2020届江苏省百校联考高三年级第四次试卷数学试题含答案
江苏省南通市2020届四校联盟高三数学模拟测试卷含附加题(解析版)2020.3

(1)求证:AC1∥平面 PBD;
(2)求证:BD⊥A1P.
16.(14
分)在△ABC
中,内角
A,B,C
所对的边分别为
a,b,c,cosB=
4.
5
(1)若 c=2a,求������������������������的值;
������������������������
(2)若 C﹣B= ������,求 sinA 的值.
e=
12,A,B
是椭圆的左、右顶点,P
是椭圆上不同于
A,B
的
一点,直线 PA,PB 倾斜角分别为 α,β,则������������������������������������((������������−+������������)) =
.
10.在△ABC
所在的平面上有一点
→
P,满足������������
4
17.(14
分)在平面直角坐标系
xOy
中,已知椭圆
C:������������22
+
������2 ������2
=1(a>b>0)的右焦点为
F(1,0),且过
点(1,
3).过点
F
且不与
x
轴重合的直线
l
与椭圆
C
交于
A,B
两点,点
P
→
在椭圆上,且满足������������
+
→
������������
������.已知
3
CD=4m,CE=2m.
(1)当 M,D 重合时,求路灯在路面的照明宽度 MN;
(2)求此路灯在路面上的照明宽度 MN 的最小值.
盐城市2020届高三年级第四次模拟考试数学参考答案

又因为 OE 平面 BDE , AP 平面 BDE, 所以 AP // 平面 BDE . ………………………………6 分
P
E
C D
O
B
A
高三数学答案 第 1 页 共 8 页
江苏高考名校精品题库群 723335337
博睿江苏高考志愿规划群 217590902
(2) 因为平面 PBC 平面 ABCD , PC BC ,平面 PBC 平面 ABCD =BC , PC 平面 PBC ,
( 2)①设直线 PQ : y k (x 1) ,代入到椭圆方程得: (1 2k 2 )x2 4k 2 x ( 2k 2 2) 0 ,
设 P(x1, y1 ), Q( x2, y2) ,则 x1
x2
1
4k2 2k 2
,
x1x2
2k2 2 , ………………………………6 1 2k 2
分
所以 k1 k 2
……………………………… 14 分
17.解析:连接 CM ,设 PCM OP OC PC 10 1 , AB
cos
,则 PC
1 , PM
cos
2OP 20 2 , cos
PN tan
设新建的道路长度之和为 f ( ) ,则 f ( ) PM PN AB OP 2 tan
,
3 cos
30 , ……6 分
) 上递增, 所以 x
1是Leabharlann 2……6 分当
2a (
2
1)
4
0 时,解得 a
9
3
或 a (舍),
3
2
2
当a
9
时,设
g( x) 的两个零点为
x1, x2 ,所以 x1 x2
江苏省南通市四校联盟2020年高三下学期数学模拟测试试卷含答案

江苏省南通市2020届四校联盟高三数学模拟测试卷一、填空题(共14题,每题5分,计70分.不写解答过程,把答案写在答题纸指定位置上) 1.已知集合{}A |3|1x x =-≤,{}2B 540x x x =-+≥,则A B =I ▲ .{}42.复数21z i =-,(其中i 是虚数单位),则复数z 的共轭复数为 ▲ .1i - 3.设向量a r =(l ,k ),b r =(﹣2,k ﹣3),若a r ∥b r,则实数k 的值为 ▲ .14.如图是一个算法的伪代码,其输出的结果为 .10115.函数f(x) =)34log 21-x (的定义域为 ▲.(-3/4,1]6.已知命题p :-1<x -a <1,命题q :(x -4)(8-x )>0,若p 是q 的充分不必要条件,则实数a 的取值范围是 ▲ .[5,7]7.在正四棱锥S ﹣ABCD 中,点O 是底面中心,SO =2,侧棱SA =2,则该棱锥的体积为 ▲ .32/38.若函数()cos(2)f x x θ=+(0θπ<<)的图象关于直线12x π=对称,则θ=▲ .56π 9.已知椭圆22221x y a b +=(a >b >0)的离心率12e =,A 、B 分别是椭圆的左、右顶点,P 是椭圆上不同于A 、B 的一点,直线PA 、PB 的倾斜角分别为α、β,则cos()cos()αβαβ-+的值为▲ .1710.在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=u u u r u u u r u u u r u u u r ,则PA PBPB PC⋅⋅uu u r uu u ruu u r uuu r = ▲ . 12- 11.如图,将数列{}n a 中的所有项按每一行比上一行多两项的规则排成数表.已知表中的第一列125,,,a a a L 构成一个公比为2的等比数列,从第2行起,每一行都是一个公差为d 的等差数列,若3865,524==a a ,则d = ▲ . 312.己知x ∈(0,3),则28132x y x x-=+-的最小值为 ▲ .7213.若函数f (x) = x 3-ax 2-+x , x >0存在零点,则实数a 的取值范围为▲.[2,+∞) 14.已知()(2)(3)f x m x m x m =-++,()22x g x =-,若同时满足条件: ①x R ∀∈,()0f x <或()0g x <;②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 .(4,2)--二、解答题(共6小题,共90分,解答时应写出文字说明,证明过程或演算步骤) 16.(本题满分14分)如图,在直四棱柱ABCD —A 1B 1C 1D 1中,已知底面ABCD 是菱形,点P 是侧棱C 1C 的中点.(1)求证:AC 1∥平面PBD ; (2)求证:BD ⊥A 1P .(1)证明:连结AC 交BD 于O 点,连结OP ,因为四边形ABCD 是正方形,对角线AC 交BD 于点O ,所以O 点是AC 的中点,所以AO OC =.又因为点P 是侧棱1C C 的中点,所以1CP PC =.在1ACC ∆中,11C PAO OC PC==, 所以1//AC OP .………………4分又因为OP PBD ⊂面,1AC PBD ⊄面, 所以1//AC 平面PBD .………………7分 (2)证明:连结11A C .因为1111ABCD A B C D -为直四棱柱, 所以侧棱1C C 垂直于底面ABCD ,PD 1C 1B 1A 1D C BAOPD 1C 1B 1A 1D CBA又BD ⊂平面ABCD ,所以1CC BD ⊥.因为底面ABCD 是菱形,所以AC BD ⊥.又1AC CC C =I ,111,AC AC CC AC ⊂⊂面面,所以1BD AC ⊥面.………………10分 又因为1111,P CC CC ACC A ∈⊂面,所以11P ACC A ∈面,因为111A ACC A ∈面, 所以11A P AC ⊂面,所以1BD A P ⊥.………………14分16.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =45.(1)若c =2a ,求sin Bsin C 的值;(2)若C -B =π4,求sin A 的值.解:(1)解法1:在△ABC 中,因为cos B =45,所以a 2+c 2-b 22ac =45.………………2分因为c =2a ,所以(c2)2+c 2-b 22c ×c 2=45,即b 2c 2=920,所以b c =3510.………………4分又由正弦定理得sin B sin C =b c ,所以sin B sin C =3510.………………6分解法2:因为cos B =45,B ∈(0,π),所以sin B =1-cos 2B =35.………………2分因为c =2a ,由正弦定理得sin C =2sin A ,所以sin C =2sin(B +C )=65cos C +85sin C ,即-sin C =2cos C .………………4分又因为sin 2C +cos 2C =1,sin C >0,解得sin C =255,所以sin B sin C =3510.………………6分(2)因为cos B =45,所以cos2B =2cos 2B -1=725.………………8分又0<B <π,所以sin B =1-cos 2B =35,所以sin2B =2sin B cos B =2×35×45=2425.………………10分因为C -B =π4,即C =B +π4,所以A =π-(B +C )=3π4-2B ,所以sin A =sin(3π4-2B )=sin 3π4cos2B -cos 3π4sin2B =31250.………………14分 17.(14分)在平面直角坐标系xOy 中,已知椭圆()2222:10x yC a b a b +=>>的右焦点为()1,0F ,且过点3(1,)2.过点F 且不与x 轴重合的直线l 与椭圆C 交于,A B 两点,点P 在椭圆上,且满足()0OA OB tOP t +=u u u r u u u r u u u r>.(1)求椭圆C 的标准方程;(2)若t =AB 的方程. .解:(1)由题意可知,1c =,且221914a b+=,又因为222a b c =+,解得2,a b ==,………2分所以椭圆C 的标准方程为22143x y +=………4分; (2)若直线AB 的斜率不存在,则易得33(1,),(1,)22A B -,(2,0)2OA OB OP ∴+==u u u r u u ur ,得P ,显然点P 不在椭圆上,舍去………5分; 因此设直线l 的方程为()1y k x =-,设1122(,),(,)A x y B x y ,将直线l 的方程与椭圆C 的方程联立()221143y k x x y ⎧=-⎪⎨+=⎪⎩,整理得2222(34)84120k x k x k +-+-=………7分,因为21,22434k x k ±=+,所以2122834k x x k +=+………8分,则由()()1212,k 2OA OB x x x x +=++-=u u u r u u u r u ur ,得1212(2))P x x x x ++-………10分将P 点坐标代入椭圆C 的方程,得22212123()4(2)6x x k x x +++-=()*………11分(第17题);将2122834k x x k +=+带入等式()*得234k =,2k ∴=±………12分, 因此所求直线AB的方程为)12y x =±-………14分 设直线l 的方程为1x my =+求解亦可18.(16分)某校要在一条水泥路边安装路灯,其中灯杆的设计如图所示,AB 为地面,,CD CE 为路灯灯杆,CD AB ⊥,2π3DCE ∠=,在E 处安装路灯,且路灯的照明张角π3MEN ∠=.已知4m,2m CD CE ==. (1)当,M D 重合时,求路灯在路面的照明宽度MN ; (2)求此路灯在路面上的照明宽度MN 的最小值. 解:(1)当,M D 重合时, 由余弦定理知,ME DE ==,所以222cos 2CD DE CE CDE CD DE +-∠==⋅……2分,因为π2CDE EMN ∠+∠=,所以sin cos EMN CDE ∠=∠=,因为cos 0EMN ∠>,所以cos 14EMN ∠==,……4分 因为π3MEN ∠=,所以2πsin sin 3ENM EMN ⎛⎫∠=-∠⎪⎝⎭2π2πsincos cos sin 33EMN EMN =∠-∠=……6分 ∴在EMN ∆中,由正弦定理可知,sin sin MN EMMEN ENM=∠∠,解得MN =……8分; (2)易知E 到地面的距离2ππ42sin 5m 32h ⎛⎫=+-= ⎪⎝⎭,……10分 由三角形面积公式可知,11π5sin 223EMN S MN EM EN =⋅⋅=⋅⋅△,MN EM EN =⋅,……12分(第18题)又由余弦定理可知,222π2cos 3MN EM EN EM EN EM EN =+-⋅⋅⋅≥,……13分当且仅当EM EN =时,等号成立,所以2MN MN,解得3MN ≥……14分; 答:(1)路灯在路面的照明宽度为m 2; (2)照明宽度MN的最小值为m 3.……16分 19.