CD+BD=,故边AB的长为:.点评:考查了正弦定理和余弦定理结合去解三角形,属于基础题.19.已知函数f(x)=(x﹣2)2,f′(x)是函数f(x)的导函数,设由a1=3,a n+1=a n﹣,(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(I)f′(x)=2(x﹣2),由a n+1=a n﹣,可得a n+1=a n﹣,变形,利用等比数列的通项公式即可得出.(Ⅱ)由题意b n=na n=,再利用“错位相减法”、等比数列的前n项和公式即可得出.解答:解:(I)f′(x)=2(x﹣2),由a n+1=a n﹣,可得a n+1=a n﹣,化为,变形,∴{a n﹣2}是以a1﹣2=1为首项,公比为的等比数列,∴,∴a n=2+.(Ⅱ)由题意b n=na n=,设数列的前n项和为T n,则T n=1++…+,=+…,=1++…+﹣=﹣=2﹣,即T n=,∴S n=T n+n2+n=+n2+n.点评:本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.20.在三棱柱ABC﹣A1B1C1中,已知AA1=8,AC=AB=5,BC=6,点A1在底面ABC的射影是线段BC的中点O,在侧棱AA1上存在一点E,且OE⊥B1C.(1)求证:OE⊥面BB1C1C;(2)求平面A1B1C与平面B1C1C所成锐二面角的余弦值的大小.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)由已知得A1O⊥面ABC,从而A1O⊥BC,由等腰三角形性质得BC⊥AO,从而EO⊥BC,又OE⊥B1C,由此能证明OE⊥面BB1C1C.(2)由勾股定理得AO=4,,分别以OC、OA、OA1为x、y、z轴建立空间坐标系,求出面A1B1C的法向量和面C1B1C的法向量,由此能求出平面A1B1C与平面B1C1C所成锐二面角的余弦值.解答:解:(1)证明:∵点A1在底面ABC的射影是线段BC的中点O,∴A1O⊥面ABC,而BC⊂面ABC,∴A1O⊥BC,…又∵AC=AB=5,线段BC的中点O,∴BC⊥AO,∵A1O∩AO=O,…∴BC⊥面A1OA,EO⊂面A1OA,EO⊥BC,又∵OE⊥B1C,B1C∩BC=C,B1C⊂面BB1C1C,BC⊂面BB1C1C,∴OE⊥面BB1C1C.…(2)解:由(1)知,在△AOB中,AO2+BO2=AB2,则AO=4,在△A1AO中,,则分别以OC、OA、OA1为x、y、z轴建立空间坐标系,C(3,0,0),A1(0,0,4),A(0,4,0),B(﹣3,0,0),∵,∴B1(﹣3,﹣4,4),∵,∴C1(3,﹣4,4),=(﹣3,0,4),=(﹣6,﹣4,4),=(0,﹣4,4),设面A1B1C的法向量=(x,y,z),,取=(1,﹣,),…设面C1B1C的法向量=(x,y,z),,取=(0,,1),…cos<,>==﹣,…所以平面A1B1C与平面B1C1C所成锐二面角的余弦值为.…点评:本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养和向量法的合理运用.21.如图,已知椭圆C:=1(a>b>0)的离心率为,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O 为坐标原点,求证:|OR|•|OS|为定值.考点:直线与圆锥曲线的关系;圆的标准方程;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)依题意,得a=2,,由此能求出椭圆C的方程.(2)法一:点M与点N关于x轴对称,设M(x1,y1),N(x1,﹣y1),设y1>0.由于点M 在椭圆C上,故.由T(﹣2,0),知=,由此能求出圆T的方程.法二:点M与点N关于x轴对称,故设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),设sinθ>0,由T(﹣2,0),得=,由此能求出圆T的方程.(3)法一:设P(x0,y0),则直线MP的方程为:,令y=0,得,同理:,…故,由此能够证明|OR|•|OS|=|x R|•|x S|=|x R•x S|=4为定值.法二:设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),设sinθ>0,P(2cosα,sinα),其中sinα≠±sinθ.