安徽省合肥市蜀山区2015-2016学年度第一学期八年级期末考试数学试卷带答案

合集下载

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016人教版八年级数学第一学期期末考试试卷及答案

2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。

每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。

点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。

BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。

对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。

使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。

合肥市蜀山区2015-2016年八年级上期末考试数学试卷含答案

合肥市蜀山区2015-2016年八年级上期末考试数学试卷含答案

贴条形码区合肥市蜀山区2015-2016学年度第一学期八年级期末考试数学试卷(满分:100分时间:100分钟)题号一二三四五六总分得分一、选择题(本大题共10小题,每小题3分,共30分.请将你认为正确的答案的代号填入答题框中)1.点(2,3)P-位于:A.第一象限B.第二象限C.第三象限D.第四象限A.2个B.3个C.4个D.5个3.如下图,为了估计池塘岸边A,B两点间的距离,小玥同学在池塘一侧选取一点O,测得OA=12米,OB=7米,则A,B间的距离不可能...是:A.5米B.7米C.10米D.18米4.如上图,E、B、F、C四点在一条直线上,且EB=CF,∠A=∠D,增加下列条件中的一个仍不能..证明△ABC≌△DEF,这个条件是:A.AB=DEB.DF∥ACC.∠E=∠ABCD.AB∥DE5.已知11(2,)P y-,22(3,)P y是一次函数y x b=-+(b为常数)的图象上的两个点,则1y,2y的大小关系是:A.12y y< B.12y y> C.12y y= D.不能确定6.下列命题,是假命题的是:A.若直线2y kx=-经过第一、三、四象限,则0k>B.三角形三边垂直平分线的交点到三个顶点的距离相等C.等腰三角形的角平分线、中线和高互相重合D.如果A∠和B∠是对顶角,那么A∠=B∠7.某复印店复印收费y(元)与复印面数x(面)的函数图象如图所示,从图象中可以看出,复印超过100面的部分,每面收费:A.0.2元B.0.4元C.0.45元D.0.5元A BO第3题图AB FE CD第4题图第7题图y(元)x(面)0 100 1505070··8.如图,下列4个三角形中,均有AB=AC ,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是:④③②①108°45°90°36°ABA.①③B.①②④C.①③④D.①②③④ 9.在Rt △ABC 中,∠A=40°,∠B=90°,AC 的垂直平分线MN 分别与AB ,AC 交于点D ,E ,则∠BCD 的度数为:A.10°B.15°C.40°D.50°10.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是: A.1B.3C.3(1)m -D.3(2)2m - 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题3分,共18分.请将答案直接填在题中的横线上)11.函数3y x =-中自变量x 的取值范围是 . 12.等腰三角形的一个角是80°,则它顶角的度数是 .可得p 的值为 .14.将一副直角三角板如图放置,使含30°角 A N E C M D第9题图x yCB A21-1O 第10题图 阅卷人 得 分x -2 0 1y 3 p 0N2AC第16题图的三角板的较短的直角边和含45°角的三角板 的一条直角边重合,则∠1的度数为 度.15.如图,直线1l :1y x =+与直线2l :(0)y mx n m =+≠相交于点P (1,2),则关于x 的不等式1x +≥mx n +的解集为 .16.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别为R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ②QP ∥AR ③△BRP ≌△QSP ④AP 垂直平分RS.其中正确结论的序号是 (请将所有正确结论的序号都填上)三、解答题(每小题7分,共14分)17.△在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC 关于y 轴对称的图形△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标; (2)若将线段A 1B 1 平移后得到线段A 2B 2,且2(,1)A a ,2(4,)B b ,求a b +的值.18.正比例函数x y 2=的图象与一次函数k x y +-=3的图象交于点P (1,m ). (1)求k 的值; (2)求两直线与y 轴围成的三角形面积.第15题图 yA B E D C四、解答题(本大题8分)19.如图,点D ,E 在△ABC 的边BC 上,AB=AC ,BE=CD .求证:AD=AE .五、解答题(每小题10分,共20分)20.某商店需要采购甲、乙两种商品共15件,其价格如图所示:且要求乙商品的件数不得少于甲种商品件数的2倍. 设购买甲种商品x 件,购买两种商品共花费y 元。

