高中数学必修5__第一章_解三角形复习知识点总结与练习

合集下载

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

苏教版必修5高一数学第1章解三角形单元复习练习

苏教版必修5高一数学第1章解三角形单元复习练习

解三角形一、 知识点梳理:1、正弦定理:在△ABC 中,R Cc B b A a 2sin sin sin === 注:①R 表示△ABC 外接圆的半径 ②正弦定理可以变形成各种形式来使用2、余弦定理:在△ABC 中, A bc c b a cos 2222-+= B ac c a b cos 2222-+= C ab b a c cos 2222-+= 也可以写成第二种形式:bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,abc b a C 2cos 222-+= 3、△ABC 的面积公式,B ac A bc C ab S sin 21sin 21sin 21===二、题组训练: 1、在△ABC 中, a=12,A=060,要使三角形有两解,则对应b 的取值范围为2、判定下列三角形的形状在△ABC 中,已知38,4,3===c b a ,请判断△ABC 的形状。

在△ABC 中,已知C B A 222sin sin sin <+,请判断△ABC 的形状。

在△ABC 中,已知bc a A ==2,21cos ,请判断△ABC 的形状。

在△ABC 中,已知C B bc B c C b cos cos 2sin sin 2222=+,请判断△ABC 的形状。

在△ABC 中,,sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++请判断△ABC 的形状。

3、在△ABC 中,已知030,4,5===A b a ,求△ABC 的面积。

4、在△ABC 中,若△ABC 的面积为S ,且22)(2c b a S -+=,求tanC 的值。

5、在△ABC 中,已知87cos ,6,0222===--A a c bc b ,求△ABC 的面积。

6、在△ABC 中,已知,sin sin ,360C B ab ==△ABC 的面积为315,求边b 的长。

人教新课标版数学高二-数学必修5第一章《解三角形》知识整合

人教新课标版数学高二-数学必修5第一章《解三角形》知识整合

数学·必修5(人教A版)一、本章的中心内容是如何解三角形.正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章的学习应当达到以下学习目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际生活问题.3.本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.在初中,学生已经学习了相关边角关系的定性知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全等”.“在任意三角形中有大边对大角,小边对小角”的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形”.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.4.在此内容之前我们已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,用了向量的方法,发挥了向量方法在解决问题中的威力.5.勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.二、学数学的最终目的是应用数学.能把实际问题抽象成数学问题,把所学的数学知识应用到实际问题中去,通过观察、分析、归纳、类比、抽象、概括、猜想等发现问题,确定解决问题的科学思维方法,学会把数学知识应用于实际.1.正弦定理可建立边角关系,角的正弦越大所对的边就越长.2.由正弦值得出角的大小时特别要注意是一个解还是两个解.一般地,解三角形时,只有当A为锐角且b sin A<a<b时,有两解;其他情况时则只有一解或无解.3.利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角.4.把a=k sin A,b=k sin B代入已知等式可将边角关系全部转化为三角函数关系.5.余弦定理是三角形边角之间的共同规律,勾股定理是余弦定理的特例.6.余弦定理的应用范围是:①已知三边,求三角;②已知两边及一个内角,求第三边.7.已知两边及其中一边所对的角用余弦定理时可能有两个解,注意用三边特点取舍.解决实际测量问题一般要充分理解题意,正确作出图形,从中抽象出一个或几个三角形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,然后解三角形,得到实际问题的解.8.解斜三角形应用题的一般步骤.(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.(4)检验:检验上述所求的解是否有实际意义,从而得出实际问题的解.9.平面上两点的距离测量问题一般有如下几类情况:(1)A、B两点都在河的两岸,一点可到达,另一点不可到达.方法是可到达一侧再找一点进行测量.(2)A、B两点都在河的对岸(不可到达).方法是在可到达一侧找两点进行测量.