则直线MP的方程为:,由此能够证明|OR|•|OS|=|x R|•|x S|=|x R•x S|=4为定值.解答:解:(1)依题意,得a=2,,∴c=,b==1,故椭圆C的方程为.…(2)方法一:点M与点N关于x轴对称,设M(x1,y1),N(x1,﹣y1),不妨设y1>0.由于点M在椭圆C上,所以.(*)…由已知T(﹣2,0),则,,∴=(x1+2)2﹣==.…由于﹣2<x1<2,故当时,取得最小值为.由(*)式,,故,又点M在圆T上,代入圆的方程得到.故圆T的方程为:.…方法二:点M与点N关于x轴对称,故设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),不妨设sinθ>0,由已知T(﹣2,0),则=(2cosθ+2)2﹣sin2θ=5cos2θ+8cosθ+3=.…故当时,取得最小值为,此时,又点M在圆T上,代入圆的方程得到.故圆T的方程为:.…(3)方法一:设P(x0,y0),则直线MP的方程为:,令y=0,得,同理:,…故(**)…又点M与点P在椭圆上,故,,…代入(**)式,得:.所以|OR|•|OS|=|x R|•|x S|=|x R•x S|=4为定值.…方法二:设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),不妨设sinθ>0,P(2cosα,sinα),其中sinα≠±sinθ.则直线MP的方程为:,令y=0,得,同理:,…故.所以|OR|•|OS|=|x R|•|x S|=|x R•x S|=4为定值.…点评:本题考查椭圆的方程和几何性质、圆的方程等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想.22.已知函数f(x)=(x2﹣3x+3)•e x定义域为[﹣2,t](t>﹣2).(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)证明:对于任意的t>﹣2,总存在x0∈(﹣2,t),满足=(t﹣1)2,并确定这样的x0的个数.考点:根的存在性及根的个数判断;利用导数研究函数的单调性.专题:计算题;证明题;导数的综合应用.分析:(1)求导f′(x)=(2x﹣3)e x+(x2﹣3x+3)e x=(x2﹣x)e x,从而由导数的正负确定函数的单调性,从而求出t的取值范围;(2)化简=为x02﹣x0=,再令g(x)=x2﹣x﹣,从而问题转化为证明方程g(x)=x2﹣x﹣=0在(﹣2,t)上有解并讨论解的个数,再求得g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣(t﹣1)2=,从而分t>4或﹣2<t<1,1<t<4,t=1,t=4讨论,从而证明并解得.解答:解:(1)因为f′(x)=(2x﹣3)e x+(x2﹣3x+3)e x=(x2﹣x)e x,由f′(x)>0解得,x>1或x<0,由f′(x)<0解得,0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,∵函数f(x)在[﹣2,t]上为单调函数,∴﹣2<t≤0,(2)证明:∵,又∵=,即为x02﹣x0=,令g(x)=x2﹣x﹣,从而问题转化为证明方程g(x)=x2﹣x﹣=0在(﹣2,t)上有解并讨论解的个数,因为g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣(t﹣1)2=,①当t>4或﹣2<t<1时,g(﹣2)•g(t)<0,此时g(x)=0在(﹣2,t)上有解,且只有一解,②当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=<0,此时g(x)=0在(﹣2,t)上有解,且有两解,③当t=1时,g(x)=x2﹣x=0,解得x=0或1(舍),此时g(x)=0在(﹣2,t)上有且只有一解,④当t=4时,g(x)=x2﹣x﹣6=0,解得x=3或﹣2(舍),此时g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足=,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意.点评:本题考查了导数的综合应用及分类讨论的数学思想的应用,属于难题.。