合肥市蜀山区22015-2016学年八年级上期末数学试卷含答案解析

合肥市蜀山区22015-2016学年八年级上期末数学试卷含答案解析

合肥市蜀山区22015-2016学年八年级上期末数学试卷含答案解析一、选择题(本大题共10小题,每小题3分,共30分.请将你认为正确的答案的代号填入答题框中)1.点P(2,﹣3)所在的象限为()A.第一象限B.第二象限 C.第三象限 D.第四象限2.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个3.如图,为了估量池塘岸边A,B两点间的距离,小玥同学在池塘一侧选取一点O,测得OA=12米,OB=7米,则A,B间的距离不可能是()A.5米B.7米C.10米D.18米4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.已知P1(﹣2,y1),P2(3,y2)是一次函数y=﹣x+b(b为常数)的图象上的两个点,则y1,y2的大小关系是()A.y1<y2 B.y1>y2 C.y1=y2 D.不能确定6.下列命题,是假命题的是()A.若直线y=kx﹣2通过第一、三、四象限,则k>0B.三角形三边垂直平分线的交点到三个顶点的距离相等C.等腰三角形的角平分线、中线和高互相重合D.如果∠A和∠B是对顶角,那么∠A=∠B7.某复印店复印收费y(元)与复印面数x(面)的函数图象如图所示,从图象中能够看出,复印超过100面的部分,每面收费()A.0.2元B.0.4元 C.0.45元D.0.5元8.已知:如图,下列三角形中,AB=AC,则通过三角形的一个顶点的一条直线能够将那个三角形分成两个小等腰三角形的是()A.①③④B.①②③④ C.①②④D.①③9.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分不与AB,AC交于点D,E,则∠BCD的度数为()A.10° B.15°C.40°D.50°10.如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分不过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1 B.3 C.3(m﹣1)D.二、填空题(每小题3分,共18分.请将答案直截了当填在题中的横线上)11.函数y=中自变量x的取值范畴是.12.一个等腰三角形的一个角为80°,则它的顶角的度数是.13.按照下表中一次函数的自变量x与函数y的对应值,可得p的值为.x ﹣2 0 1y 3 p 014.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.15.如图,直线l1:y=x+1与直线l2:y=mx+n(m≠0)相交于点P(1,2),则关于x的不等式x+1≥mx+n的解集为.16.如图,△ABC中,P、Q分不是BC、AC上的点,作PR⊥AB,P S⊥AC,垂足分不是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=A R;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题(每小题7分,共14分)17.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出△A1 B1C1各顶点的坐标;(2)若将线段A1B1 平移后得到线段A2B2,且A2(a,1),B2(4,b),求a+b的值.18.正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.四、解答题(本大题8分)19.已知:如图,点D、E在△ABC的边BC上,AB=AC,BE=CD.求证:AD=AE.五、解答题(每小题10分,共20分)20.某商店需要采购甲、乙两种商品共15件,其价格如图所示:且要求乙商品的件数不得少于甲种商品件数的2倍.设购买甲种商品x件,购买两种商品共花费y元.(1)求出y与x的函数关系式(要求写出自变量x的取值范畴);(2)试利用函数的性质讲明,当采购多少件甲种商品时,所需要的费用最少?21.如图,点O是等边△ABC内一点,∠AOC=100°,∠AOB=α.以OB为边作等边三角形△BOD,连接CD.(1)求证:△ABO≌△CBD;(2)当α=150°时,试判定△COD的形状,并讲明理由;(3)探究:当α为多少度时,△COD是等腰三角形?(直截了当写结论)六、解答题(本大题10分)22.一列慢车从甲地匀速驶往乙地,一列快车从乙地匀速驶往甲地,两车同时动身相向而行,图1表示两车距离甲地的路程y(km)与动身时刻x(h)的函数图象,图2表示两车之间的路程s(km)与动身时刻x(h)的函数图象.(1)甲乙两地间的路程为km,图2中A点的实际意义是;(2)求快车和慢车的速度;(3)求点B的坐标.安徽省合肥市蜀山区2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将你认为正确的答案的代号填入答题框中)1.点P(2,﹣3)所在的象限为()A.第一象限B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判定出所求的点的横纵坐标的符号,进而判定点P所在的象限.【解答】解:∵点P的横坐标为正,纵坐标为负,∴点P(2,﹣3)所在象限为第四象限.故选D.【点评】本题要紧考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分不是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【考点】轴对称图形.【分析】按照轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么那个图形叫做轴对称图形.据此对图中的图形进行判定.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何如此的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是查找对称轴,图形两部分折叠后可重合.3.如图,为了估量池塘岸边A,B两点间的距离,小玥同学在池塘一侧选取一点O,测得OA=12米,OB=7米,则A,B间的距离不可能是()A.5米B.7米C.10米D.18米【考点】三角形三边关系.【分析】按照三角形的三边关系定理三角形两边之和大于第三边,三角形的两边差小于第三边可得12﹣7<AB<12+7,运算出AB的取值范畴可得答案.【解答】解:连接AB,按照三角形的三边关系可得12﹣7<AB<12+7,即5<AB<19,故选:A.【点评】此题要紧考查了三角形的三边关系,关键是把握第三边的范畴是:大于已知的两边的差,而小于两边的和.4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE【考点】全等三角形的判定.【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原先的条件可形成SSA,就不能证明△ABC≌△DEF了.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,按照AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,按照AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,按照AAS能证明△ABC≌△D EF,故D选项错误.故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一样方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.已知P1(﹣2,y1),P2(3,y2)是一次函数y=﹣x+b(b为常数)的图象上的两个点,则y1,y2的大小关系是()A.y1<y2 B.y1>y2 C.y1=y2 D.不能确定【考点】一次函数图象上点的坐标特点.【分析】先按照一次函数y=﹣x+b中k=﹣1判定出函数的增减性,再按照﹣2<3进行解答即可.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,∴y随x的增大而减小,∵﹣2<3,∴y1>y2.故选B.【点评】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.6.下列命题,是假命题的是()A.若直线y=kx﹣2通过第一、三、四象限,则k>0B.三角形三边垂直平分线的交点到三个顶点的距离相等C.等腰三角形的角平分线、中线和高互相重合D.如果∠A和∠B是对顶角,那么∠A=∠B【考点】命题与定理.【分析】按照一次函数图象与系数的关系可对A进行判定;按照三角形外心的性质对B进行判定;按照等腰三角形的性质对C进行判定;按照对顶角的性质对D进行判定.【解答】解:A、若直线y=kx﹣2通过第一、三、四象限,则k>0,因此A选项为真命题;B、三角形三边垂直平分线的交点到三个顶点的距离相等,因此B选项为真命题;C、等腰三角形的顶角的平分线、底边上的中线和底边上的高互相重合,因此C选项为假命题;D、如果∠A和∠B是对顶角,那么∠A=∠B,因此D选项为真命题.故选C.【点评】本题考查了命题与定理:判定一件情况的语句,叫做命题.许多命题差不多上由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题能够写成“如果…那么…”形式.有些命题的正确性是用推理证实的,如此的真命题叫做定理.7.某复印店复印收费y(元)与复印面数x(面)的函数图象如图所示,从图象中能够看出,复印超过100面的部分,每面收费()A.0.2元B.0.4元 C.0.45元D.0.5元【考点】一次函数的应用.【分析】由图象可知,不超过100面时,每面收费50÷100=0.5元,超过100面的部分每面收费(70﹣50)÷(150﹣100)=0.4元.【解答】解:超过100面部分每面收费(70﹣50)÷(150﹣100)=0. 4元,故选B.【点评】本题考查了一次函数的应用,解题的关键是认真观看图象,并从图象中整理出进一步解题的有关信息.8.已知:如图,下列三角形中,AB=AC,则通过三角形的一个顶点的一条直线能够将那个三角形分成两个小等腰三角形的是()A.①③④B.①②③④ C.①②④D.①③【考点】等腰三角形的判定.【分析】顶角为:36°90°,108°,的四种等腰三角形都能够用一条直线把这四个等腰三角形每个都分割成两个小的等腰三角形,再用一条直线分其中一个等腰三角形变成两个更小的等腰三角形.【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,(1)中分成的两个等腰三角形的角的度数分不为:36°,36°,108°和36°,72°72°,能;(2)不能;(3)明显原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;(4)中的为36°,72,72°和36°,36°,108°,能.故选A.【点评】本题考查了等腰三角形的判定;在等腰三角形中,从一个顶点向对边引一条线段,分原三角形为两个新的等腰三角形,必须存在新显现的一个小等腰三角形与原等腰三角形相似才有可能.9.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分不与AB,AC交于点D,E,则∠BCD的度数为()A.10° B.15°C.40°D.50°【考点】线段垂直平分线的性质.【分析】按照三角形内角和定理求出∠ACB,按照线段垂直平分线性质得出AD=CD,推出∠ACD=∠A=40°,即可得出答案.【解答】解:∵在Rt△ABC中,∠A=40°,∠B=90°,∴∠ACB=50°,∵AC的垂直平分线MN分不与AB,AC交于点D,E,∴AD=CD,∴∠ACD=∠A=40°,∴∠BCD=∠BCA﹣∠ACD=50°﹣40°=10°,故选A.【点评】本题考查了线段垂直平分线性质,三角形内角和定理,等腰三角形的性质的应用,能按照线段垂直平分线性质求出AD=CD是解此题的关键.10.