(本小题满分16分)已知函数x x x x f 3231)(23+-=(R x ∈)的图象为曲线C . (1)求曲线C 上任意一点处的切线的斜率的取值范围;(2)若曲线C 上存在两点处的切线互相垂直,求其中一条切线与曲线C 的切点的横坐标的取值范围;(3)试问:是否存在一条直线与曲线C 同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.【解】(1)34)(2+-='x x x f ,则2()(2)11k f x x '==--≥-, ----------4分(2)由(1)可知,⎪⎩⎪⎨⎧-≥--≥111kk ---------------------------------------------------------6分得:(][)+∞+-∞-∈,22)3,1(22,Y Y x ;-------------------------------9分(3)设存在过点A ),(11y x 的切线曲线C 同时切于两点,另一切点为B ),(22y x ,21x x ≠,过A ),(11y x 的切线方程是: )232()34(2131121x x x x x y +-++-=,-----------------11分同理:过B ),(22y x 的切线方程是)232()34(2232222x x x x x y +-++-=, 则有:3434222121+-=+-x x x x ,得421=+x x ,----------------------13分 又由22322131232232x x x x +-=+-, 即0))((2))((32212122212121=+-+++--x x x x x x x x x x 04)(31222121=+++-x x x x ,即012)(22211=-++x x x x 即0124)4(222=-+⨯-x x ,044222=+-x x得22=x ,由421=+x x 得21=x ,这与21x x ≠矛盾,所以不存在----------16分 20.(本小题满分16分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知11a =,且111λ+++-=-n n n n n n a S a S a a 对一切*n ∈N 都成立. (1)时;当1=λ,①求数列{}n a 的通项公式;②若,)1(n n a n b +=求数列{}n b 的前n 项的和;n T(2)是否存在实数λ,使数列{}n a 是等差数列.如果存在,求出λ的值;若不存在,说明理由.【详解】(1)①若1λ=,因为111n n n n n n a S a S a a λ+++-=- 则()()1111n n n n S a S a +++=+,111a S ==. 又∵0n a >,0n S >,∴1111n n n nS a S a +++=+,∴3131221212111111n n n nS S a a S a S S S a a a +++++⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+++, 化简,得1112n n S a +++=. ① ∴当2n ≥时,12n n S a +=. ② ②-①,得12n n a a +=,∴()122n na n a +=≥. ∵当1n =时,22a =,∴1n =时上式也成立,∴数列{}n a 是首项为1,公比为2的等比数列,12n n a -=.………………4分②因为()1n n b n a =+,∴()112n n b n -=+⋅所以012212232422(1)2n n n T n n --=⨯+⨯+⨯++⨯++⨯L 所以123122232422(1)2n nn T n n -=⨯+⨯+⨯++⨯++⨯L将两式相减得:1212222(1)2n n n T n --=++++-+⨯L12(12)2(1)2212n n n n n --=+-+⨯=-⨯-所以2nn T n =⋅………………8分(2)令1n =,得21a λ=+.令2n =,得()231a λ=+. 要使数列{}n a 是等差数列,必须有2132a a a =+,解得0λ=. 当0λ=时,()111n n n n S a S a ++=+,且211a a ==.………………10分 当2n ≥时,()()()1111n n n n n n S S S S S S +-+-=+-,整理,得2111n n n n n S S S S S +-++=+,1111n n n nS S S S +-+=+,从而3312412123111111n n n nS S S S S S S S S S S S +-+++⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅+++, 化简,得11n n S S ++=,所以11n a +=. 综上所述,()*1Nn a n =∈,所以0λ=时,数列{}n a 是等差数列. ………………16分数学附加试卷(满分40分,考试时间30分钟) 21A .(本小题满分10分) 己知矩阵,其中,点P(2,2)在矩阵的变换下得到的点Q(2,4)·(1)求实数a ,b 的值: (2)求矩阵A 的逆矩阵.解:(1)因为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-422211b a ,所以⎩⎨⎧=+=-422222b a 所以⎩⎨⎧==12b a .………………5分(2)31112)det(=-=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-32313131323131311A .………………10分 21B .在极坐标系中,已知(A 1,3π),(B 9,3π),线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积. 解:由题意,线段AB 的中点坐标为(5,)3π,设点(,)P ρθ为直线l 上任意一点, 在直角三角形OMP 中,cos()53πρθ-=,所以,l 的极坐标方程为cos()53πρθ-=,………………5分令0θ=,得10ρ=,即(10,0)C .(8分)所以,ABC ∆的面积为:1(91)10sin 20323π⨯-⨯⨯=.………………10分22.(本小题満分10分)1()2,0,()12(),0m x x xf x x n x x ⎧+->⎪=⎨⎪++<⎩已知函数是奇函数.(1)求实数m ,n 的值:(2)若对任意实数x ,都有0)()(2≥+xxe f e f λ成立.求实数的取值范围.23.(本小题满分10分)已知()2120121n x a a x a x ++=+++ (21)21n n a x+++,*n N ∈.记()021nn n kk T k a-==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n N ∈,n T 都能被42n +整除.解:(1)210221055535C 3C 5C 30T a a a =++=++=.………………3分(2) ∵()()()()()()()()()()121221!212!1C121C 1!!!!n kn kn n n n n n k n k n n k n k n k n k ++++++⋅++=++⋅==+++-+-∴()()()12121002121C21C nnnn k n kn n kn n k k k T k ak k -++-++====+=+=+∑∑∑ ()()()()11121212102121C21C21C nnnn k n kn kn n n k k k n k n n k n +++++++++===⎡⎤=++-+=++-+⎣⎦∑∑∑(()11)()()()()()1221221220221C21C 2212C 21221C 22nnn kn k n nn n nn n nk k n n n n n +++++===+-+=+⋅⋅+-+⋅⋅=+∑∑………………7分∴()()()()1221212121C 21C C 221C nn n n n n n n n T n n n ----=+=++=+. ∵*21C n n N -∈,∴n T 能被42n +整除.………………10分。
H06-江苏省盐城市2020届高三第四次模拟调研数学试题(PDF含解析)2020.06.10

30
,……6
分
由1
PC
10
得1 10
cos
1 ,设
cos0 =
1 10
,0
0,
2
,
则
(0,0
]
,
sin
0
=
3 10
11 ,
f ( )
2 3sin cos2
,令
f ( ) 0 得 sin =
2 3
,
…………10 分
设
sin
1
=
2 3
, 1
(0,0
]
,
, f ( ), f ( ) 的情况如下表:
)
的最小值为
4 225
.
………………………………16 分
19.解析:(1)由数列{an}
是
P(1)
数列得
a6
a2a3
1, a12
a2a6
3
,可得
a3
1 3
.………2
分
(2)由{bn} 是 P(2) 数列知 bmn 2bmbn 恒成立,取 m 1得 bn 2b1bn 恒成立,
设
P( x1 ,
y1), Q(x2 ,
y2 ) ,则
x1
x2
4k 2 1 2k 2
,
x1x2
2k 2 2 1 2k 2
,
………………………………6 分
所以 k1
k2
y1 x1 3
y2 x2 3
k[( x1
1)(x2 3) (x2 1)(x1 (x1 3)(x2 3)
3)]
,
化简可得
5
13
5
13
又因为△ ABC 中, A, B (0, ) ,
江苏省盐城市2020届高三年级第四次模拟考试数学试题含附加题(解析版)

江苏省盐城市2020届高三年级第四次模拟考试数学试题2020.6第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.若集合A ={}x x m ≤,B ={}1x x ≥-,且AB ={m },则实数m 的值为 .2.已知i 为虚数单位,复数z 满足z(3+i)=10,则z 的值为 .3.从数字0,1,2中任取两个不同的数字构成一个两位数,则所得的两位数大于10的概率为 .4.如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,图中小矩形从左向右所对应的区间依次为[0,50),[50,100),[100,150),[150,200),[200,250] .若一个月以30天计算,估计这家面包店一个月内这种面包的日销售量少于100个的天数为 天.5.执行如图所示的流程图,输出k 的值为 .第4题第5题6.若双曲线22221x y a b-=(a >0,b >0)的渐近线为2y x =±,则其离心率的值为 .7.若三棱柱ABC —A 1B 1C 1的体积为12,点P 为棱AA 1上一点,则四棱锥P —BCC 1B 1的体积为 . 8.“ω=2”是“函数()sin()6f x x πω=+的图象关于点(512π,0)对称”的 条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一). 9.在△ABC 中,C =B +4π,AB =324AC ,则tanB 的值为 .10.若数列{}n a 的前n 项和为n S ,12(1)(21)n n n a n -=+--,则1001002a S -的值为 .11.若集合P ={}22(, )40x y x y x +-=,Q=2(, )x x y y⎧+⎪≥⎨⎪⎩,则PQ 表示的曲线的长度为 .12.若函数2e , 0()e 1, 0xm x f x x x ⎧+>⎪=⎨-≤⎪⎩的图象上存在关于原点对称的相异两点,则实数m 的最大值是 .13.在△ABC 中,AB =10,AC =15,∠A 的平分线与边BC 的交点为D ,点E 为边BC 的中点,若AB AD ⋅=90,则AB AE ⋅的值是 .14.若实数x ,y 满足4x 2+4xy +7y 2=l ,则7x 2﹣4xy +4y 2的最小值是 .二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)若函数()Msin()f x x ωϕ=+(M >0,ω>0,0<ϕ<π)的最小值是﹣2,最小正周期是2π,且图象经过点N(3π,1). (1)求()f x 的解析式; (2)在△ABC 中,若8(A)5f =,10(B)13f =,求cosC 的值.16.