河南15年高考数学试卷 (理科) 高清word 文字版

河南15年高考数学试卷 (理科)  高清word 文字版

2015年普通高等学校招生全国统一试卷理科数学注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2.答题前,考生务必将自己的姓名,准考证号填写在本试卷相应的位置。

3.全部答案在答题卡上完成,答在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题,本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。

(1)设复数z 满足i zz =-+11,则=z ( )(A )1 (B )2 (C )3 (D )2 (2)=-000010sin 160cos 10cos 20sin ( ) (A )23-(B ) 23(C )21- (D )21(3)设命题P :,2,2n n N n >∈∃则P -为 ( ) (A )n n N n 2,2>∈∀ (B ) n n N n 2,2≤∈∃ (C )n n N n 2,2≤∈∀ (D )n n N n 2,2=∈∃(4)投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0.6,且每次投篮是否投中相互独立,则该同学通过测试的概率 ( )(A )0.648 (B )0.432 (C )0.36 (D )0.312(5)已知()00,y x M 是双曲线12:22=-y x C 上的一点,21,F F 是C 上的两个焦点,若021<∙→→MF MF ,则0y 的取值范围是 ( )(A )⎪⎪⎭⎫ ⎝⎛-33,33 (B ) ⎪⎪⎭⎫ ⎝⎛-63,63 (C )⎪⎪⎭⎫ ⎝⎛-322,322 (D )⎪⎪⎭⎫⎝⎛-332,332 (6)《九章算术》是我国古代内人极为丰富的数学名著。

书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为“在屋内墙角处堆放米(,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺米堆的高度为5尺,问米堆的体积和米各是多少?已知1斛米的体积为1.62立方米 ( )(A )14斛 (B ) 22斛 (C )36斛 (D )66斛 (7)设D 为ABC ∆所在平面内的一点,→→=CD BC 3;则 ( )(A )→+→-=→AC AB AD 3431 (B ) →-→=→AC AB AD 3431(C )→+→=→AC AB AD 3134 (D )→-→=→AC AB AD 3134(8)函数())cos(ϕ+=wx x f 的部分图像如图所示,则()x f 的单调递减区间为 ( )(A )z k k k ∈⎪⎭⎫ ⎝⎛+-,43,41ππ (B ) z k k k ∈⎪⎭⎫ ⎝⎛+-,432,412ππ(C )z k k k ∈⎪⎭⎫ ⎝⎛+-,43,41 (D )z k k k ∈⎪⎭⎫ ⎝⎛+-,432,412(9)执行右面的程序框图,如果输入的t=0.01,则输出的n= ( ) (A )5 (B ) 6 (C )7 (D )8(10)()52y x x ++的展开式,25y x 的系数为 ( ) (A )10 (B ) 20 (C )30 (D )60(11)圆柱被一个平面截取一部分后与半球(半径为r )组成的几何体,该几何体的正视图和俯视图如图所示,若该几何体的表面积为π2016+,则r= ( )(A )1 (B ) 2 (C )4 (D )8(12)设函数(),)12(a ax x e x f x +--=其中1<a ,若存在唯一的整数0x ,使得,则a 的取值范围是 ( )(A )⎪⎭⎫⎢⎣⎡-1,23e (B )⎪⎭⎫⎢⎣⎡-43,23e (C )⎪⎭⎫⎢⎣⎡43,23e (D )⎪⎭⎫⎢⎣⎡1,23e第II 卷本卷分为必做题和选做题两部分,第(13)题-第(21)题为必做题,每个考生都必须作答,第(22)题-第(24)为选做题,考生按要求作答。

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标ⅰ)

2015年河南省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1 B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n 4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)(x i﹣)(y i(w i﹣)表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年河南省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2015•新课标Ⅰ)设复数z满足=i,则|z|=()A.1 B.C.D.2【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)(2015•新课标Ⅰ)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)(2015•新课标Ⅰ)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)(2015•新课标Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432 C.0.36 D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)(2015•新课标Ⅰ)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)(2015•新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)(2015•新课标Ⅰ)设D为△ABC所在平面内一点,,则()A.B.C.D.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)(2015•新课标Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)(2015•新课标Ⅰ)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.8【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)(2015•新课标Ⅰ)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)(2015•新课标Ⅰ)若函数f(x)=xln(x+)为偶函数.则a= 1.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴,∴lna=0,∴a=1.另解:函数f(x)=xln(x+)为偶函数,可得g(x)=ln(x+)为R上奇函数,即g(0)=0,即有a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)(2015•新课标Ⅰ)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)(2015•新课标Ⅰ)若x,y满足约束条件.则的最大值为3.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)(2015•新课标Ⅰ)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)(2015•新课标Ⅰ)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣an2+2(an+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣an2=(an+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)(2015•新课标Ⅰ)如图,四边形ABCD为菱形,∠ABC=120°,E,F 是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE 丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF=,从而EG2+FG2=EF2,则EG⊥FG,AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos <,>===﹣.则有直线AE与直线CF 所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)(2015•新课标Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)(x i﹣)(y i(w i﹣)表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)(2015•新课标Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)(2015•新课标Ⅰ)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}≤g(x)<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:当或a<时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)(2015•新课标Ⅰ)如图,AB是⊙O的直径,AC是⊙O的切线,BC 交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f (x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;豫汝王世崇;cst;lincy;吕静;双曲线;whgcn;沂蒙松(排名不分先后)菁优网2017年3月2日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学(理科)·答案
一、选择题:本大题共12小题,每小题5分,共60分。