(3)A、B两点不可到达(如隔着一座山或建筑).方法是找一点可同时到达A、B两点进行测量.10.利用正弦定理和余弦定理来解高度问题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.11.测量高度的一般方法是选择能观察到测量物体的两点,分别测量仰角或俯角,同时测量出两个观测点的距离,再利用解三角形的方法进行计算.12.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理、余弦定理求出需要的元素,就可以求出三角形的面积.13.利用正弦定理、余弦定理、面积公式将已知条件转化为方程组是解决复杂问题的常见思路,将方程化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系.14.许多试题既可用正弦定理也可用余弦定理解决,甚至可以两者兼用,当一个公式求解受阻时要及时考虑其他公式列式.15.本章问题的高考要求不高,学习时要立足基本问题,熟练掌握测量的一般技巧,正确使用定理列方程求解,无须过多延伸与拓广.题型1 利用正、余弦定理解三角形解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的过程,三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形包括四种类型:(1)已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);(2)已知两边及夹角(一般先用余弦定理求第三边);(3)已知三边(先用余弦定理求角);(4)已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a .解析:如图,设CD =DB =x ,在△ACD 中,cos C =72+x 2-⎝ ⎛⎭⎪⎫7222×7×x ,在△ACB 中,cos C =72+(2x )2-422×7×2x, 所以72+x 2-⎝ ⎛⎭⎪⎫7222×7×x =72+(2x )2-422×7×2x. 解得x =92. 所以a =2x =2×92=9.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.解析:由余弦定理得BD 2=22+22-2×2×2cos 120°=12,∴BD =2 3.∵BC =CD =2,C =120°,∴∠CBD =30°,∴∠ABD =90°,∴S 四边形ABCD =S △ABD +S △BCD=12×4×23sin 90°+12×2×2×sin 120°=5 3. 答案:5 3题型2 利用正、余弦定理判定三角形的形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin(A -B )=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解析:解法一:由正弦定理可得2sin B =sin A +sin C ,∵B =60°,∴A +C =120°,A =120°-C ,将其代入上式,得2sin 60°=sin(120°-C )+sin C ,展开整理,得32sin C +12cos C =1,∴sin(C +30°)=1,∴C +30°=90°.∴C =60°,故A =60°,∴△ABC 是正三角形.解法二:由余弦定理可得b 2=a 2+c 2-2ac cos B ,∵B =60°,b =a +c 2, ∴⎝ ⎛⎭⎪⎪⎫a +c 22=a 2+c 2-2ac cos 60°. ∴(a -c )2=0,∴a =c ,∴a =b =c ,∴△ABC 为正三角形.题型3 三角形解的个数的确定(1)利用正弦定理讨论:若已知a ,b ,A ,由正弦定理a sin A =b sin B,得sin B =b sin A a .若sin B >1,则无解;若sin B =1,则有一解;若sin B <1,则可能有两解.(2)利用余弦定理讨论:已知a ,b ,A ,由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cos A )c +b 2-a 2=0.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个不同正数解,则三角形有两解.在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?解析:由正弦定理a sin A =b sin B得: ①当b sin A <a <b 时,有两解,此时23<b <43;②当a ≥b 时或B 为90°(b 为斜边)时,有一解,此时b ≤23或b =43;③当a <b sin A 时无解,此时b >4 3.题型4 正、余弦定理在实际问题中的应用如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解析:如下图,作DM ∥AC 交BE 于N ,交CF 于M ,高中数学-打印版精校版DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130, EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理得:cos ∠DEF =DE 2+EF 2-DF 22DE ×EF =1302+1502-102×2982×130×150=1665.。