(本小题满分14分)如图,在四棱锥P —ABCD 中,底面ABCD 是菱形,PC ⊥BC ,点E 是PC 的中点,且平面 PBC ⊥平面ABCD .求证:(1)求证:PA ∥平面BDE ;(2)求证:平面PAC ⊥平面BDE .如图,在一旅游区内原有两条互相垂直且相交于点O 的道路l 1,l 2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心C 到l 1,l 2的距离相等,点C 到点O 的距离约为 10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC 上取一点P ,新建一条道路OP ,并过点P 新建两条与圆C 相切的道路PM ,PN (M ,N 为切点),同时过点P 新建一条与OP 垂直的道路AB (A ,B 分别在l 1,l 2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)18.(本小题满分16分)如图,在平面直角坐标系中,已知椭圆C :22221x y a b+=(a >b >0)的短轴长为2,F 1,F 2分别是椭圆C 的左、右焦点,过点F 2的动直线与椭圆交于点P ,Q ,过点F 2与PQ 垂直的直线与椭圆C 交于A 、B 两点.当直线AB 过原点时,PF 1=3PF 2.(1)求椭圆的标准方程;(2)若点H(3,0),记直线PH ,QH ,AH ,BH 的斜率依次为1k ,2k ,3k ,4k .①若12215k k +=,求直线PQ 的斜率;②求1234()()k k k k ++的最小值.如果存在常数k 使得无穷数列{}n a 满足mn m n a ka a =恒成立,则称为P(k )数列. (1)若数列{}n a 是P(1)数列,61a =,123a =,求3a ; (2)若等差数列{}n b 是P(2)数列,求数列{}n b 的通项公式;(3)是否存在P(k )数列{}n c ,使得2020c ,2021c ,2022c ,…是等比数列?若存在,请求出所有满足条件的数列{}n c ;若不存在,请说明理由. 20.(本小题满分16分)设函数32()3ln 2f x x x ax ax =-++-. (1)若a =0时,求函数()f x 的单调递增区间;(2)若函数()f x 在x =1时取极大值,求实数a 的取值范围; (3)设函数()f x 的零点个数为m ,试求m 的最大值.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换已知矩阵A = 2 1a b ⎡⎤⎢⎥⎣⎦,若矩阵A 属于特征值3的一个特征向量为11α⎡⎤=⎢⎥⎣⎦,求该矩阵属于另一个特征值的特征向量.B .选修4—4:坐标系与参数方程在极坐标系中,已知直线l :cos 2sin m ρθρθ+=(m 为实数),曲线C :2cos ρθ=+4sin θ,当直线l 被曲线C 截得的弦长取得最大值时,求实数m 的值.C .选修4—5:不等式选讲已知实数x ,y ,z 满足21x y z ++=,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)如图,抛物线C :22y px =(p >0)的焦点为F ,过点P(2,0)作直线l 与抛物线交于A ,B 两点,当直线l 与x 轴垂直时AB的长为(1)求抛物线的方程;(2)若△APF 与△BPO 的面积相等,求直线l 的方程.23.(本小题满分10分)若有穷数列{}n a 共有k 项(k ≥2),且11a =,12()1r r a r k a r +-=+,当1≤r ≤k ﹣1时恒成立.设12k k T a a a =+++.(1)求2T ,3T ; (2)求k T .江苏省盐城市2020届高三年级第四次模拟考试数学试题2020.6第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.若集合A ={}x x m ≤,B ={}1x x ≥-,且A B ={m },则实数m 的值为 .答案:﹣1考点:集合交集运算解析:∵集合A ={}x x m ≤,B ={}1x x ≥-,且A B ={m },∴实数m 的值为﹣1.2.已知i 为虚数单位,复数z 满足z(3+i)=10,则z 的值为 .考点:复数解析:1010(3)33(3)(3)i z i z i i i -===-⇒=++- 3.从数字0,1,2中任取两个不同的数字构成一个两位数,则所得的两位数大于10的概率为 . 答案:34考点:随机事件的概率 解析:34P =. 4.如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,图中小矩形从左向右所对应的区间依次为[0,50),[50,100),[100,150),[150,200),[200,250] .若一个月以30天计算,估计这家面包店一个月内这种面包的日销售量少于100个的天数为 天.答案:12考点:频率分布直方图解析:(0.0030.005)503012+⨯⨯=.5.执行如图所示的流程图,输出k 的值为 .答案:4考点:程序框图解析:第一次:S =3,k =2; 第二次:S =9,k =3;第三次:S =18,k =4;∵18>16,故输出的k 的值为4.6.若双曲线22221x y a b-=(a >0,b >0)的渐近线为2y x =±,则其离心率的值为 .考点:双曲线的简单性质 解析:根据渐近线可判断2ba=,从而224b a =,由22225c b a a =+=,即25e =,e =7.若三棱柱ABC —A 1B 1C 1的体积为12,点P 为棱AA 1上一点,则四棱锥P —BCC 1B 1的体积为 . 答案:8考点:棱柱棱锥的体积解析:11111111111111113P BCC B A BCC B ABC A B C A A B C ABC A B C ABC A B C V V V V V V ------==-=-1112212833ABC A B C V -==⨯=. 8.“ω=2”是“函数()sin()6f x x πω=+的图象关于点(512π,0)对称”的 条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一).答案:充分不必要 考点:充要性解析:当ω=2,526126x πππωπ+=⨯+=,故此时()f x 的图象关于点(512π,0)对称, 而当()f x 的图象关于点(512π,0)对称,则5126k ππωπ⨯+=,1225k ω-=,k ∈Z , 故“ω=2”是“函数()sin()6f x x πω=+的图象关于点(512π,0)对称”的充分不必要条件. 9.在△ABC 中,C =B +4π,AB =32AC ,则tanB 的值为 .答案:2考点:正弦定理,两角和的正弦公式,同角三角函数关系式 解析:由AB =32AC ,得3232sin sin sin()sin 4C B B B π=⇒+=,2232cos sin sin 224B B B +=,化简得2cos sin B B =, 所以tanB 的值为2.10.若数列{}n a 的前n 项和为n S ,12(1)(21)n n n a n -=+--,则1001002a S -的值为 .答案:299考点:数列的求和方法解析:9910022(2199)a =⨯+,10011001242[(13)(57)(197199)]S -=+++++-++-+++-+10021100=-+∴10010010010022398(21100)299a S -=+--+=.11.若集合P ={}22(, )40x y x y x +-=,Q =2(, )15x x y y ⎧⎫+⎪⎪≥⎨⎬⎪⎪⎩,则P Q 表示的曲线的长度为 . 答案:23π考点:直线与圆解析:222240(2)4x y x x y +-=⇒-+=,222xxyyx≥-+≥≤=⎪<-⎪⎩,作出两曲线图像如下:此时P Q表示的曲线长度为图中半圆去掉劣弧AB部分,20x--=与圆心的距离1d==,且r=2,∴∠ACB=120°,∴曲线长度为:1202243603πππ︒-⨯=︒.12.若函数2e,0()e1,0xm xf xx x⎧+>⎪=⎨-≤⎪⎩的图象上存在关于原点对称的相异两点,则实数m的最大值是.答案:2e1+考点:函数与方程解析:题目可转化为函数2e1y x=+与e xy m=+图像在第一象限内有两个交点,22e1e e1ex xx m m x+=+⇒=+-,令2222 ()e1e()e e()(2)e1e1x xg x x g x g x g m'=+-⇒=-⇒≤=+⇒≤+∴实数m的最大值是2e1+.13.在△ABC中,AB=10,AC=15,∠A的平分线与边BC的交点为D,点E为边BC的中点,若AB AD⋅=90,则AB AE⋅的值是.答案:1752考点:平面向量的数量积解析:由角平分线定理可知323255AC CDAD AC ABAB BD==⇒=+2233290()755555AB AD AB AC AB AB AC AB AC AB⋅=⇒⋅+=+⋅⇒⋅=2111175()2222AB AE AB AB AC AB AB AC⋅=⋅+=+⋅=.14.若实数x,y满足4x2+4xy+7y2=l,则7x2﹣4xy+4y2的最小值是.答案:38考点:不等式解析:222222744744447x xy y x xy y x xy y -+-+=++,当x =0,原式的值为47, 当x ≠0,令222744(74)(44)470447y t t t m m t m t m x t t-+=⇒=⇒-+++-=++ 2438(44)4(74)(47)0783m m m m m ≠⇒∆=+---≥⇒≤≤. 二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)若函数()Msin()f x x ωϕ=+(M >0,ω>0,0<ϕ<π)的最小值是﹣2,最小正周期是2π,且图象经过点N(3π,1). (1)求()f x 的解析式; (2)在△ABC 中,若8(A)5f =,10(B)13f =,求cosC 的值. 解:(1)因为()f x 的最小值是﹣2,所以M =2.因为()f x 的最小正周期是2π,所以ω=1,又由()f x 的图象经过点(3π,1),可得()13f π=,1sin()32πϕ+=,所以236k ππϕπ+=+或526k ππ+,k ∈Z ,又0<ϕ<π,所以2πϕ=,故()2sin()2f x x π=+,即()2cos f x x =.(2)由(1)知()2cos f x x =,又8(A)5f =,10(B)13f =,故82cos 5A =,102cos 13B =,即4cos 5A =,5cos 13B =,又因为△ABC 中,A ,B ∈(0,π),所以3sin 5A ===,12sin 13B ===,所以cosC =cos[π﹣(A +B)]=﹣cos(A +B)=﹣(cosAcosB ﹣sin AsinB)=4531216 () 51351365 -⨯-⨯=.16.(本小题满分14分)如图,在四棱锥P—ABCD中,底面ABCD是菱形,PC⊥BC,点E是PC的中点,且平面PBC⊥平面ABCD.求证:(1)求证:PA∥平面BDE;(2)求证:平面PAC⊥平面BDE.证明:(1)设AC BD=O,连结OE,因为底面ABCD是菱形,故O为BD中点,又因为点E是PC的中点,所以AP//OE,又因为OE⊂平面BDE,AP⊄平面BDE,所以AP//平面BDE.(2)因为平面PBC⊥平面ABCD,PC⊥BC,平面PBC平面ABCD=BC,PC⊂平面PBC,所以PC⊥平面ABCD又BD⊂平面ABCD,所以PC⊥BD,∵ABCD是菱形,∴AC⊥BD,又PC⊥BD,AC PC=C,AC⊂平面PAC,PC⊂平面PAC,所以BD⊥平面PAC又BD⊂平面BDE,所以平面PAC⊥平面BDE.17.