如图,点A,B,C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1,1,2,分不过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1 B.3 C.3(m﹣1)D.【考点】一次函数综合题;三角形的面积.【专题】压轴题.【分析】设AD⊥y轴于点D;BF⊥y轴于点F;BG⊥CG于点G,然后求出A、B、C、D、E、F、G各点的坐标,运算出长度,利用面积公式即可运算出.【解答】解:由题意可得:A点坐标为(﹣1,2+m),B点坐标为(1,﹣2+m),C点坐标为(2,m﹣4),D点坐标为(0,2+m),E点坐标为(0,m),F点坐标为(0,﹣2+m),G点坐标为(1,m﹣4).因此,DE=EF=BG=2+m﹣m=m﹣(﹣2+m)=﹣2+m﹣(m﹣4)=2,又因为AD=BF=GC=1,因此图中阴影部分的面积和等于×2×1×3=3.故选B.【点评】本题灵活考查了一次函数点的坐标的求法和三角形面积的求法.二、填空题(每小题3分,共18分.请将答案直截了当填在题中的横线上)11.函数y=中自变量x的取值范畴是x>3.【考点】函数自变量的取值范畴;分式有意义的条件;二次根式有意义的条件.【专题】运算题.【分析】按照二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解.【解答】解:依题意,得x﹣3>0,解得x>3.故答案为:x>3.【点评】本题考查的是函数自变量取值范畴的求法.函数自变量的范畴一样从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数.12.一个等腰三角形的一个角为80°,则它的顶角的度数是80°或20°.【考点】等腰三角形的性质.【分析】等腰三角形一内角为80°,没讲明是顶角依旧底角,因此有两种情形.【解答】解:(1)当80°角为顶角,顶角度数即为80°;(2)当80°为底角时,顶角=180°﹣2×80°=20°.故答案为:80°或20°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情形进行讨论,这是十分重要的,也是解答咨询题的关键.13.按照下表中一次函数的自变量x与函数y的对应值,可得p的值为1.x ﹣2 0 1y 3 p 0【考点】待定系数法求一次函数解析式.【分析】设一次函数的解析式为y=kx+b(k≠0),再把x=﹣2,y=3;x =1时,y=0代入即可得出k、b的值,故可得出一次函数的解析式,再把x =0代入即可求出p的值.【解答】解:一次函数的解析式为y=kx+b(k≠0),∵x=﹣2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=﹣x+1,∴当x=0时,y=1,即p=1.故答案是:1.【点评】本题考查的是待定系数法求一次函数解析式.解题时,利用了一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.14.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【考点】三角形内角和定理;平行线的性质.【专题】运算题.【分析】按照三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.15.如图,直线l1:y=x+1与直线l2:y=mx+n(m≠0)相交于点P(1,2),则关于x的不等式x+1≥mx+n的解集为x≥1.【考点】一次函数与一元一次不等式.【分析】观看函数图象得到在点P的右边,直线y=x+1都在直线y=mx +n的上方,据此求解.【解答】解:∵直线l1:y=x+1与直线l2:y=mx+n(m≠0)相交于点P(1,2),∴关于x的不等式x+1≥mx+n的解集为x≥1,故答案为x≥1,【点评】本题考查了两直线相交的咨询题,按照函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.16.如图,△ABC中,P、Q分不是BC、AC上的点,作PR⊥AB,P S⊥AC,垂足分不是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是①②③④(请将所有正确结论的序号都填上).【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】按照角平分线性质即可推出①,按照勾股定理即可推出AR= AS,按照等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,按照平行线判定推出QP∥AB即可;求出PQ=CP=BP,按照AAS推出△BRP≌△QSP即可,然后按照线段垂直平分线的判定即可得到AP垂直平分RS.【解答】解:∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2= AP2﹣PS2,∵AP=AP,PR=PS,∴AR=AS,∴①正确;∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;∵△ABC是等边三角形,∴∠B=∠CAB=60°,AB=AC,∵∠QAP=∠BAP,∴BP=CP,∵QP∥AB,∴∠QPC=∠B=60°=∠C,∴PQ=CQ,∴△PQC是等边三角形,∴PQ=CP=BP,∠SQP=60°=∠B,∵PR⊥AB,PS⊥AC,∴∠BRP=∠PSQ=90°,在△BRP和△QSP中∴△BRP≌△QSP,∴③正确;连接RS,∵PR=PS,∴点P在RS的垂直平分线上,∵AS=AR,∴点A在RS的垂直平分线上,∴AP垂直平分RS,∴④正确,故答案为:①②③④.【点评】本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练把握全等三角形的判定和性质是解题的关键.三、解答题(每小题7分,共14分)17.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出△A1 B1C1各顶点的坐标;(2)若将线段A1B1 平移后得到线段A2B2,且A2(a,1),B2(4,b),求a+b的值.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)分不作出点A、B、C关于y轴对称的点,然后顺次连接,并写出△A1B1C1各顶点的坐标;(2)按照平移的性质写出点A2,B2的坐标,求出a、b的值,然后求出a+b.【解答】解:(1)所作图形如图所示:A1(1,4),B1(3,2),C1(2,1);(2)由图可得,A2(2,1),B2(4,﹣1),即a=2,b=﹣1,则a+b=1.【点评】本题考查了按照轴对称变换作图,解答本题的关键是按照网格结构作出对应点的位置,然后顺次连接.18.正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特点;三角形的面积.【分析】(1)按照待定系数法将点P(1,m)代入函数中,即可求得k 的值;(2)先按照题意画出图形,再按照交点坐标即可求出三角形的面积.【解答】解:(1)∵正比例函数y=2x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),∴把点P(1,m)代入得:,把①代入②得:k=5;(2)按照题意,如图:∵点P(1,2),∴三角形的高确实是2,∵y=﹣3x+5,∴A(0,),∴OA=,∴S△AOP=××2=【点评】此题考查了待定系数法求解析式;解题的关键是按照正比例函数和一次函数的图象性质进行运算即可;要紧是画出图形.四、解答题(本大题8分)19.已知:如图,点D、E在△ABC的边BC上,AB=AC,BE=CD.求证:AD=AE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】按照等边对等角可得∠B=∠C,然后利用“边角边”证明△A BE和△ACD全等,再按照全等三角形对应边相等证明即可.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE.【点评】本题考查了全等三角形的判定与性质,利用等边对等角的性质求出∠B=∠C是解题的关键.五、解答题(每小题10分,共20分)20.某商店需要采购甲、乙两种商品共15件,其价格如图所示:且要求乙商品的件数不得少于甲种商品件数的2倍.设购买甲种商品x件,购买两种商品共花费y元.(1)求出y与x的函数关系式(要求写出自变量x的取值范畴);(2)试利用函数的性质讲明,当采购多少件甲种商品时,所需要的费用最少?【考点】一次函数的应用.【分析】(1)设甲商品有x件,则乙商品则有(15﹣x)件,按照甲、乙两种商品共15件和乙种商品的件数许多于甲种商品件数的2倍,列出不等式组,求出x的取值范畴,再按照甲、乙两种商品的价格列出一次函数关系式即可;(2)按照(1)得出一次函数y随x的增大而减少,即可得出当x=50时,所需要的费用最少.【解答】解:(1)y=60x+100(15﹣x)=﹣40x+1500,∵,∴0≤x≤5,即y=﹣40x+1500 (0≤x≤5);(2)∵k=﹣40<0,∴y随x的增大而减小.即当x取最大值5时,y最小;现在y=﹣40×5+1500=1300,∴当采购5件甲种商品时,所需要的费用最少.【点评】本题考查了一次函数的应用,关键是按照商品的价格列出函数关系式,再按照题意求出自变量的取值范畴.21.如图,点O是等边△ABC内一点,∠AOC=100°,∠AOB=α.以OB为边作等边三角形△BOD,连接CD.(1)求证:△ABO≌△CBD;(2)当α=150°时,试判定△COD的形状,并讲明理由;(3)探究:当α为多少度时,△COD是等腰三角形?(直截了当写结论)【考点】全等三角形的判定与性质;等腰三角形的判定;等边三角形的性质.【分析】(1)利用等边三角形的性质证明△ABO≌△CBD即可;(2)是直角三角形;利用△BAO≌△BCD,得到∠BDC=∠AOB=15 0°,再分不求出∠CDO、∠COD即可解答.(3)分三种情形讨论,即可解答.【解答】解:(1)∵△ABC和△OBD差不多上等边三角形,∴BA=BC,BO=BD,∠ABC=∠OBD=60°∴∠ABC﹣∠OBC=∠OBD﹣∠OBC,即∠ABO=∠CBD,在△ABO和△CBD中,∴△ABO≌△CBD(SAS).(2)直角三角形;理由:∵△BAO≌△BCD∴∠BDC=∠AOB=150°又∵∠ODB=∠OBD=60°∴∠CDO=150°﹣60°=90°∠COD=360°﹣100°﹣150°﹣60°=5 0°∴△COD是直角三角形.(3)①要使CO=CD,需∠COD=∠ADO,∴210°﹣α=α﹣50°,∴α=130°;②要使OA=OD,需∠OAD=∠CDO,∴α﹣50°=50°,∴α=100°;③要使OD=AD,需∠OAD=∠AOD,∴210°﹣α=110°,∴α=160°.因此当α为100°、130°、160°时,△AOD是等腰三角形.【点评】本题考查了全等三角形的判定与性质、等边三角形的性质.解答(3)题时,注意充分利用隐藏于题中的已知条件﹣﹣周角是360°.六、解答题(本大题10分)22.一列慢车从甲地匀速驶往乙地,一列快车从乙地匀速驶往甲地,两车同时动身相向而行,图1表示两车距离甲地的路程y(km)与动身时刻x(h)的函数图象,图2表示两车之间的路程s(km)与动身时刻x(h)的函数图象.(1)甲乙两地间的路程为180km,图2中A点的实际意义是通过1.2小时两车相遇;(2)求快车和慢车的速度;(3)求点B的坐标.【考点】一次函数的应用.【分析】(1)按照图1中信息得出甲乙两地间的路程,同时按照图2得出A点的实际意义即可;(2)按照图象列出方程组解答即可;(3)按照题意得出两车之间距离,进而得出点B的坐标.【解答】解:(1)甲乙两地间的路程为180km;图2中A点的实际意义是通过1.2小时两车相遇,故答案为:180;通过1.2小时两车相遇;(2)由图1,图2可知:1.2(V快车+V慢车)=180和3V慢车=180,解得:V快车=90,V慢车=60,因此快车的行驶速度为90 km/h,慢车的行驶速度为60 km/h;(3)快车通过2小时到达甲地,现在慢车行驶60×2=120km,两车之间距离为120km故B点坐标为(2,120).【点评】本题考查了一次函数的应用,关键是利用了路程、时刻、速度三者之间的关系解答.。