二、填空题:本大题共4小题,每小题5分,共20分。

13.45121123125127129=++++ 14.11,22⎡⎫
-⎪⎢⎣⎭
15. 三、解答题:本大题共6小题,共70分。

17. (本小题满分10分)
解:(1)由f (﹣1)=﹣2知,lgb ﹣lga+1=0①,所以
②.
又f (x )≥2x 恒成立,f (x )﹣2x≥0恒成立,则有x 2+x ⋅lga+lgb≥0恒成立, 故△=(lga )2﹣4lgb≤0, …………………………………………2分 将①式代入上式得:(lgb )2﹣2lgb+1≤0,即(lgb ﹣1)2≤0,…………4分 故lgb=1即b=10,代入②得,a=100 …………………………………5分 (2)由(1)知f (x )=x 2+4x+1,则可得f (x )<x+5,即x 2+4x+1<x+5, 所以x 2+3x ﹣4<0,………………………………………………………7分 解得﹣4<x <1,因此不等式的解集为{x|﹣4<x <1}. ……………10分
18. (本小题满分12分)
解:(1)在△BCD 中,B=
,BC=1,DC=
,由正弦定理得到:

解得, …………………………3分
则∠BDC=
3
π

23π.又由DA=DC ,则∠A=6π或3
π
. ……………6分
(2)由于B=,BC=1,△BCD 面积为,

,解得
. …………………………………8分
再由余弦定理得到
=


,…………………………………10分
又由AB=AD+BD=CD+BD=
,故边AB 的长为
. (12)

19. (本小题满分12分)
解:(I )f′(x )=2(x ﹣2),由1n n a a +=﹣
()
()
n n f a f a ', 可得

,∴{a n ﹣2}是以a 1﹣2=1为首项,公
比为的等比数列, ……………………………………………3分 ∴1112(2)()2
n n a a --=-⋅
,∴
.……………………………………………5分
(Ⅱ)由题意
,则
……………7分 令
① ①×得:

①﹣②得:==2(1﹣)﹣, (10)


,所以
……12分 20. (本小题满分12分)
(1)证明:∵点A1在底面ABC 的射影是线段BC 的中点O ,∴A1O ⊥面ABC , 而BC ⊂面ABC ,∴A1O ⊥BC ,…………………………………………………………………1分 又∵AC=AB=5,线段BC 的中点O ,∴BC ⊥AO ,∵A1O ∩AO=O ,……………………………3分 ∴BC ⊥面A1OA ,EO ⊂面A1OA ,EO ⊥BC ,又∵OE ⊥B1C ,B1C ∩BC=C , B1C ⊂面BB1C1C ,BC ⊂面BB1C1C ∴OE ⊥面BB1C1C ;……………………………………5分 (2)由(1)知,在AOB 中,222AO BO AB +=,则AO=4,
在1A AO 中, 22211A A AO A O =+,则1
AO =分别以OC 、OA 、OA 1为x 、y 、z 轴建立空间坐标系,
C (3,0,0),A 1(0,0,4
),
A (0,4,0),
B (﹣3,0,0),∵
, ∴B 1(﹣3,﹣4,4
),∵
,∴C 1(3,﹣4,4
),
=(﹣3,0,4),
=(﹣6,﹣4,4
),
=(0,﹣4,4
),
设面A 1B 1C 的法向量m =(x ,y ,z ),,
取m =(1,﹣,
),…………………………………………………………8分
设面C 1B 1C 的法向量=(x ,y ,z ),,取=(0,,1), (9)