(本小题满分14分)如图,在一旅游区内原有两条互相垂直且相交于点O的道路l1,l2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心C到l1,l2的距离相等,点C到点O的距离约为10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC上取一点P,新建一条道路OP,并过点P新建两条与圆C相切的道路PM,PN(M,N为切点),同时过点P新建一条与OP垂直的道路AB(A,B分别在l1,l2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)解:连接CM ,设∠PCM =θ,则PC =1cos θ,PM =PN =tan θ, OP =OC ﹣PC =10﹣1cos θ,AB =2OP =20﹣2cos θ,设新建的道路长度之和为()f θ,则3()2tan 30cos f PM PN AB OP θθθ=+++=-+ 由1<PC ≤10得110≤θ<1,设01cos 10θ=,0θ∈(0,2π),则θ∈(0,0θ],0sin 10θ=,0223cos ()cos f θθθ-'=,令0()0f θ'=得2sin 3θ= 设12sin θ=,1θ∈(0,0θ],θ,0()f θ',()f θ的情况如下表:由表可知1θθ=时()f θ有最大值,此时2sin 3θ=,cos 3θ=,tan θ=,()30f θ=答:新建道路长度之和的最大值为30- 18.(本小题满分16分)如图,在平面直角坐标系中,已知椭圆C :22221x y a b+=(a >b >0)的短轴长为2,F 1,F 2分别是椭圆C 的左、右焦点,过点F 2的动直线与椭圆交于点P ,Q ,过点F 2与PQ 垂直的直线与椭圆C 交于A 、B 两点.当直线AB 过原点时,PF 1=3PF 2.(1)求椭圆的标准方程;(2)若点H(3,0),记直线PH ,QH ,AH ,BH 的斜率依次为1k ,2k ,3k ,4k .①若12215k k +=,求直线PQ 的斜率;②求1234()()k k k k ++的最小值.解:(1)因为椭圆C :22221x y a b+=(a >b >0)的短轴长为2,所以b =1,当直线AB 过原点时,PQ ⊥x 轴,所以△PF 1F 2为直角三角形, 由定义知PF 1+PF 2=2a ,而PF 1=3PF 2,故132PF a =,212PF a =, 由2221212PF PF F F =+得2222291144(1)444a a c a a =+=+-,化简得a 2=2, 故椭圆的方程为2212x y +=. (2)①设直线PQ :(1)y k x =-,代入到椭圆方程得:2222(12)4(22)0k x k x k +-+-=,设P(1x ,1y ),Q(2x ,2y ),则2122412k x x k +=+,21222212k x x k -=+,所以121221121212[(1)(3)(1)(3)]33(3)(3)y y k x x x x k k x x x x --+--+=+=----, 化简可得122228715k k k k +==+, 解得:1k =或78k =,即为直线PQ 的斜率.②当这两条直线中有一条与坐标轴垂直时,1234()()0k k k k ++=, 当两条直线与坐标轴都不垂直时, 由①知122287k k k k +=+,同理可得342287kk k k-+=+ 故21234422244()()1565611356()113k k k k k k k k k --++==++++4225≥=-,当且仅当221k k =即k =±1时取等号. 综上,1234()()k k k k ++的最小值为4225-. 19.(本小题满分16分)如果存在常数k 使得无穷数列{}n a 满足mn m n a ka a =恒成立,则称为P(k )数列. (1)若数列{}n a 是P(1)数列,61a =,123a =,求3a ; (2)若等差数列{}n b 是P(2)数列,求数列{}n b 的通项公式;(3)是否存在P(k )数列{}n c ,使得2020c ,2021c ,2022c ,…是等比数列?若存在,请求出所有满足条件的数列{}n c ;若不存在,请说明理由.解:(1)由数列{}n a 是P(1)数列得6231a a a ==,12263a a a ==,可得313a =; (2)由{}n b 是P(2)数列知2mn m n b b b =恒成立,取m =1得12n n b b b =恒成立,当10b =,0n b =时满足题意,此时0n b =,当10b ≠时,由2112b b =可得112b =,取m =n =2得2422b b =, 设公差为d ,则21132()22d d +=+解得0d =或者12d =,综上,0n b =或12n b =或2n nb =,经检验均合题意.(3)假设存在满足条件的P(k )数列{}n c ,不妨设该等比数列2020c ,2021c ,2022c ,…的公比为q ,则有2020202020202020202020202020202020202020c kc c c qkc c ⋅-⋅=⇒⋅=⋅, 可得2020202020202020qkc ⋅-=①2020202120202020202120202021202020202020c kc c c q kc c q ⋅-⋅=⇒⋅=⋅⋅,可得2020202120212020qkc ⋅-=②综上①②可得q =1,故202020202020c c ⋅=,代入2020202020202020c kc c ⋅=得20201c k=, 则当n ≥2020时1n c k=,又20201202011c kc c c k=⋅⇒=, 当1<n <2020时,不妨设2020in ≥,i N *∈且i 为奇数, 由,而1i n c k =,所以11()i i n k c k -=,1()()ii n c k =,1n c k=, 综上,满足条件的P(k )数列{}n c 有无穷多个,其通项公式为1n c k=. 20.(本小题满分16分)设函数32()3ln 2f x x x ax ax =-++-. (1)若a =0时,求函数()f x 的单调递增区间;(2)若函数()f x 在x =1时取极大值,求实数a 的取值范围; (3)设函数()f x 的零点个数为m ,试求m 的最大值.解:(1)当a =0时,3()3ln f x x x =-+,所以31()3()x f x x-'= 由()0f x '=得x =1,当x ∈(0,1)时,()f x '<0;当x ∈(1,+∞)时,()f x '>0, 所以函数()f x 的单调增区间为(1,+∞). (2)由题意得23(1)2()[(1)1]3x af x x x x -'=+++, 令22()(1)13a g x x x =+++(x >0),则3(1)()()x f x g x x-'=,当213a +≥0即32a ≥-时,()g x >0恒成立,得()f x 在(0,1)上递减,在(1,+∞)上递增,所以x =1是函数()f x 的极小值点; 当22(1)403a ∆=+-<即9322a -<<时,此时()g x >0恒成立,()f x 在(0,1)上递减,在(1,+∞) 上递增,所以x =1是函数()f x 的极小值点; 当22(1)403a ∆=+-=即92a =-或32a =时,易得()f x 在(0,1)上递减,在(1,+∞) 上递增,所以x =1是函数()f x 的极小值点; 当22(1)403a ∆=+->时,解得92a <-或32a >(舍),当92a <-时,设()g x 的两个零点为1x ,2x ,所以1x 2x =1,不妨设0<1x <2x , 又2(1)303a g =+<,所以0<1x <1<2x ,故123()()(1)()f x x x x x x x'=---,当x ∈(0,1x )时,()f x '<0;当x ∈(1x ,1)时,()f x '>0;当x ∈(1,2x )时,()f x '<0;当x ∈(2x ,+∞)时,()f x '>0;∴()f x 在(0,1x )上递减,在(1x ,1)上递增,在(1,2x )上递减,在(2x ,+∞)上递增;所以x =1是函数()f x 极大值点,综上所述92a <-. (3)①由(2)知当92a ≥-时,函数()f x 在(0,1)上单调递减,在(1,+∞)上单调递增,故函数()f x 至多有两个零点,欲使()f x 有两个零点,需(1)10f a =-<,得1a >, 此时32()3ln 23ln 2f x x x ax ax x ax =-++->--,1()3ln 2f a a>-, 当a >e 时,1()0f a>,此时函数()f x 在(0,1)上恰有1个零点; 又当x >2时,33()3ln (2)3ln f x x x ax x x x =-++->-+, 由(1)知3()3ln x x x ϕ=-+在(1,+∞)上单调递增,所以3()30f e e >-+>,故此时函数()f x 在(1,+∞)恰有1个零点; 由此可知当a >e 时,函数()f x 有两个零点. ②当92a <-时,由(2)知()f x 在(0,1x )上递减,在(1x ,1)上递增,在(1,2x )上递减,在(2x ,+∞)上递增;而0<1x <1,所以311111()3ln (2)0f x x x ax x =-++->,此时函数()f x 也至多有两个零点综上①②所述,函数()f x 的零点个数m 的最大值为2.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换已知矩阵A = 2 1a b ⎡⎤⎢⎥⎣⎦,若矩阵A 属于特征值3的一个特征向量为11α⎡⎤=⎢⎥⎣⎦,求该矩阵属于另一个特征值的特征向量. 解:由题意知 2113 111a A b α⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以2313a b +=⎧⎨+=⎩,即12a b =⎧⎨=⎩, 所以矩阵A 的特征多项式21 2()(1)42 1f λλλλ--==----,由()0f λ=,解得3λ=或1λ=-, 当1λ=-时,220220x y x y --=⎧⎨--=⎩,令x =1,则y =﹣1,所以矩阵A 的另一个特征值为﹣1,对应的一个特征向量为 11⎡⎤⎢⎥-⎣⎦.B .选修4—4:坐标系与参数方程在极坐标系中,已知直线l :cos 2sin m ρθρθ+=(m 为实数),曲线C :2cos ρθ=+4sin θ,当直线l 被曲线C 截得的弦长取得最大值时,求实数m 的值.解:由题意知直线l 的直角坐标方程为x +2y - m = 0 ,又曲线C 的极坐标方程ρ=2cos θ+4sin θ,即ρ2=2ρcos θ+4ρsin θ,所以曲线C 的直角坐标方程为22240x y x y +--=,所以曲线C 是圆心为(1,2)的圆,当直线l 被曲线C 截得的弦长最大时,得1+2⋅ 2-m =0,解得m =5. C .选修4—5:不等式选讲已知实数x ,y ,z 满足21x y z ++=,求222x y z ++的最小值. 解:由柯西不等式有2222222(112)()(2)1x y z x y z ++++≥++=,所以22216x y z ++≥(当且仅当112x y z ==即16x y ==,13z =时取等号), 所以222x y z ++的最小值是16.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)如图,抛物线C :22y px =(p >0)的焦点为F ,过点P(2,0)作直线l 与抛物线交于A ,B 两点,当直线l 与x 轴垂直时AB的长为(1)求抛物线的方程;(2)若△APF 与△BPO 的面积相等,求直线l 的方程.解:(1)当直线l 与x 轴垂直时AB的长为P(2,0),取A(2,),所以222p =⋅,解得2p =,所以抛物线的方程为24y x =.(2)由题意知1122APF A A S FP y y ==△,12BPO B B S OP y y ==△, 因APF BPO S S =△△,所以2A B y y =当0AB k =时,直线AB 与抛物线不存在两个交点,所以0AB k ≠, 故设直线AB 的方程为2x my =+,代入抛物线方程得2480y my --=, 所以4A B y y m +=,8A B y y =-, 当0A y >,0B y <时,2A B y y =-,228By -=-,所以2B y =-,214B B y x ==, 所以2PB k =,直线AB 的方程为240x y --=,当0A y <,0B y >时,同理可得直线AB 的方程为240x y --=, 综上所述,直线AB 的方程为240x y --=.23.(本小题满分10分)若有穷数列{}n a 共有k 项(k ≥2),且11a =,12()1r r a r k a r +-=+,当1≤r ≤k ﹣1时恒成立.设12k k T a a a =+++.(1)求2T ,3T ;(2)求k T .解:(1)当2k =时,1r =,由212(12)111a a -==-+,得21a =-,20S =, 当3k =时,1r =或2,由212(13)211a a -==-+,得22a =-, 由322(23)2213a a -==-+,得343a =,313S =. (2)因12()1r r a r k a r +-=+,由累乘法得321122(1)2(2)2()231r r a a a k k r k a a a r +---⋅⋅⋅=⋅⋅⋅+, 所以1(1)(2)()!(2)(2)231(1)!(1)!rr r k k k r k a r k r k r +---=-⋅⋅⋅=-++--, 所以1111(2)2r r r k a C k+++=--, 当0r =时,11a =也适合1111(2)2r r r k a C k+++=--, 所以11221[(2)(2)(2)]2k k k k k k S C C C k =-+-++--, 即0011221[(2)(2)(2)(2)1]2k k k k k k k S C C C C k =-+-+-++---,所以11[(12)1][1(1)]22k k k S k k=--=---.。