2015-2016学年八年级上学期期末考试数学试题及答案

2015-2016学年八年级上学期期末考试数学试题及答案

2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。

12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。

初二安徽省合肥市数学上册期末素质测试试题及答案

初二安徽省合肥市数学上册期末素质测试试题及答案

初二安徽省合肥市数学上册期末素质测试试题班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1.下列各数中,是负数的是( )A. -(-2)B. 0C. 2D. -3答案:D2.下列说法正确的是( )A. 互为相反数的两数之和为零B. 有理数包括正数和负数C. 一个数的绝对值一定是正数D. 绝对值等于它本身的数是负数答案:A3.若|a| = 5,|b| = 2,且a < b,则a + b = ( )A. 3B. -3C. 3 或-7D. -3 或-7答案:D4.下列各式中,合并同类项正确的是( )A. 3a + 2b = 5abB. 7a - a = 6C. 5x^2 - 2x^2 = 3D. 2x^2y - 2yx^2 = 0答案:D5.下列各组数中,以a, b, c 为边的三角形不是直角三角形的是( )A. a = 3, b = 4, c = 5B. a = 5, b = 12, c = 13C. a = 6, b = 8, c = 10D. a = 2, b = 3, c = 4答案:D二、多选题(每题4分)1.下列说法正确的是()A. 平行四边形的对角线相等B. 矩形的对角线互相垂直C. 菱形的对角线互相平分D. 对角线互相垂直的平行四边形是菱形答案:CD2.下列各式中,属于二次根式的是()A.√3B.√−43C.√8D.√a2+1(a为实数)答案:AD3.下列命题中,是真命题的有()A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线相等D. 对角线互相垂直的平行四边形是菱形答案:AD4.下列计算中,正确的是()A.3a+2b=5abB.a2⋅a3=a6C.a6÷a2=a3D.(a3)2=a6答案:D5.已知点A(2, 0),B(0, 4),以线段AB为直径的圆上,与x轴负半轴相切的切点的坐标为()A.(−1,0)B.(0,−1)C.(−1,2)D.(1,2)答案:A三、填空题(每题3分)1.已知数轴上点A表示的数是-2,将点A向右移动3个单位长度,那么点A表示的数是_______ 。