解三角形数列知识点总结

解三角形数列知识点总结

必修5第一章《解三角形》知识点归纳1. 高线定理:△ABC 中,a 边上的高B c C b h a sin sin ==2. 正弦定理:△ABC 中,A a sin =B b sin =Ccsin =2R ,推论c b a C B A ::sin :sin :sin = 3. 余弦定理:△ABC 中,a 2=b 2+c 2-2bc cos A ,推论 cos A =bcac b 2222-+4. 三角形的面积公式:△ABC 的面积C ab B ac A bc S sin 21sin 21sin 21===5. 解三角形的四种基本类型:(1)已知三边(SSS 型)----用余弦定理推论求三角(2)已知两边和它们的夹角(SAS 型)----用余弦定理求第三边(3)已知两角和任一边(AAS 型)----用内角和定理求第三角,用正弦定理求另两边 (4)已知两边和其中一边的对角(SSA 型)----用正弦定理求另一边的对角 注1:SSS 型,SAS 型,AAS 型至多有一解. 注2:SSA 型解情况复杂:若正弦值小于1,则用大边对大角判定角范围,可能一解或两解;若正弦值大于1,则无解.若已知角为锐角,则可能一解或两解;若已知角为钝角,则至多一解.注3:SSA 型也可以用余弦定理求第三边,通过一元二次方程解的情况判断三角形解的情况!!! 6. 应用举例:(1)求河两岸两点的水平距离(一点可达,另一点不可达). (2)求河对岸两点的水平距离(两点均不可达).(3)求底部不可达的建筑物的竖直高度(即两点的垂直距离)(注意取测量点的两种方法). (4)求航行距离与航向(方向角或方位角). 7. 常用方法:(1)边角混合式的处理方法!!!(2)韦达定理、降次公式、二倍角公式、和差角公式、辅助角公式的运用方法!!! (3)平面向量的数量积定义与坐标运算公式、两个向量夹角公式的运用方法!!!8. 其他有关结论:在△ABC 中, 下列结论也应熟记:B A B A <⇔<sin sinπ=+=⇔=B A B A B A 22222sin 2sin 或sin(A+B)=sinCcos(A+B) -cosCtan(A+B) -tanC ==2cos 2sinC B A =+ 2sin 2cos CB A =+ 12tan 2tan =+C B A tan tan tan tan tan tan A B C A B C ++=⋅⋅【典型题目】(学案)必修5第二章《数列》知识点归纳1. 等差数列与等比数列知识点类比:2. 等差数列与等比数列有关公式的推导方法:等差数列通项公式推导方法----累差法,等比数列通项公式推导方法----累商法;等差数列前n项和公式推导方法----倒序相加法,等比数列前n项和公式推导方法----乘公比错位相减法.3. 等差数列与等比数列的函数特征:等差数列通项公式是关于n的一次函数,等比数列通项公式是关于n的指数型函数;等差数列前n项和公式是关于n的二次函数,且常数项为零;等比数列前n 项和公式形如)1(nqA -,其中1,0≠≠q A .4. 证明一个数列是等差数列或等比数列的方法!!!5. 求等差数列前n 项和S n 最值的方法------对称轴法与变号项法!!!6. 形如}{n nb a +的数列求前n 项和S n 的方法-----拆项重组法!!!(其中}{n a }{n b 为等差或等比数列)7. 形如}1{1+⋅n n a a 的数列求前n 项和S n 的方法-----裂项相消法!!!(其中}{n a 为等差数列)8. 形如}{n nb a ⋅的数列求前n 项和S n 的方法-----乘公比错位相减法!!!(其中}{n a 为等差,}{n b 等比)9. 由S n 求a n 的方法!!!10. 处理S n 与a n 混合式的方法!!!11. 求等差数列的绝对值数列的前n 项和S n 的方法. 12. 判断一个数列单调性的方法.13. 等差数列的单调性与什么量有关?有什么关系?!!! 14. 等比数列的单调性与什么量有关?有什么关系?!!! **15. 求两个等差数列的公共项的方法.**16. 求一个等差数列与一个等比数列的公共项的方法.【典型题目】(学案)。