2020届 全国大联考 高三第四次联考数学(文)试题(解析版)

2020届全国大联考高三第四次联考数学(文)试题一、单选题1.已知集合{}2|340A x x x =--<,{}|23xB y y ==+,则A B =U ( ) A .[3,4) B .(1,)-+∞C .(3,4)D .(3,)+∞【答案】B【解析】分别求解集合,A B 再求并集即可. 【详解】因为{}2|340{|14}A x x x x x =--<=-<<,{}|23xB y y ==+{|3}y y =>,所以(1,)A B =-+∞U . 故选:B 【点睛】本题考查集合的运算与二次不等式的求解以及指数函数的值域等.属于基础题. 2.若直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为则m =( )A .1B .2C D .3【答案】A【解析】将圆的方程化简成标准方程,再根据垂径定理求解即可. 【详解】圆222230x x y y ++--=的标准方程22(1)(1)5x y ++-=,圆心坐标为(1,1)-,半径因为直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为所以直线20x y m ++=过圆心,得2(1)10m ⨯-++=,即1m =. 故选:A 【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题. 3.抛物线23x ay =的准线方程是1y =,则实数a =( ) 3344【答案】C【解析】根据准线的方程写出抛物线的标准方程,再对照系数求解即可. 【详解】因为准线方程为1y =,所以抛物线方程为24x y =-,所以34a =-,即43a =-. 故选:C 【点睛】本题考查抛物线与准线的方程.属于基础题.4.已知三棱柱的高为4,底面是边长为2的等边三角形,则该三棱柱的体积为( )A .B .C .4D .6【答案】B【解析】根据柱体的体积公式求解即可. 【详解】三棱柱底面的面积为224S =⨯=故体积为V Sh ==故选:B 【点睛】本题考查棱柱的体积公式.属于基础题. 5.已知:cos sin 2p x y π⎛⎫=+ ⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【解析】根据诱导公式化简sin cos 2y y π⎛⎫+= ⎪⎝⎭再分析即可. 【详解】因为cos sin cos 2x y y π⎛⎫=+= ⎪⎝⎭,所以q 成立可以推出p 成立,但p 成立得不到q 成立,例如5coscos33ππ=,而533ππ≠,所以p 是q 的必要而不充分条件. 故选:B本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.6.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( ) A .15︒ B .30︒C .45︒D .60︒【答案】D【解析】设圆锥的母线长为l ,底面半径为R ,再表达圆锥表面积与球的表面积公式,进而求得2l R =即可得圆锥轴截面底角的大小. 【详解】设圆锥的母线长为l ,底面半径为R ,则有2222R Rl R R ππππ+=+,解得2l R =,所以圆锥轴截面底角的余弦值是12R l =,底角大小为60︒. 故选:D 【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.7.已知F 是双曲线22:4||C kx y k +=(k 为常数)的一个焦点,则点F 到双曲线C 的一条渐近线的距离为( ) A .2k B .4kC .4D .2【答案】D【解析】分析可得k 0<,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可. 【详解】当0k ≥时,等式224||kx y k +=不是双曲线的方程;当k 0<时,224||4kx y k k +==-,可化为22144y x k -=-,可得虚半轴长2b =,所以点F 到双曲线C 的一条渐近线的距离为2. 故选:D 【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题. 8.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( ) A .单调递增 B .单调递减C .先递减后递增D .先递增后递减【解析】先用诱导公式得()sin cos 63f x x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭,再根据函数图像平移的方法求解即可. 【详解】函数()sin cos 63f x x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭的图象可由cos y x =向左平移3π个单位得到,如图所示,()f x 在,2ππ⎛⎫⎪⎝⎭上先递减后递增.故选:C 【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.9.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF I 平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变【答案】C【解析】根据线面平行与垂直的判定与性质逐个分析即可. 【详解】因为11A P AQ m ==,所以11//PQB D ,因为E 、F 分别是AB 、AD 的中点,所以//EF BD ,所以//PQ EF ,因为面MEF I 面MPQ l =,所以PQ EF l ////.选项A 、D 显然成立; 因为BD EF l ////,BD ⊥平面ACC A ,所以l ⊥平面ACC A ,因为MC ⊂平面11ACC A ,所以l MC ⊥,所以B 项成立;易知1AC ⊥平面MEF ,1A C ⊥平面MPQ ,而直线1AC 与1A C 不垂直,所以C 项不成立. 故选:C 【点睛】本题考查直线与平面的位置关系.属于中档题.10.已知抛物线22(0)y px p =>,F 为抛物线的焦点且MN 为过焦点的弦,若||1OF =,||8MN =,则OMN V 的面积为( )A .B .C .D 【答案】A【解析】根据||1OF =可知24y x =,再利用抛物线的焦半径公式以及三角形面积公式求解即可. 【详解】由题意可知抛物线方程为24y x =,设点()11,M x y 点()22,N x y ,则由抛物线定义知,12|||||2MN MF NF x x =+=++,||8MN =则126x x +=.由24y x =得2114y x =,2224y x =则221224y y +=.又MN 为过焦点的弦,所以124y y =-,则21y y -==所以211||2OMN S OF y y =⋅-=V 故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.11.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC V 的面积为1),则b c +=( ) A .5 B .C .4D .16【答案】C【解析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得【详解】ABC V 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈, ∴4A π=.∵1sin 1)24ABC S bc A ===-V , ∴bc=6(2-,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C 【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.12.存在点()00,M x y 在椭圆22221(0)x y a b a b+=>>上,且点M 在第一象限,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点0,2b ⎛⎫- ⎪⎝⎭,则椭圆离心率的取值范围是( )A.⎛ ⎝⎦B.⎫⎪⎪⎝⎭C.⎛ ⎝⎦ D.⎫⎪⎪⎝⎭【答案】D【解析】根据题意利用垂直直线斜率间的关系建立不等式再求解即可. 【详解】因为过点M 椭圆的切线方程为00221x x y ya b+=,所以切线的斜率为2020b x a y -,由20020021b y b x x a y +⎛⎫⨯-=- ⎪⎝⎭,解得3022by b c =<,即222b c <,所以2222a c c -<,所以3c a >. 故选:D 【点睛】二、填空题13.若双曲线22221(0,0)x y a b a b-=>>的两条渐近线斜率分别为1k ,2k ,若123k k =-,则该双曲线的离心率为________. 【答案】2【解析】由题得21223b k k a=-=-,再根据2221b e a =-求解即可.【详解】双曲线22221x y a b-=的两条渐近线为b y x a =±,可令1k b a =-,2k b a =,则21223b k k a =-=-,所以22213b e a=-=,解得2e =.故答案为:2. 【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.14.如图,长方体1111ABCD A B C D -中,2AB =,13AA =,E 、F 分别为CD 、AB 的中点,则异面直线1B F 与1D E 所成的角为________.【答案】60︒【解析】连接1A F 、EF ,可得11A FB ∠即为异面直线1B F 与1D E 所成的角.再根据三角形中的关系分析即可. 【详解】连接1A F 、EF ,则易证四边形11A D EF 为平行四边形,所以11D E A F ∥,所以11A FB ∠即为异面直线1B F 与1D E 所成的角.因为2AB =,13AA =所以可求得112A F B F AB ===,所以11A FB V 为等边三角形,则1160A FB ︒∠=.故答案为:60︒ 【点睛】本题考查异面直线所成的角.需要根据题意构造三角形进行求解.属于基础题. 15.已知在等差数列{}n a 中,717a =,13515a a a ++=,前n 项和为n S ,则6S =________.【答案】39【解析】设等差数列公差为d ,首项为1a ,再利用基本量法列式求解公差与首项,进而求得6S 即可.【详解】设等差数列公差为d ,首项为1a ,根据题意可得711116172415a a d a a d a d =+=⎧⎨++++=⎩,解得113a d =-⎧⎨=⎩,所以6116653392S =-⨯+⨯⨯⨯=. 