2015-2016学年第一学期初二数学期末考试综合试卷(1)及答案

2015-2016学年第一学期初二数学期末考试综合试卷(1)及答案

2015-2016学年第一学期初二数学期末考试综合试卷(1)一、选择题:1. (2015•呼伦贝尔)25的算术平方根是……………………………………………( ) A .5; B .-5; C .±5;D2. (2015•金华)如图,数轴上的A 、B 、C 、D 四点中,与数( ) A .点A ;B .点B ;C .点C ;D .点D ;3. (2015•绥化)在实数0、π、227无理数的个数有………………( ) A .1个;B .2个 ;C .3个;D .4个;4.(2015•内江)函数11y x =-中自变量x 的取值范围是………………………( ) A .2x ≤; B .2x ≤且1x ≠; C .x <2且1x ≠; D .1x ≠;5. (2014•南通)点P (2,-5)关于x 轴对称的点的坐标为……………………………( ) A .(-2,5) B .(2,5) C .(-2,-5) D .(2,-5)6. 两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图象位置可能是…………( )7. (2015•济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是……………………………………………………( )A .x >-2B .x >0C .x >1D .x <18. 已知等腰三角形的两边长分別为a 、b ,且a 、b()223130a b +-=,则此等腰三角形的周长为………………………………………………………………( )A .7或8B .6或1OC .6或7D .7或10;9. 如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有……………………………………………………………………………( ) A .2个 ;B .3个; C .4个 ;D .5个;A. B. C. D. 第2题图 第7题第9题10. (2015•泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=6,BC= 则FD 的长为……………………………( ) A .2; B .4; C;D.二、填空题:11. 在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= . 12. (2015•泉州)比较大小:).13. 由四舍五入法得到的近似数38.810⨯精确到 位.14. 已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a-b-2的值等于 .15. 如图,已知△ABC 中,AB=AC ,点D 、E 在BC 上,要使△ABD ≌ACE ,则只需添加一个适当的条件是 .(只填一个即可)16. 一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是 . 17. 如图,将Rt △ABO 绕点O 顺时针旋转90°,得到Rt A B O '',已知点A 的坐标为(4,2),则点A ′的坐标为 .18. 如图,已知等边三角形ABC 的边长为10,点P 、Q 分别为边AB 、AC 上的一个动点,点P 从点B 出发以1cm/s 的速度向点A 运动,点Q 从点C 出发以2cm/s 的速度向点A 运动,连接PQ ,以Q 为旋转中心,将线段PQ 按逆时针方向旋转60°得线段QD ,若点P 、Q 同时出发,则当运动_______s 时,点D 恰好落在BC 边上. 三、解答题:(本大题共76分) 19.(本题满分8分)(1)求()2116x +=中的x ; (2);20. (本题满分6分)(2015•温州)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D .(1)求证:AB=CD .(2)若AB=CF ,∠B=30°,求∠D 的度数.21. (本题满分6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.第10题图第15题第17题第18题图(1)将△ABC 沿x 轴翻折得到111A B C ,作出111A B C ; (2)将111A BC 向右平移4个单位,作出平移后的222A B C .(3)在x 轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标: .(不写解答过程,直接写出结果)22. (本题满分6分)已知一个正数的两个平方根分别为a 和29a -. (1)求a 的值,并求这个正数; (2)求2179a -的立方根.23. (本题满分6分)(2015•淄博)在直角坐标系中,一条直线经过A (-1,5),P (-2,a ),B (3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.24. (本题满分6分)如图,在△ABC 中,点D 在边AC 上,DB=BC ,E 是CD 的中点,F 是AB 的中点,求证:EF=12AB .25. (本题满分9分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:△ABD 是等腰三角形; (2)若∠A=40°,求∠DBC 的度数;(3)若AE=6,△CBD 的周长为20,求△ABC 的周长.26. (本题满分7分)(2015•盐城)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图象交于点A .(1)求点A 的坐标;(2)设x 轴上有一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图象于点B 、C ,连接OC .若BC=75OA ,求△OBC 的面积.如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且()2411023a b a b ++-+=.(1)求a 、b 的值;(2)①在y 轴上的负半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标;②在坐标轴的其它位置是否存在点M ,使结论“△COM 的面积=12△ABC 的面积”仍然成立?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.28. (本题满分7分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.2015-2016学年第一学期初二数学期末考试综合试卷(1)参考答案 一、选择题:1.A ;2.B ;3.B ;4.B ;5.B ;6.A ;7.C ;8.A ;9.C ;10.B ; 二、填空题:11.65°;12.>;13.百;14.-5;15.BD=EC (答案不唯一);16. 2m >-;17.(2,-4);18. 103; 三、解答题:19.(1)3或-5;(2)8.5;20.(1)略;(2)75°;21.(1)略;(2)略;(3)8,05⎛⎫ ⎪⎝⎭;22.(1)3a =,这个正数是9;(2)-4; 23. (1)7a =;(2)3;24. 证明:如图,连接BE ,∵在△BCD 中,DB=BC ,E 是CD 的中点, ∴BE ⊥CD ,∵F 是AB 的中点,∴在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF=12AB . 25.(1)略;(2)30°;(3)32; 26.(1)A (4,3);(2)28; 27. (1)2a =-,3b =;(2)①M (0,-7.5);②存在. M (0,7.5),M (2.5,0);M (-2.5,0);28. 解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得()()1224124212201232a b a b +-=⎧⎪⎨+-=⎪⎩,解得:12.5a b =⎧⎨=⎩. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. (2)∵当0≤x ≤12时,y=x ;当x >12时,y=12+(x-12)×2.5=2.5x-18,∴所求函数关系式为:()()022.51812x x y x x ≤≤⎧⎪=⎨->⎪⎩. (3)∵x=26>12,∴把x=26代入y=2.5x-18,得:y=2.5×26-18=47(元). 答:小黄家三月份应交水费47元.29. 解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60-1-1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x ≤3时,设1y k x =,把(3,360)代入,可得31k =360, 解得1k =120,∴y=120x (0≤x ≤3). ②当3<x ≤4时,y=360. ③4<x ≤7时,设2y k x b =+, 把(4,360)和(7,0)代入,可得2120840k b =-⎧⎨=⎩,∴y=-120x+840(4<x ≤7).(3)①(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,(480-360+120)÷60=240÷6=4(小时) ③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x-[120(x-1)-360]=120,所以480-60x=120,所以60x=360,解得x=6.小时、4小时、6小时后两车相距120千米.综上,可得乙车出发83。