高中数学必修5复习题及答案(A组)免费范文

高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。

高中数学 第一章 解三角形课时训练 苏教版必修5

高中数学 第一章 解三角形课时训练 苏教版必修5

第一章 解三角形§1.1 正弦定理和余弦定理1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 3 答案 C 解析 由正弦定理a sin A =bsin B, 得4sin 45°=bsin 60°,∴b =2 6.3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形D .等腰三角形 答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°答案 C 解析 由a sin A =bsin B得sin B =b sin Aa=2sin 60°3=22. ∵a >b ,∴A >B ,B <60° ∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝ ⎛⎭⎪⎫32sin C +12cos C ,即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°. 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________. 答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.答案102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C , ∴AB =BC sin C sin A =1³sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________.答案 1解析 由正弦定理,得3sin2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°, ∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =csin C, ∴b =a sin B sin A =22sin 45°sin 30°=22³2212=4.∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形. 解 a =23,b =6,a <b ,A =30°<90°. 又因为b sin A =6sin 30°=3,a >b sin A , 所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°.当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3. 能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2.∴sin(π4+B )=1.又0<B <π,∴B =π4.由正弦定理,得sin A =a sin Bb=2³222=12.又a <b ,∴A <B ,∴A =π6.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围. 解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧B <90°,2B <90°,180°-3B <90°,∴30°<B <45°.由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3),故a b的取值范围是(2,3).1.利用正弦定理可以解决两类有关三角形的问题:1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =c sin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 答案 D2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin Ccos C,∴tan A =tan B =tan C ,∴A =B =C .3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10) D.⎝⎛⎦⎥⎤0,403答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C .∴0<c ≤403.4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 答案 A解析 由a =2b cos C 得,sin A =2sin B cos C , ∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C , ∴sin(B -C )=0,∴B =C .5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .6∶5∶4B .7∶5∶3C .3∶5∶7D .4∶5∶6 答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6, ∴b +c 4=c +a 5=a +b 6.令b +c 4=c +a 5=a +b 6=k (k >0),则⎩⎪⎨⎪⎧b +c =4kc +a =5k a +b =6k,解得⎩⎪⎨⎪⎧a =72kb =52kc =32k.∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1.二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.答案 2 3解析 ∵cos C =13,∴sin C =223,∴12ab sin C =43,∴b =2 3. 8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.答案 2解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B,∴sin B =12,故B =30°或150°.由a >b ,得A >B ,∴B =30°,故C =90°, 由勾股定理得c =2.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =csin C =2R =2, ∴a sin A +b 2sin B +2c sin C =2+1+4=7. 10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12³63³12sin C =183,∴sin C =12,∴c sin C =asin A=12,∴c =6.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.证明 因为在△ABC 中,a sin A =b sin B =csin C=2R ,所以左边=2R sin A -2R sin C cos B2R sin B -2R sin C cos A=sin B +C -sin C cos B sin A +C -sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A ⇔a 2sin B cos B =b 2sin A cos A ⇔4R 2sin 2 A sin B cos B =4R 2sin 2B sin A cos A⇔sin A cos A =sin B cos B ⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90° 答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°, ∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°. 14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45.所以sin A =sin(π-B -C )=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12³2³107³45=87.1.在△ABC 中,有以下结论:(1)A +B +C =π;1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+432-1322³7³43=32.∴C =π6. 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )A .1 B. 2 C .2 D .4 答案 C解析 b cos C +c cos B =b ²a 2+b 2-c 22ab +c ²c 2+a 2-b 22ac =2a 22a=a =2.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ²2a =34.5.