cos
,……11分
所以平面A 1B 1C 与平面B 1C 1 C 所成锐二面角的余弦值为
……………12分
21. (本小题满分12分)
解:(1)依题意,得a=2,,∴c=,b==1,故椭圆C的方程为
…3分
(2)方法一:点M与点N关于x轴对称,设M(x1,y1),N(x1,﹣y1),不妨设y1>0.由于点M在椭圆C上,所以.(*)……………………4分
由已知T(﹣2,0),则,,
∴=(x1+2)2﹣
==.
由于﹣2<x1<2,故当时,取得最小值为.
由(*)式,,故,…………………………………………6分
又点M在圆T上,代入圆的方程得到.故圆T的方程为:.…7分
方法二:点M与点N关于x轴对称,故设M(2cosθ,sinθ),N(2cosθ,﹣sinθ),……4分
不妨设sinθ>0,由已知T(﹣2,0),

=(2cosθ+2)2﹣sin2θ=5cos2θ+8cosθ+3
=.故当时,取得最小值为,
此时
,…………………………………………………………………………6分又点M在圆T上,代入圆的方程得到.故圆T的方程为:.…7分
(3)方法一:设P (x 0,y 0),则直线MP 的方程为:,
令y=0,得,同理:, ……………………9分
故 ,又点M 与点P 在椭圆上,
故,,代入(**)式,得:
……11分 所以|OR|•|OS|=|x R |•|x S |=|x R •x S |=4为定值. ………………………………………12分 方法二:设M (2cosθ,sinθ),N (2cosθ,﹣sinθ), 不妨设sinθ>0,P (2cosα,sinα),其中sinα≠±sinθ. 则直线MP 的方程为:,
令y=0,得,
同理:, …………………………………9分


11分
所以|OR|•|OS|=|x R |•|x S |=|x R •x S |=4为定值.……12分 22. (本小题满分12分)
(Ⅰ)解:因为f′(x )=(2x ﹣3)e x +(x 2﹣3x+3)e x=2
()x
x x e -,
由f′(x )>0⇒x >1或x <0,由f′(x )<0⇒0<x <1, ………………………2分 ∴函数f (x )在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减, ∵函数f (x )在[﹣2,t]上为单调函数,∴﹣2<t≤0, …………………………4分 (Ⅱ)证:因为
02000
()x f x x x e '=-,∴00()x f x e '=22(1)3t -,即为x 02﹣x 0=22(1)3t -, 令g (x )=x 2﹣x ﹣22
(1)3
t -, ……………………………………………………5分
从而问题转化为证明方程g (x )= x 2﹣x ﹣
22
(1)3t -=0在(﹣2,t )上 有解并讨论解的个数,因为g (﹣2)=6﹣232(1)t -=﹣2
(4)(2)3
t t -+,
g (t )=t (t ﹣1)﹣232
(1)t -=1(2)(1)3
t t +-,……………………………………7分
1)当t >4或﹣2<t <1时,g (﹣2)•g (t )<0, 此时g (x )=0在(﹣2,t )上有解,且只有一解,
2)当1<t <4时,g (﹣2)>0且g (t )>0,但由于g (0)=﹣24
(1)3
t --<0, 此时g (x )=0在(﹣2,t )上有解,且有两解, 3)当t=1时,g (x )=x 2﹣x=0,解得x=0或1(舍), 此时g (x )=0在(﹣2,t )上有且只有一解, 4)当t=4时,g (x )=x 2﹣x ﹣6=0,解得x=3或-2(舍)
此时g (x )=0在(﹣2,t )上也有且只有一解,……………………………11分 综上所述,对于任意的t >﹣2,总存在x 0∈(﹣2,t ),满足
0()x f x e '=22
(1)3
t -, 且当t≥4或﹣2<t≤1时,有唯一的x 0适合题意,当1<t <4时,
有两个x 0适合题意.…………12分。

相关文档
最新文档