八年级上册合肥数学期末试卷测试卷(含答案解析)

八年级上册合肥数学期末试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明2.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD ,在△ACF 和△ABD 中,∵AB=AC ,∠CAF=∠BAD ,AD=AF ,∴△ACF ≌△ABD(SAS),∴CF=BD ,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF ⊥BD ;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.3.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=82,BC=16.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=12BF,由(1)证明方法可得△PFD≌△QCD 则有CD=12CF,即可得出BE+CD=8.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF , ∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.4.如图1,已知CF 是△ABC 的外角∠ACE 的角平分线,D 为CF 上一点,且DA =DB .(1)求证:∠ACB =∠ADB ;(2)求证:AC +BC <2BD ;(3)如图2,若∠ECF =60°,证明:AC =BC +CD .【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,证明Rt △DAM ≌Rt △DBN ,得出∠DAM=∠DBN ,则结论得证;(2)证明Rt △DMC ≌Rt △DNC ,可得CM=CN ,得出AC+BC=2BN ,又BN <BD ,则结论得证;(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN =⎧⎨=⎩, ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM =∠DBN ,∴∠ACB =∠ADB ;(2)证明:由(1)知DM =DN ,在Rt △DMC 和Rt △DNC 中,DC DCDM DN=⎧⎨=⎩,∴Rt△DMC≌Rt△DNC(HL),∴CM=CN,∴AC+BC=AM+CM+BC=AM+CN+BC=AM+BN,又∵AM=BN,∴AC+BC=2BN,∵BN<BD,∴AC+BC<2BD.(3)由(1)知∠CAD=∠CBD,在AC上取一点P,使CP=CD,连接DP,∵∠ECF=60°,∠ACF=60°,∴△CDP为等边三角形,∴DP=DC,∠DPC=60°,∴∠APD=120°,∵∠ECF=60°,∴∠BCD=120°,在△ADP和△BDC中,APD BCDPAD CBDDA DB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP≌△BDC(AAS),∴AP=BC,∵AC=AP+CP,∴AC=BC+CP,∴AC=BC+CD.【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.5.如图,ABC∆是等边三角形,点D在边AC上(“点D不与,A C重合),点E是射线BC上的一个动点(点E不与点,B C重合),连接DE,以DE为边作作等边三角形DEF∆,连接CF.(1)如图1,当DE的延长线与AB的延长线相交,且,C F在直线DE的同侧时,过点D作//DG AB,DG交BC于点G,求证:CF EG=;(2)如图2,当DE反向延长线与AB的反向延长线相交,且,C F在直线DE的同侧时,求证:CD CE CF=+;(3)如图3,当DE反向延长线与线段AB相交,且,C F在直线DE的异侧时,猜想CD、CE、CF之间的等量关系,并说明理由.【答案】(1)证明见详解;(2)证明见详解;(3)CF=CD+CE,理由见详解.【解析】【分析】(1)由ABC∆是等边三角形,//DG AB,得∠CDG=∠A=60°,∠ACB=60°,CDG∆是等边三角形,易证∆ GDE≅∆ CDF(SAS),即可得到结论;(2)过点D作DG∥AB交BC于点G,易证∆ GDE≅∆ CDF(SAS),即可得到结论;(3)过点D作DG∥AB交BC于点G,易证∆ GDE≅∆ CDF(SAS),即可得到结论.【详解】(1)∵ABC∆是等边三角形,//DG AB,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG∆是等边三角形,∴DG=DC.∵DEF∆是等边三角形,∴DE=DF,∠EDF=60°,∴∠CDG-∠GDF=∠EDF-∠GDF,即:∠GDE=∠CDF,在∆ GDE和∆ CDF中,∵DE DFGDE CDFDG DC=⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE≅∆ CDF(SAS),∴CF EG=;(2)过点D作DG∥AB交BC于点G,如图2,∵ABC∆是等边三角形,//DG AB,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠CDE=∠EDF-∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE =,∴CD CG CE GE CE CF ==+=+(3)CF =CD +CE ,理由如下:过点D 作DG ∥AB 交BC 于点G ,如图3,∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC=GC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG+∠CDE=∠EDF+∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE ==GC+CE=CD+CE.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.7.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).(1)求证:∠BAD=∠EDC;(2)若点E关于直线BC的对称点为M(如图2),连接DM,AM.求证:DA=AM.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC=∠ACB=60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA,然后结合(1)可得∠MDC=∠BAD,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD=60°﹣∠DAE,∠EDC=60°﹣∠E,又∵DE=DA,∴∠E=∠DAE,∴∠BAD=∠EDC.(2)由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=60°,∴△ADM是等边三角形,∴AD=AM.【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.8.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y xy xααβ=+⎧⎨=-+⎩①②-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴+y xy xααβ=+⎧⎨=+⎩①②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y xy xαβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.9.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC∆,如图1,并在边AC上任意取了一点F(点F不与点A、点C重合),过点F作FH AB⊥交AB于点H,延长CB到G,使得BG AF=,连接FG交AB于点l.(1)若10AC=,求HI的长度;(2)如图2,延长BC到D,再延长BA到E,使得AE BD=,连接ED,EC,求证:ECD EDC∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解; (2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE ,得出△BCE ≌△QDE 就可以得出结论.【详解】解:如图1,作FP ∥BC 交AB 于点P ,∵ABC ∆是等边三角形,∴∠ABC=∠A=60°,∵FP ∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF ∆是等边三角形,∴PF=AF,∵FH AB ⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI ∆和BGI ∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC是等边三角形,∴AB=BC=AC,∠B=60°.∵AE=BD,DQ=AB,∴AE+AB=BD+DQ,∴BE=BQ.∵∠B=60°,∴△BEQ为等边三角形,∴∠B=∠Q=60°,BE=QE.∵DQ=AB,∴BC=DQ.∴在△BCE和△QDE中,BC DQB QBE QE=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△QDE(SAS),∴EC=ED.∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.10.(阅读理解)截长补短法,是初中数学儿何题中一种输助线的添加方法,截长就是在长边上载取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE =B D .连接AE ,根据∠BAC +∠BDC =180°,可证∠ABD =∠ACE ,易证得△ABD ≌△ACE ,得出△ADE 是等边三角形,所以AD =DE ,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请直接写出DA 、DB 、DC 之间的数量关系是___________(拓展延伸)(2)如图2,在Rt △ABC 中,∠BAC =90°,AB =A C .若点D 是边BC 下方一点,∠BDC =90°,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;(知识应用)(3)如图3,一副三角尺斜边长都为14cm ,把斜边重叠摆放在一起,则两块三角尺的直角项点之间的距离PQ 的长为________cm.【答案】(1)DA DB DC =+;(22DA DB DC =+,理由见详解;(3)262. 【解析】【分析】(1)由等边三角形知,60AB AC BAC ︒=∠=,结合120BDC ︒∠=知180ABD ACD ︒∠+∠=,则ABD ACE ∠=∠证得ABD ACE ≅得,AD AE BAD CAE =∠=∠,再证明三角形ADE 是等边三角形,等量代换可得结论; (2) 同理可证ABD ACE ≅得,AD AE BAD CAE =∠=∠,由勾股定理得222DA AE DE +=,等量代换即得结论;(3)由直角三角形的性质可得QN 的长,由勾股定理可得MQ 的长,由(2)知2PQ QN QM =+,由此可求得PQ 长.【详解】解:(1)延长DC 到点E ,使CE =B D.连接AE ,ABC 是等边三角形,60AB AC BAC ︒∴=∠=120BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠60BAC ︒∠=60BAD DAC ︒∴∠+∠=60DAE DAC CAE ︒∴∠=∠+∠=ADE ∴是等边三角形DA DE DC CE DC DB ∴==+=+(2)2DA DB DC =+延长DC 到点E ,使CE =B D.连接AE ,90BAC ︒∠=,90BDC ︒∠=180ABD ACD ︒∴∠+∠=又180ACE ACD ︒∠+∠=ABD ACE ∴∠=∠,AB AC CE BD ==()ABD ACE SAS ∴≅,AD AE BAD CAE ∴=∠=∠90DAE BAC ︒∴∠=∠=222DA AE DE ∴+=222()DA DB DC ∴=+2DA DB DC ∴=+(3)连接PQ ,14,30MN QMN ︒=∠=172QN MN ∴==根据勾股定理得MQ ====由(2QN QM =+2PQ ∴=== 【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b )2+(b-c )2+(c-a )2] =12(a 2-2ab+b 2+b 2-2bc+c 2+a 2-2ac+c 2) =12×(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac ,故a2+b2+c2-ab-bc-ac=12[(a-b)2+(b-c)2+(c-a)2]正确;(2)20182+20192+20202-2018×2019-2019×2020-2018×2020=12×[(2018-2019)2+(2019-2020)2+(2020-2018)2]=12×(1+1+4)=12×6=3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.12.阅读下列因式分解的过程,解答下列问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是____________,共应用了________次;(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需要应用上述方法________次,结果是________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【答案】(1)提取公因式法,2;(2)2019,(1+x)2020;(3) (1+x)n+1.【解析】【分析】(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.【详解】(1)提取公因式法,2(因式分解的方法是提公因式法,共应用了2次)(2)2019,(1+x)2020(分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2019,则需应用上述方法2019次,结果是(1+x)2020)(3)原式=(1+x)[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-1]=(1+x)2[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-2]=(1+x)3[1+x+x(x+1)+x(x+1)2+…+x(x+1)n-3]=(1+x)n(1+x)=(1+x)n+1.【点睛】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.13.阅读下列材料: 利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把这样的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++-=(8)(3)x x ++ 根据以上材料,解答下列问题: (1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始出现错误的地方,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.【答案】(1)2(4)17x +- ;(2)(5)(8)x x +-;(3)见解析【解析】试题分析:(1)根据配方法,可得答案;(2)根据配方法,可得平方差公式,再根据平方差公式,可得答案;(3)根据交换律、结合率,可得完全平方公式,根据完全平方公式,可得答案. 试题解析:解:(1)281x x +-=2228441x x ++--=2(4)17x +-(2)2340x x -- =222333()()40222x x -+-- =23169()24x --=313313()()2222x x -+-- =(5)(8)x x +- (3)证明:222416x y x y +--+=22214411x x y y -++-++=22(1)(2)11x y -+-+∵2(1)x -≥0,2(2)y -≥0,∴22(1)(2)110x y -+-+>.∴x ,y 取任何实数时,多项式222416x y x y +--+的值总是正数.点睛:本题考查了配方法,利用完全平方公式:a 2±2ab +b 2=(a ±b )2配方是解题关键.14.阅读以下文字并解决问题:对于形如222x ax a ++这样的二次三项式,我们可以直接用公式法把它分解成()2x a +的形式,但对于二次三项式2627x x +-,就不能直接用公式法分解了。