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形 答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c , ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理.故△ABC 为直角三角形.6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C , ∴sin C =cos C , ∴C =45° . 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 答案 120°8.△ABC 中,已知a =2,b =4,C =60°,则A =________. 答案 30°解析 c 2=a 2+b 2-2ab cos C =22+42-2³2³4³cos 60° =12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a <c ,∴A <60°,A =30°.9.三角形三边长为a ,b ,a 2+ab +b 2(a >0,b >0),则最大角为________. 答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-a 2+ab +b 222ab =-12,∴θ=120°.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.解 由条件知:cos A =AB 2+AC 2-BC 22²AB ²AC =92+82-722³9³8=23,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2²AC 2²AB cos A =42+92-2³4³9³23=49 ⇒x =7.所以,所求中线长为7.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.解 (1)cos C =cos[π-(A +B )]=-cos(A +B )=-12,又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10, ∴AB =10.(3)S △ABC =12ab sin C =32.能力提升13.(2010²潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.答案 3解析 ∵cos C =BC 2+AC 2-AB 22³BC ³AC =22,∴sin C =22. ∴AD =AC ²sin C = 3.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状. 解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab,代入已知条件得 a ²b 2+c 2-a 22bc +b ²a 2+c 2-b 22ac +c ²c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4. ∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =csin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论(1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc .(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150° 答案 C解析 ∵(a +b -c )(a +b +c )=ab , ∴a 2+b 2-c 2=-ab , 即a 2+b 2-c 22ab =-12,∴cos C =-12,∴∠C =120°.2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等边三角形 答案 C解析 ∵2cos B sin A =sin C =sin(A +B ), ∴sin A cos B -cos A sin B =0, 即sin(A -B )=0,∴A =B .3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( )A .30°B .60°C .90°D .120° 答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7, 不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722³3³5=-12.∴C =120°.∴最小外角为60°.4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0. ∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 在△ABC 中,由余弦定理得, c 2=a 2+b 2-2ab cos 120° =a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab . ∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角. 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3³2=19, ∴c =19.8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1.∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2, 化简得:0<a <8.又∵a +2a -1>2a +1, ∴a >2,∴2<a <8.9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 答案 12解析 S △ABC =12AB ²AC ²sin A=12AB ²AC ²sin 60°=23, ∴AB ²AC =8,BC 2=AB 2+AC 2-2AB ²AC ²cos A=AB 2+AC 2-AB ²AC =(AB +AC )2-3AB ²AC ,∴(AB +AC )2=BC 2+3AB ²AC =49, ∴AB +AC =7,∴△ABC 的周长为12.10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________.答案 13π3解析 S △ABC =12bc sin A =34c =3,∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13, ∴a =13.∴2R =a sin A =1332=2393,∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin A -B sin C.证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ²cos B -sin Bsin C²cos A=a c ²a 2+c 2-b 22ac -b c ²b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c 2=左边. 所以a 2-b 2c 2=sin A -B sin C .12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且²=-21. (1)求△ABC 的面积; (2)若a =7,求角C .解 (1)∵ ²=-21,∴ ²=21. ∴² = ||²||²cosB = accosB = 21.∴ac=35,∵cosB =53,∴ sinB = 54. ∴S △ABC = 21acsinB = 21³35³54= 14.(2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32, ∴b =4 2.由正弦定理:c sin C =bsin B.∴sin C =c b sin B =542³45=22.∵c <b 且B 为锐角,∴C 一定是锐角. ∴C =45°. 能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π3 答案 A解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1,∴0<sin C ≤12.∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆, 则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6,∴0<C ≤π6.14.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设² =23,求a+c 的值. 解 (1)由cos B =34,得sin B =1-⎝ ⎛⎭⎪⎫342=74.