故答案为:39 【点睛】本题考查等差数列的基本量计算以及前n 项和的公式,属于基础题.16.已知抛物线22(0)y px p =>的焦点和椭圆22143x y +=的右焦点重合,直线过抛物线的焦点F 与抛物线交于P 、Q 两点和椭圆交于A 、B 两点,M 为抛物线准线上一动点,满足||||8PF MF +=,3MFP π∠=,则直线AB 的方程为________.【答案】3(1)y x =-【解析】根据||||8PF MF +=,3MFP π∠=可得MFP V 为正三角形且边长为4,进而求得直线AB 的倾斜角,再求解方程.由椭圆22143x y +=,可知1c =,12p =,2p =,∴24y x =,在MFP V 中,3MFP π∠=,PF PM =,故MFP V 为正三角形.又||||8PF MF +=,故||||4PF MF ==13||||sin ||||43234MFP S PF MF PF MF π=⋅=⋅=V ∵||4MF =,12F F =,∴16FMF π∠=,13MFF π∠=,∴直线AB 的倾斜角为3π,将直线方程3(1)y x =-. 故答案为:3(1)y x =- 【点睛】本题考查抛物线与椭圆综合运用,同时也考查直线方程的倾斜角与斜率点斜式等.属于中档题.三、解答题17.在数列{}n a 和等比数列{}n b 中,10a =,32a =,()1*2n a n b n N +=∈.(1)求数列{}n b 及{}n a 的通项公式; (2)若12n n n c a b =,求数列{}n c 的前n 项和n S . 【答案】(1)1n a n =-,2nn b =(2)2(2)2n n S n =+-⨯【解析】(1)根据10a =与32a =可求得12b =,3328b ==再根据等比数列的基本量求解即可.(2)由(1)可得1(1)2n n c n -=-⨯,再利用错位相减求和即可.【详解】(1)依题意12b =,3328b ==,设数列{}n b 的公比为q ,由120n a n b +=>,可知0q >,由223128b b q q =⋅=⨯=,得24q =,又0q >,则2q =, 故111222n n nn b b q --==⨯=,又由122n a n +=,得1n a n =-.(2)依题意1(1)2n n c n -=-⨯.01221021222(2)2(1)2n n n S n n --=⨯+⨯+⨯+⋯+-⨯+-⨯,①则12312021222(2)2(1)2n nn S n n -=⨯+⨯+⨯+⋯+-⨯+-⨯,②①-②得12122222(1)2(1)212nn nn n S n n ---=+++--⨯=--⨯-…,即2(2)2n n S n -=-+-⨯,故2(2)2nn S n =+-⨯.【点睛】本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题. 18.如图,在四棱锥S ABCD -中,平面SAD ⊥平面ABCD ,1SD =,5cos ASD ∠=,底面ABCD 是边长为2的菱形,点E ,F 分别为棱DC ,BC 的中点,点G 是棱SC 靠近点C 的四等分点.求证:(1)直线SA P 平面EFG ; (2)直线AC ⊥平面SDB . 【答案】(1)见解析(2)见解析【解析】(1) 连接AC 、BD 交于点O ,交EF 于点H ,连接GH ,再证明SA GH ∥即可. (2)证明AC BD ⊥与SD AC ⊥即可. 【详解】(1)连接AC 、BD 交于点O ,交EF 于点H ,连接GH ,所以O 为AC 的中点,H 为OC中SA GH ∥,SA ⊄平面EFG ,GH ⊂平面EFG ,所以直线SA P 平面EFG .(2)在ASD V 中,1SD =,2AD =,5cos 5ASD ∠=,由余弦定理得,222AD SA SD =+-2cos SA SD ASD ⋅∠,即222521215SA SA =+-⨯⨯,解得5SA =由勾股定理逆定理可知SD DA ⊥,因为侧面SAD ⊥底面ABCD ,由面面垂直的性质定理可知SD ⊥平面ABCD ,所以SD AC ⊥,因为底面ABCD 是菱形,所以AC BD ⊥,因为SD BD D =I ,所以AC ⊥平面SDB .【点睛】本题考查线面平行与垂直的证明.需要根据题意利用等比例以及余弦定理勾股定理等证明.属于中档题.19.设抛物线2:2(0)C y px p =>过点(,2)(0)m m m >.(1)求抛物线C 的方程;(2)F 是抛物线C 的焦点,过焦点的直线与抛物线交于A ,B 两点,若2BF FA =u u u r u u u r ,求||AB 的值.【答案】(1)24y x =(2)92【解析】(1)代入(,2)m m 计算即可.(2) 设直线AB 的方程为(1)y k x =-,再联立直线与抛物线的方程,消去x 可得y 的一元二次方程,再根据韦达定理与2BF FA =u u u r u u u r求解k ,进而利用弦长公式求解即可.【详解】解:(1)因为抛物线2:2(0)C y px p =>过点(,2m m ,所以42m pm =,所以2p =,抛物线的方程为24y x =(2)由题意知直线AB 的斜率存在,可设直线AB 的方程为(1)y k x =-,()11,A x y ,()22,B x y .因为2BF FA =u u u r u u u r ,所以212y y =-,联立2(1)4y k x y x =-⎧⎨=⎩,化简得2440y y k --=,所以124y y k+=,124y y =-,所以14y k =-,212y =,解得22k =±,所以()212122199||141882AB y y y y k =++-=⨯=. 【点睛】 本题考查抛物线的方程以及联立直线与抛物线求弦长的简单应用.属于基础题.20.已知在四棱锥P ABCD -中,PA ⊥平面ABCD ,PA AB =,在四边形ABCD 中,DA AB ⊥,AD BC ∥,22AB AD BC ===,E 为PB 的中点,连接DE ,F 为DE 的中点,连接AF .(1)求证:⊥AF PB ;(2)求点D 到平面AEC 的距离.【答案】(1)见解析(2)26 【解析】(1) 连接AE ,证明PB AD ⊥与AE PB ⊥,进而证得PB ⊥面ADE 即可证明⊥AF PB .(2)利用等体积法D AEC E ACD V V --=求解即可.【详解】解:(1)连接AE ,在四边形ABCD 中,DA AB ⊥,PA ⊥平面ABCD ,AB Ì面ABCD ,∴AD PA ⊥,PA AB A =I ,∴AD ⊥面PAB ,又∵PB ⊂面PAB ,∴PB AD ⊥,又∵在直角三角形PAB 中,PA AB =,E 为PB 的中点,∴AE PB ⊥,AD AE A ⋂=, ∴PB ⊥面ADE ,AF ⊂面ADE ,∴⊥AF PB .(2)由22PA AB AD BC ====,∴12AE PB ==AC =EC =,∴222AE EC AC +=,∴12AEC S ==V 设点D 到平面AEC 的距离为d ,∵D AEC E ACD V V --=,∴111122332d =⨯⨯⨯⨯,∴d =【点睛】本题主要考查了证明线面垂直与线线垂直的方法,同时也考查了等体积法求点到面的距离问题,属于中档题.21.已知椭圆22:22:1(0)x y E a b a b+=>>的左右焦点分别是1F ,2F ,离心率12e =过点1F 且垂直于x 轴的直线被椭圆E 截得的线段长为3.(1)求椭圆E 的方程;(2)若直线l 过椭圆E 的右焦点2F ,且与x 轴不重合,交椭圆E 于M ,N 两点,求||MN 的取值范围.【答案】(1)22143x y +=(2)[3,4) 【解析】(1)代入x c =-求解椭圆E 上的点的坐标,再根据线段长为3以及12e =求解即可.(2)分析直线l 与x 轴不垂直时,设l 的方程为(1)(0)y k x k =-≠,联立直线与椭圆的方程,再根据弦长公式与斜率的范围求解即可.【详解】(1)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=,即2b y a =±,由题意知223b a=,即223a b =,又12c e a ==,所以2a =,b =所以椭圆E 的方程为22143x y +=. (2)当直线l 与x 轴不垂直时,设l 的方程为(1)(0)y k x k =-≠,()11,M x y ,()22,N x y . 由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩得()22224384120k x k x k +-+-=,则2122843k x x k +=+, 212241243k x x k -=+,所以()212221213||34343k MN x k k +=-==+++, 所以||(3,4)MN ∈.当直线l 与x 轴垂直时,||3MN =.综上所述,||MN 的取值范围为[3,4).【点睛】本题主要考查了椭圆方程的求解以及弦长公式的运用等,属于中档题.22.已知函数21()4ln 2f x x x =-+. (1)求()f x 的单调区间;(2)讨论()1()2f x g x b x x ⎛⎫=+- ⎪⎝⎭零点的个数. 【答案】(1)见解析(2)见解析【解析】(1)求导后分析导函数的正负再判断单调性即可. (2) 4ln ()x g x bx x -=+,()g x 有零点等价于方程4ln 0x bx x-+=实数根,再换元将原方程转化为2ln t b t =,再求导分析2ln ()t h t t =的图像数形结合求解即可. 【详解】(1)()f x 的定义域为(0,)+∞,244()x f x x x x-'=-+=,当02x <<时,()0f x '<,所以()y f x =在(0,2)单调递减;当2x >时,()0f x '>,所以()y f x =在(2,)+∞单调递增,所以()y f x =的减区间为(0,2),增区间为(2,)+∞.(2)4ln ()x g x bx x -=+,()g x 有零点等价于方程4ln 0x bx x-+=实数根,令2(0)x t t =>则原方程转化为2ln t b t =,令2ln ()t h t t =,22(1ln )()t h t t -'=.令()0h t '=,t e =,∴(0,)t e ∈,()0h t '>,(,)t e ∈+∞,()0h t '<,max 2()()h t h e e ==,当1t e=时,()20h t e =-<,当t e >时,()0h t >. 如图可知①当0b ≤时,()h t 有唯一零点,即g(x)有唯一零点;②当20b e <<时,()h t 有两个零点,即g(x)有两个零点; ③当2e b =时,()h t 有唯一零点,即g(x)有唯一零点; ④2b e>时,()h t 此时无零点,即g(x)此时无零点. 【点睛】本题主要考查了利用导数分析函数的单调性的方法,同时也考查了利用导数分析函数零点的问题,属于中档题.。
2020年江苏高三四模数学试卷(百校联考)答案

此时
https:///#/print?id=20e794d5324d4b7cbd3bc6efeebcfced&type=answer
更多资料在微信搜索小程序“授课神器“获取
在线组卷:https:///#/?channelId=10052
5/12
更多资料在微信搜索小程序“授课神器“获取
在线组卷:https:///#/?channelId=10052
2020/4/27
2020年江苏高三四模数学试卷(百校联考)
设 为 的中点,
,
即
,
即
,
,
,
设
,则
,
取
得
,
“获
所以
,
器
∴
.
神
课
二、解答题
“授
15. ( 1 )证明见解析.
时, 的最大值为
有最大值 , .
更多 17. ( 1 )
.
(2)
或
.
【解析】( 1 )∵离心率为 , 设焦距为 ,
的周长为 ,
则
,解得
,
∴椭圆方程为
.
( 2 )设 为
,则
,且
,
https:///#/print?id=20e794d5324d4b7cbd3bc6efeebcfced&type=answer
3/12
更多资料在微信搜索小程序“授课神器“获取
在线组卷:https:///#/?channelId=10052
2020/4/27
当
时,有
综上,
,无解20,20年江苏高三四模数学试卷(百校联考)
的解集为
.