2015—2016学年度第一学期初二期末质量检测数学试卷附答案

2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。

2015-2016学年新课标人教版八年级上期末数学试卷(有答案)

2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。

2015~2016学年度上学期期末考试试卷八年级数学附答案

2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥市蜀山区2015-2016学年度第一学期八年级期末考试
一、选择题(本大题共10小题,每小题3分,共30分.请将你认为正确的答案的代号填入答题框中)
1.点(2,3)P -位于:
A.第一象限
B.第二象限
C.第三象限
D.第四象限
A.2个
B.3个
C.4个
D.5个
3.如下图,为了估计池塘岸边A ,B 两点间的距离,小玥同学在池塘一侧选取一点O ,测得OA=12米,OB=7米,则A ,B 间的距离不可能...是: A.5米 B.7米 C.10米 D.18米
4.如上图,E 、B 、F 、C 四点在一条直线上,且EB=CF ,∠A=∠D,增加下列条件中的一个仍不能..证明△ABC≌△DEF,这个条件是: A.AB=DE B.DF ∥AC C.∠E=∠ABC D.AB ∥DE
5.已知1
1(2,)P y -,22(3,)P y 是一次函数y x b =-+(b 为常数)的图象上的两个点,
则1y ,2y
的大小关系是: A.12y y <
B.12y y >
C.12y y =
D.不能确定
6.下列命题,是假命题的是:
A.若直线2y kx =-经过第一、三、四象限,则0k >
B.三角形三边垂直平分线的交点到三个顶点的距离相等
C.等腰三角形的角平分线、中线和高互相重合
D.如果A ∠和B ∠是对顶角,那么A ∠=B ∠
7.某复印店复印收费y (元)与复印面数x 所示,从图象中可以看出,复印超过100A.0.2元 B.0.4元
C.0.45元
D.0.5元
A 第3题图 A
B F
C
D 第4题图
第7题图
(面)
8.如图,下列4个三角形中,均有AB=AC ,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是:




A
A.①③
B.①②④
C.①③④
D.①②③④ 9.在Rt △ABC 中,∠A=40°,∠B=90°,AC 的垂直平分线MN 分别与AB ,AC 交于点D ,E ,则∠BCD 的度数为:
A.10°
B.15°
C.40°
D.50°
10.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是: A.1
B.3
C.3(1)m -
D.
3
(2)2
m -
二、填空题(每小题3分,共18分.请将答案直接填在题中的横线
11.函数y =
中自变量x 的取值范围是 . 12.等腰三角形的一个角是80°,则它顶角的度数是 .
可得p 的值为

14.
将一副直角三角板如图放置,使含30°角 第9题图
第10题图
A
C
第16题图
的三角板的较短的直角边和含45°角的三角板 的一条直角边重合,则∠1的度数为 度.
15.如图,直线1l :1y x =+与直线2l :(0)y mx n m =+≠相交于点P (1,2),则关于x 的不等式1x +≥mx n +的解集为 .
16.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别为R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:
①AS=AR ②QP ∥AR ③△BRP ≌△QSP ④AP 垂直平分RS.
其中正确结论的序号是 (请将所有正确结论的序号都填上)
三、解答题(每小题7分,共14分)
17.△在平面直角坐标系中的位置如图所示.
(1)在图中画出△ABC 关于y 轴对称的图形△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标; (2)若将线段A 1B 1 平移后得到线段A 2B 2,且2(,1)A a ,2(4,)B b ,求a b +的值.
18.正比例函数x y 2=的图象与一次函数k x y +-=3的图象交于点P (1,m ). (1)求k 的值; (2)求两直线与y 轴围成的三角形面积.
第15题图 y
A B E D C
四、解答题(本大题8分)
19.如图,点D ,E 在△ABC 的边BC 上,AB=AC ,BE=CD .求证:AD=AE .
五、解答题(每小题10分,共20分)
20.某商店需要采购甲、乙两种商品共15件,其价格如图所示:
且要求乙商品的件数不得少于甲种商品件数的2倍. 设购买甲种商品x 件,购买两种商品共花费y 元。

(1)求出y 与x 的函数关系式(要求写出自变量x 的取值范围);
(2)试利用函数的性质说明,当采购多少件甲种商品时,所需要的费用最少?
甲:60元/件
乙:100元/件
21.如图,点O是等边△ABC内一点,∠AO C=100°,∠AOB=α.以OB为边作等边三角形△BOD,连接CD.
(1)求证:△ABO≌△CBD;
(2)当α=150°时,试判断△COD的形状,并说明理由;
(3)探究:当α为多少度时,△COD是等腰三角形?(直接写结论)
D
六、解答题(本大题10分)
22.一列慢车从甲地匀速驶往乙地,一列快车从乙地匀速驶往甲地,两车同时出发相向而行,图1表示两车距离甲地的路程y (km )与出发时间x (h )的函数图象,图2表示两车之间的路程s (km)与出发时间x (h )的函数图象.
(1)甲乙两地间的路程为 km ,图2中A 点的实际意义是 ; (2)求快车和慢车的速度; (3)求点B 的坐标.
2015/2016学年度第一学期八年级期末考试
数学参考答案
一、选择题(本大题共10小题,每小题3分,共30分.请将你认为正确的答案的代号填
入下面的答题表中) 1-5 DCAAB 6-10 CBCAB
二、填空题(每小题3分,共18分.请将答案直接填在题中的横线上)
11.3x >, 12.20°或80°, 13.1, 14.75, 15.1x ≥,16.①②④
三、解答题(每小题7分,共14分)
17.解:(1)作图略;111(1
,4),(3,2),(2,1)A B C ................................................4分 (2)2,1,1a b a b ==-+= (7)
分 18.解:(1)当1=x 时,2=m ,所以P (1,2) ………………2分
图1 图2
将P (1,2)代入k x y +-=3中,得k +-=32,k =5 ………………4分 (2)该一次函数解析式为53+-=x y ,与y 轴交点坐标为(0,5) ……………5分 所以两直线与y 轴围成的三角形面积是5.2512
1
=⨯⨯ …………………………7分
四、解答题(本大题8分)
19.证明:∵AB=AC ,∴ ∠B =∠C ……2分
又∵BE=CD , ∴ △ABE ≌ △ACD (SAS )………6分 ∴AD =AE ………………8分 (其他方法证明均可)
五、解答题(每小题10分,共20分)
20.解: (1)y=60x+100(15-x)=-40x+1500. ………………………………………4分 ∵ 0,
152x x x
≥⎧⎨
-≥⎩ ∴0≤x≤5.
即y=-40x+1500 (0≤x≤5); …………………………………6分
(2)∵k=-40<0, ∴y 随x 的增大而减小.即当x 取最大值5时,y 最小;
此时405+1500=1300y =-⨯
∴当采购5件甲种商品时,所需要的费用最少………………………………………10分
21.(1)证明:∵△ABC 和△OBD 都是等边三角形, ∴BA=BC ,BO=BD, ∠ABC =∠OBD=60°
∴∠ABC -∠OBC =∠OBD-∠OBC ,即∠ABO =∠CBD
∴△ABO ≌ △CBD (SAS )…………………………………………………………………3分 (2)直角三角形;……………………………………………………………………………4分
理由:∵△BAO ≌ △BCD ∴∠BDC=∠AOB=150° 又∵∠ODB=∠OBD=60°
∴∠CDO =150°-60°=90° ∠COD=360°-100°-150°-60°=50°
∴△COD 是直角三角形。

…………………………………………………………………7分
(3)α=100°,130°,160°
…………………………………………………………10分
六、解答题(本大题10分)
22.解:(1)180;经过1.2小时两车相遇。

……4分(只说出相遇没有说出1.2小时不扣分)
(2)由图1,图2可知:1.2=快车慢车(V +V )180和3=慢车V 180,
解得:=快车V 90,=慢车V 60,所以快车的行驶速度为90 km/h ,慢车的行驶速度为60 km/h …………………8分 (3)快车经过2小时到达甲地,此时慢车行驶60×2=120km ,两车之间距离为120km
∴B 点坐标为(2,120) ……………………………………………………………10分。

相关文档
最新文档