11. 【解析】 设容器底面半径为 ,原水面所在半径为 ,母线长为 ,
百师联盟2020届高三理数模拟试卷四(全国卷Ⅰ)附答案

第 1 页 共 4 页百师联盟2020届高三理数模拟试卷四(全国卷Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
(共12题;共60分)1.若用列举法表示集合 A ={(x,y)|{2x +y =6x −y =3} ,则下列表示正确的是( )A. {x=3,y=0}B. {(3,0)}C. {3,0}D. {0,3} 2.已知复数z=5i 3+i,则 z̅ =( )A. −12+32iB. −12−32i C. 12+32i D. 12−32i3.新高考改革后,某校2000名学生参加物理学考,该校学生物理成绩的频率分布直方图如图所示,若规定分数达到90分以上为A 级,则该校学生物理成绩达到A 级的人数是( )A. 600B. 300C. 60D. 304.掷硬币实验是很常见却又非常有名的一个概率实验,许多著名的科学家都做过这个实验,比如蒲丰、德摩根等.通过掷硬币的实验,可以让人们感受到随机事件的发生,形成可能性的概率观念.若抛掷一枚硬币出现正面向上记为1,反面向上记为0.现抛掷一枚硬币6次,出现两个0和四个1的概率为( ) A. 1564B. 516C. 916 D. 585.已知凸四边形ABCD 的面积为S ,点P 是四边形内部任意一点,若点P 到四条边AB ,BC ,CD ,DA 的距离分别为d 1 , d 2 , d 3 , d 4 , 且满足 AB 1=BC 2=CD 3=DA 4=k ,利用分割法可得d 1+2d 2+3d 3+4d 4=2S k;类比以上性质,体积为V 的三棱锥P-ABC ,点Q 是三棱锥内部任意一点,Q 到平面PAB ,PBC ,PAC ,ABC 的距离分别为D 1 , D 2 , D 3 , D 4 , 若S ΔPAB 1=S ΔPBC 2=S ΔPAC 3=S ΔABC 4=K ,则D 1+2D 2+3D 3+4D 4=( )A. VK B. 2V K C. 3VK D. 4VK 6.已知F 1 , F 2是椭圆C :x 2a 2+y 2b 2=1 (a>b>0)的两个焦点,C 的上顶点A 在圆(x-2)2+(y-1)2=4上,若∠F 1AF 2= 2π3,则椭圆C 的标准方程为( )A. x 22+y 2=1 B.x 24+y 23=1 C.x 24+y 2=1 D.x 23+y 2=17.如图是某几何体的三视图,其中正视图和侧视图均为矩形,俯视图由半圆和直角三角形组成,则该几何体的表面积为( )A. 6π+12B. 10π+36C. 5π+36D. 6π+18 8.执行如图所示的程序框图,则输出的a=( )A. - 32B. - 13C. 2D. -29.已知函数f (x )=sinπx6cos πx6- √3 sin 2 πx6+ √32,x ∈[-1,a],a ∈N*,若函数f (x )图象与直线y=1至少有2个交点,则a 的最小值为( )A. 7B. 9C. 11D. 1210.在如图所示的圆锥中,平面ABC 是轴截面,底面圆O'的面积为4π,∠ABC= π3 ,则该圆锥的外接球的表面积为( )A.64π3B.16π3C.128π3D. 32π11.已知点P是双曲线C:x2a2−y2=1(a>1)上的动点,点M为圆O:x2+y2=1上的动点,且OM⃗⃗⃗⃗⃗⃗ ⋅PM⃗⃗⃗⃗⃗⃗ =0,若|PM|的最小值为√3,则双曲线C的离心率为()A.5√33B. √3C. √52D. √512.已知f(x)是定义在R上的偶函数,且满足f(x)=f(2-x),当x∈[0,1]时,f(x)=x·2x.则方程f(x)-|lgx|=0的根的个数为()A. 99B. 100C. 198D. 200二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届江苏省百校联考高三年级第四次试卷数学试题第I 卷(必做题,共160分)一、填空题 (本大题共14小题,每小题5 分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={2 ,5} ,B={3 ,5} ,则A U B=.1 2i2.已知复数z满足i(i 为虚数单位) ,则复数z的实部为.z3.A,B,C 三所学校举行高三联考,三所学校参加联考的人数分别为160,240,400,为了调查联考数学学科的成绩,现采用分层抽样的方法在这三所学校中抽取样本,若在B 学校抽取的数学成绩的份数为30,则抽取的样本容量为4.根据如图所示的伪代码,若输入的x 的值为2,则输出的y 的值为.5.某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为.6.已知数列a n 满足a1 1,且3a n 1a n a n 1 a n 0 恒成立,则a6 的值为7.已知函数f (x) Asin( x ) (A> 0, > 0,的值为.22xy 8.在平面直角坐标系xOy 中,双曲线 2 21(a> 0,b>0)的焦距为2c,若过右焦点且ab与x 轴垂直的直线与两条渐近线围成的三角形面积为c2,则双曲线的离心率为9.已知m,n 为正实数,且m+n=mn,则m+2n 的最小值为.10.已知函数f (x) x x 4 ,则不等式f (a 2) f (3) 的解集为< 2) 的部分图象如图所示,则f (0)第 4 题第7题第11 题第12 题2 的圆锥形容器中,装有深度为 h 的水,再放入一 个半径为 1 半球的大圆面、 水面均与容器口相平, 则 h 的值为 .ABCD 中,AD ∥BC ,AB =BC =2,AD =4,E ,F 分别是 BC ,CD 的中uuur uuur uuur uuur点,若 AE DE 1 ,则 AF CD 的值为13.函数 f(x)满足 f (x) f(x 4),当 x [﹣2,2)时,f(x)若函数 f (x )在[0,2020)上有 1515个零点,则实数 a 的范围为14.已知圆 O :x 2 y 2 4,直线 l 与圆O 交于 P ,Q 两点, A (2 ,2),若AP 2+AQ 2= 40, 则弦 PQ的长度的最大值为 .二、解答题 (本大题共 6 小题,共计 90分,请在答题纸指定区域内作答,解答时应写出文 字说明、证明过程或演算步骤. )15.(本小题满分 14 分) 如图,已知在三棱锥 P —ABC 中,PA ⊥平面 ABC ,E ,F ,G 分别为 AC ,PA ,PB 的中 点,且 AC =2BE .( 1)求证: PB ⊥BC ;( 2)设平面 EFG 与 BC 交于点 H ,求证: H 为 BC 的中点.16.(本小题满分 14 分) ur r 在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c ,若 m =(a ,b ﹣c ),n =(sinA ﹣ ur ur rsinB , sinB + sinC ), p = (1,2),且 m ⊥ n .(1)求角 C 的值;r ur(2)求 n p 的最大值.11.如图,在一个倒置的高为的不锈钢制的实心半球后,12.如图,在梯形 322 x 3x a ,2 x a1 x, a x 217.(本小题满分 14 分)18.(本小题满分 16 分) 管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具, 现欲用清洁棒清洁一个 如图 1所示的圆管直角弯头的内壁,其纵截面如图 2所示,一根长度为 L crn 的清洁棒在弯头内恰好处于 AB 位置(图中给出的数据是圆管内壁直径大小, (0, )).2( 1)请用角 表示清洁棒的长 L ;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长 度.22 已知椭圆 C :x 2 y 2 a 2 b 21(a >b >0)的左顶点为 A ,左右焦点分别为 F 1,F 2,离心率为 12 ,P 是椭圆上的一个动点(不与左,右顶点重合) 称点为 Q ,直线 AP ,QF 2 交于点 M .( 1)求椭圆方程;,且△ PF 1F 2的周长为 6,点 P 关于原点的对2)若直线 PF 2 与椭圆交于另一点N ,且 S △AF 2M 4S △AF 2N ,求点P 的坐标.是否存在正整数 m ,使得 S m T m 1 恰好是数列 a n 或 b n 中的项?若存在,求Sm Tm出所有满足条件的 m 的值;若不存在,说明理由.20.(本小题满分 16 分)4 x a已知函数 f (x) (1 )e x,g(x)1( a R)( e 是自然对数的底数, e ≈2.718⋯).xx(1)求函数 f (x) 的图像在 x =1处的切线方程;f ( x)(2)若函数 y在区间 [4,5]上单调递增,求实数 a 的取值范围;g(x)( 3)若函数 h(x) f(x) g(x)在区间(0, )上有两个极值点 x 1,x 2(x 1< x 2),且 h(x 1) m 恒成立,求满足条件的 m 的最小值(极值点是指函数取极值时对应的自变量的值)19.(本小题满分16 分)已知等差数列a n和等比数列 b n 的各项均为整数,它们的前 n 项和分别为 S n ,T n ,且 b 1 2a 1 2 ,b 2S 354, a 2 T 2 11. 1) 求数列 a nb n 的通项公式;2) 求M na 1b 1 a 2b 2 a 3b 3 La nb n ;3)第 II 卷(附加题,共 40 分)21.【选做题】本题包括 A ,B ,C 三小题,请选定其中两题作答,每小题10分共计 20分,解答时应写出文字说明,证明过程或演算步骤.A .选修 4—2:矩阵与变换1 a ur 已知矩阵 M = (a ,b R )不存在逆矩阵, 且非零特征值对应的一个特征向量b 41 ,求 a , b 的值.1B .选修 4—4:坐标系与参数方程以平面直角坐标系 xOy 的原点 O 为极点, x 轴的正半轴为极轴, 且在两种坐标系中取相同的长度单位, 建立极坐标系, 已知曲线 C 1: sin ( ) 4 ( 为参数),求曲线 C 1,C 2 交点的直角坐标.C .选修 4—5:不等式选讲已知凸 n 边形 A1A 2A 3⋯A n 的面积为 1,边长 A i A i +1= a i (i =1,2,⋯,n ﹣1),A n A 1=an ,其内部一点P 到边 A i A i +1= a i (i =1,2,⋯,n ﹣1)的距离分别为 d 1,d 2,d 3,⋯,d n .求证:2a 1 2a 2 d 1d 2L 2d a nn (n na 1a 2 L a n )2.2,曲线 C 2: x cos2y sin【必做题】第22 题、第23 题,每题10 分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10 分)如图,在四棱锥P—ABCD 中,底面ABCD 是直角梯形,且AD// BC,AB ⊥BC,AB =BC =2AD =2,侧面PAB 为等边三角形,且平面PAB⊥平面ABCD.(1)求平面PAB 与平面PDC 所成的锐二面角的大小;uuurCP (0≤≤1),且直线BQ 与平面PDC 所成角为,求的值.323.(本小题满分10 分)如图,正方形AGIC 是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,A~I 处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30 秒,再左转绿灯30秒,然后是红灯1 分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从I 处骑行到A 处(不考虑A ,I 处的红绿灯),出发时的两条路线(I →F,I→H)等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过E 处,且全程不等红绿灯的概率;3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?uuur2)若CQ备用图参考答案⑵设2=島+島朋(0 •升 则/.'(0)■一g¾∙8曲U 汐・ (6)分sm∙0Co¥0sm'tfcos∙0令 ∕/(¢)-0. Wl tan l d≡^.即 tan 0=y. ....................................................................................................... 8 分 设 Ae<O∙-≡∙).H.tan Λl =y∙M当 氏 W∙e )时∙"n tf<4 .L ∖θ)<O.所以LW)单問递减;17.M≡<1)因为椭IMl 的离心华为y∙ΔPF F 的周长为6•设椭関的悠片为2-2ci + 2<∙- 6∙ w⅛4・ ..................................................................................................................................... 2分Ir +/ —a : •斜得 α 2∙C = 1 ∙Λ~y3 •所以捕Bl 方《1为;+β⅛F∙ ................................................................................................................... 4分負 上⑵设 PS •”》•则¥ + ';• = 1∙ H. Q< —“『•一”>• 所U AP 的方秤为、='鳥( r+2)(D∙/W I L若≡= -I.MIJ QF 的方Ig 为r-10.Il 1对祢性不妨令点P 在丁轴I:方•J — 1 • ()9 即 M(l∙*)∙则 P(-l∙寻)∙QU∙-弓〉.联走(D∙PF Z 的方程为~(χ-D.R 人馳圈方程側N 谭•一却•Sa z 寺皿 IE VUSr ∣ΛF: IyVl I ^l2—=7H4∙不符合条 I —« IH若 ∕Λ≠-1.则 QF 的ZfTV 为 y=二•即 V=A T=I '“一“③•{r 3//1 ♦ 1 ■.、 所以 M(3W +4∙3Q∙ ....................................................................................... 8 分y ■ 3w •M 为 S “屮= 4Sg 八•所以* ×ΛF z X NI =4 X * X ΛF i X |八 | •即 IMI =4 IyS .乂 1月为M∙N 位于∙r 轴*駕•所以V 、N —普. 冈为P ・F :・N 三点共线.即丙IjF 茂廉线. 所以 W<X ∖ -D = -γ<m-1).即 Xv = -一严所以÷<】•所以(十一"A —加=等・駢彳?加=*•所以刃=士呼•所以点P 的唯标为(*・晋 > 或 ........................................................10分12分Il 分所以^O=A 时丄(刃取衍极小值. ......................................................... 11分 所以 L(^mh-UΛ).因为 Ian G =号"•所以 Sin 9 ="∣-co∙ 9 • 乂 Sin ^>÷cos 2β — U 所以 ∞s'β)≡s 占♦又β>6(0∙:).所以CoSa)=-^ •所以 Zn 仇 =-^= • .................................................. M ........................................................................................................................................................................ 分/13 /13所以 L(Λ∙)-~■ + —⅛-13 /T3(cm).SIn a. CoS 仇所以能通过JltWft 的铁Iwt 大长度为13/13 CnL ................................................................................. 16分19•解s (l>ftft 列{<⅛}的公差为水数刘仏> 的公比为g∙固为 6∣≡2α∣≡2.¼S l ≡54.<⅛ ÷7⅛≡11.所以(∣.≡2∕!-b¼-2∙3∙-1. ............................................................................................................................ 4 ........................................................................................................................................................................ 分(2)ιVf M =αΛ+αt ¼+αa ¼+-+α>ll = l×2÷3×2×3+5×2×3t +∙∙∙+(2w -l)×2×3j ,・ 3Λt -l×2×3+3×2×3f + ∙∙∙+ (2Λ-3)×2×3∙ ,+(2w-l)×2×3β. 所以一2M∙ = 2+4(3+3' 3- l ) (2Λ-1)×2×3∙= 4-< lw-4) ∙ 3*∙所以 M t = 2(w-∣) ∙r+2. .......................................................................................................................... 8 ........................................................................................................................................................................ 分(3 川 I(I)Uf {⅛S --√.K≡3M - 1.因为装⅜1是数列几;或人中的•项•所以山定“ •所以(L-Ixm-1) = (3-L)3-∙M 为肿一 l≥O∙L>O∙所以 1V1≤3∙又 L ∈N∙ ∙WL=2⅛L=3. (12)....................................................................................................................................................................... 分IML=2时•冇S-I) =犷•即U⅛J = 1∙令 /S )=型F∙UΛZZ 1 «> c 、(m÷l)x -1 ι∙r 2 — 1 JU∕(Λ+1) /(m)- ----------- 尹T ---- 3." Zm t —2nι—3 1I 加=1 时∙∕( 1)<∕(2)I l ∣ m≥2 Rj√(m÷ 1 )-∕(m)<0t即 /(i)<∕(2)>∕(3)>∕(4)>∙∙∙・Ih/(i)=o.∕(2)≡-J-.⅛ι0z,^1-≡ι 无整½⅜r. ....................................................................................................... H 分当L=3时•右F —】=0・即存在m=l 便得霜二If =3∙是数列UU 中的第2项•故存存正療l⅛"L ∣∙使得笔丢1是数列d>中的琨•……20. IW :(I)N 为 /(J ∙> = <1--)c r .所以 ∕<x)≡(l 一* +Λ><^,∙当 J=I ∏∙t√(l) = -3c∙∕<l>=c. 所以切线方f⅛为y ( Se)-e(τ 1).即y=er 仏/S (X —4)e , ∙ -Lr t -α+4λr+3α+4]<√</( 1 +d)=9∙ c∕÷2g=8∙所以5=L +7^∣ X÷τΓ∕√-l÷3"t ZW-I+3m 10分“V4 戒 α>5∙所以 S 4,-ω+4)×4+3d+4≤O∙52-(<r÷<l)×5+3α+4≤O. αV4 flftα>5∙ 心4∙ > 9 &右•16分所以¾(3+3<∕) -51. l+<∕+2+2g -ll. 宀T ・d=5冈为隕数y在区何M∙5]上单俱递增•所以“ G[4∙5]∙[Lβ√20恒戚立•所以¢1J(U 的取值范IM½(5∙+∞). .......................................................................................................... 7分 (3W*)∙∕Cr)+g(Q.g 二 42±S 二刃二“ f 子_ 3因为瞋数Mn=/O)+/; Cr)在区间(0∙+oo)上冇曲个极值点.所以方K∕∕<x)-O 在(0・+8〉上右网不等实根・即(F-4∙r+4h√ -“■()•令 m(x) = (√ —4,r+4)e r —“•则 ∕w (x) = <τ* —2x)e r ∙由 ZW (X)X).f⅛ Z>2∙所以刑Cr)在(0.2)±ΦMiiJ⅛.ft(2.+oo>上单调述增. ......................................... 9分又山 m(3)≡c ,-α>23-a=8-a>0.所以 j⅛∈(2.3).且当 x ∈(O.χ1 ) ftl(j ∙2 . +∞)H ∣ .√(x)>O.Λ(x) φ-iβ∣il 增. x ∈<x i ∙Λ⅛)Bt.^(x><O∙Λ(x>单调递Itsm 是极值点• .................................. M 分 此(I M5〉= 5二4>eV~<ιH=5一40+5一5 + 4)「一^=5-3^. -1.才1 J r i令 H(X)-(X- 3)e t - I(Xe(O∙2>)•则 √(x)-(x 2)σf <0.所以nCr)在<0∙2)上单调递碱•所以Λ(x l )<Λ<0) = -4.因为ACrl)VHdI 立•所以m≥-4. ........................................................................................................ 13分 若一 12VnrV —彳■収Kl= — ∙ -LIM ∣n=-Axι —4.所以 Λ(x ∣)-ιw≡(x ∣ ,3)e f < +4x ∣ +3.〉川 八=Cr-3)u 丨 l√ • 3( r>O)∙W // √ •(./ 一2)ι∙' + l∙∕f )=Cr-I - 当 x ∈(O∙l)时∙Ar(X)<0;当 χ∈(h +∞)H∙f ∙H^(X)>0. 所以 H'Cr)∙∙ = H'(l) = -ι+4>0∙所以 //(J)-(J 3)e β+4x+3 ft(O.÷∞)±Φ-Wi⅛m.W 以 H(x)>H(O)-O∙WXi--J-I 使科》3E•不合βM∙満足条件的刑的■小值为一4∙ ............................................................................................................. 16分21. A. Ih 因为M 不存住連矩阵∙<kι(M)令 ∕<λ>-0.Wλ≡3utλ≡0.BL 解:因为^in<∂+γ)二-√2 •所以 ∕>sin Q+pcos O= —2・ 所以曲线Cl 的直角坐标方程为x+y+2-O. ............................................................................................ 2分 (x≡cos 20.心(x≡ 1 —2!<in r <?.由 ・A 側 I y= ^ln σ∙ I i y=Sln 0∙所以曲线G 的修通方聊为χ=l-2y∙j ∈[-l.lJ. ............................................................................................ 5分 (无范HGIl 1分)∣x÷y÷2=O• 由 :、得2"—,一3・0・ ........................................................................................... 7分 ∣Ll-2y •所以>1 ≡ - 1 m y < ).所以丿|・ L所以曲线G∙G 的交点蚩标为(-1∙-1). ..................................................................................................... 10分 CHrW 为凸〃边形的啲枳为1•所以"M+M+∙∙∙+"∕∙ 2. ......................................................................... 3分 所以 ⅜1÷⅜÷∙∙∙÷⅜2 = 2(⅞L + 5l ÷∙∙∙÷5ija ∣ at <43 a ∖ 血 G= (a l <∕ι +<!:</: + •••+“/■)「: +: ÷∙∙∙ + τi )所以 ///<)) I —<^>0∙ m(2)= PV0∙∙W ∣O<4iV4∙且 jr ∣∈(0∙2)∙(xf ÷4)e F i =u.・0•所以uΛ-i - J. 距FiM 的待征多项式为/Wλ÷l —a —b A —4-=λ2-3λ-4-<ι6≡λ2~3λ. 所以'b λa∙即 1 ・ u=3∙ 6÷4=3∙ 10分 所以<∕∣<∕j U 1≥( √α∣c∕∣^^+i∙∙+ >2(IhMl ,⅛不尊式得)-(Cll ÷α∙十•••十α∙ )* ≥(w 7α∣αj∙∙∙α∏)2. <由均值不等式得) ............................................... 10分 22. 解:(1)分別取ΛIi.CD 的中点为Q∙E∙连结PO∙FUN 为AD 〃反•・所以(疋〃 Be∣∙ 因为AB 丄HC∙所以ABIC*:. Zk因为侧面I i An 为幫边三介形.∕p∖ 所以 ABIoR / β \乂 W 为平而 PAB 丄 Trti AIM'D. R j ∖ \平面 PABn 平而 AB (VJ=ABJ )PCYiftj PAH. 护痴 所以QP 丄平而Λ!K D. j 产〜Y所 WOP.OE.OB ∣⅛∣⅛⅜Λ. .................................................................... 2 分 X以O 为空阀坐标系的跟点•分别以OE.OU.OP 所在直线为∙r∙y∙=袪建立如图所示的空刚克角至标系•因 为 AB=W =2AD=2,WJ(KO∙0∙O)∙A(0∙-kO).∕K0.kO)∙C(2.1∙O) JXk 1∙0)∙P(0.0<√3).Z5Γ=(E 2.0)∙T i Γ = (2.1. √3).Jro=I∙W ,∣ r≡-2.r=-√3.所以 n=(-2.1.-√3). ............................................................................................... I 分 乂ID=(1.0.0)为半面PAB 的法向址•设平面PAB 与平面PDC 所成的锐二面角的大小为0•則CoS 9= lra <∙∙λβ>l =⅛⅛=√(-2>,+J +f .75,,=<∙所以半血PAB 与半血PDC 所成的悦二血如的大小为' ..................................... 6分(2)∣h<l>得•半Iftl PDC 的法向域为π = <-2∙h -√3)∙73t ,= (2∙l∙-√3)∙所以处 7^'^λ(75 ■(一2λ+2∙-A∙"Q(O≤λMl)・乂伍线IiQ 与平Ei PDr 所成角为号•所以 ICo*<n.∕⅞> I = 5∣n 专.即];;=弩・ ............................................ K 分 即 _________________ 142—4_2—3入 ________________ =T3√(-2)2 + l 2+(-√3>2 ×√(-2λ+2)2 + (-λ)2 + (√3λ>2 2 *化简得βλ2-6λ+l-0∙所以AN 违旦.符合题恵・ ............................................ 10分I .Usd )路途中可以看成必.走过2条横KHI 2 山•即从1条術中选择2条HHJ 即叭忖『以踣线」C ι≡6^. ..................................................................................................................................................... 2 分 (2〉小期途中恰好经过E 处•共右4条箱线:① 当⅛ 1→H→E ∙D→A 时•全程不年红绿灯的M Ψ Z∙∣-⅛×T×⅛×>-⅜>② 幷疋/-//-E-Zi-A 时•全鼻不务红绿灯的tt Ψ ^=y×y×y×y = ⅛*(Vui I >F -E " •八时•全樫不等红绿灯的ttΨ A -JX-I-XyXl 二扣④当走∕→F -E→β→A 时•全程不等红绿灯的Λ∙-y×y×γ×y -⅛所以途中恰好经过E 处・R 全程不务信号灯的槪率3 1 3 1 I 1 3 11 亡八Pf 4 化∙S+N=范小页 ⅛ TZ«=64• ......................................................................................................... 6 分«3)设以F 第,条的豁线尊信号灯的次数为变ttX.∙M①第一条 i l→H→E→l>→A ∙X ∣ 〜〃(1 •斗)•则 E (Xj =斗; 4 4(Z)第二条 JYFfCfB ・A.X,-β(3.y)∙WE<X 2) =3×-^ = y ∣设YlftPDC 的法向鈕为"Λx.y.z ).则n ∙ 7J Γ*=()∙ 5 J j∙+2y=0∙ 2∙r + y √3τ-0.③另外四条路线Jf!∣mW ^H→K→H→Λ;∕→∕∙→E→∕>→Λ;∕→∕∙→E M.X,~B(2∙-γXr = 3∙4∙5∙6)∙则E(X I)=2×γ=4<t=3.4.5∙6).综上•小明上学的量佳路线为1→H→E→D→A I IΛ尽fit進开l→F→C→B→A• ......................... 10分。