由b 2=ac 及正弦定理得sin 2B =sin A sinC .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin A +C sin 2B =sin B sin 2B =1sin B =477. (2)由BA ² =23得ca ²cosB = 23由cos B =34,可得ca =2,即b 2=2.由余弦定理:b 2=a 2+c 2-2ac ²cos B ,得a 2+c 2=b 2+2ac ²cos B =5,∴(a +c )2=a 2+c 2+2ac=5+4=9,∴a +c =3.§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°. 由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45°解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ²sin∠ACBsin ∠ABC =50³2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )²6x cos 120°=28x 2-20x +100=28(x 2-57x )+100=28⎝ ⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小. 二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得 ∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BCsin ∠CAB=ABsin ∠ACB∴BC =1sin 60°²sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ²sin 75°=6-223²6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB=126³2232=24(n mile). (2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ²AC ²cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ²BC ²cos 45°=34+616-2³32³64³22=38, ∴AB =64(km). 答 河对岸A 、B 两点间距离为64km. 能力提升 13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得:(20t )2+402-2³20t ³40²cos 45°=302.化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1²t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2, 由已知A 2B 2=102,A 1A 2=302³2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1²A 1B 2²cos 45°=202+(102)2-2³20³102³22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220³60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解. 2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.§1.2 应用举例(二)课时目标1.利用正、余弦定理解决生产实践中的有关高度的问题.2.利用正、余弦定理及三角形面积公式解决三角形中的几何度量问题.1.仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线上方时叫仰角,目标视线在水平线下方时叫俯角.(如图所示)2.已知△ABC 的两边a 、b 及其夹角C ,则△ABC 的面积为12ab sin C .一、选择题1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( ) A .α>β B .α=βC .α<βD .α+β=90° 答案 B2.设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )A .20 3 m ,4033 mB .10 3 m,20 3 mC .10(3-2) m,20 3 m D.152 3 m ,2033 m解析 h 甲=20tan 60°=203(m).h 乙=20tan 60°-20tan 30°=4033(m).3.如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )A .30+30 3 mB .30+153mC .15+303mD .15+33m 答案 A解析 在△PAB 中,由正弦定理可得60sin 45°-30°=PBsin 30°,PB =60³12sin 15°=30sin 15°,h =PB sin 45°=(30+303)m.4.从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.2h 米 C.3h 米 D .22h 米答案 A解析 如图所示, BC =3h ,AC =h ,∴AB =3h 2+h 2=2h .5.在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )A .200 mB .300 mC .400 mD .100 3 m 答案 B解析 如图所示,600²sin 2θ=2003²sin 4θ,∴cos 2θ=32,∴θ=15°, ∴h =2003²sin 4θ=300 (m).6.平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( ) A .16 B .17.5 C .18 D .18.53解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b 2-2ab cos α=17, a 2+b 2-2ab cos(180°-α)=65.解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35,∴S ▱ABCD =ab sin α=16. 二、填空题7.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.答案 北偏东30° 3a 解析如图所示,设到C 点甲船追上乙船, 乙到C 地用的时间为t ,乙船速度为v , 则BC =tv ,AC =3tv ,B =120°, 由正弦定理知BC sin ∠CAB =ACsin B,∴1sin ∠CAB =3sin 120°,∴sin ∠CAB =12,∴∠CAB =30°,∴∠ACB =30°,∴BC =AB =a ,∴AC 2=AB 2+BC 2-2AB ²BC cos 120°=a 2+a 2-2a 2²⎝ ⎛⎭⎪⎫-12=3a 2,∴AC =3a .8.△ABC 中,已知A =60°,AB ∶AC =8∶5,面积为103,则其周长为________. 答案 20解析 设AB =8k ,AC =5k ,k >0,则 S =12AB ²AC ²sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理: BC 2=AB 2+AC 2-2AB ²AC ²cos A=82+52-2³8³5³12=49.∴BC =7,∴周长为:AB +BC +CA =20.9.已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.答案 27π5解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12, 由余弦定理得:cos A =b 2+c 2-a 22bc =122+122-622³12³12=78,∴sin A =1-⎝ ⎛⎭⎪⎫782=158.由12(a +b +c )²r =12bc sin A 得r =3155. ∴S 内切圆=πr 2=27π5.10.某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东105°方向,以每小时9 n mile 的速度向一小岛靠近,舰艇时速21 n mile ,则舰艇到达渔船的最短时间是______小时.答案 23解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2³10³9t cos 120°,解得t =23或t =-512(舍).三、解答题11.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求山高CD .解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,∠BAC =α-β,∠CAD =β.根据正弦定理得:AC sin ∠ABC =BCsin ∠BAC,即AC sin 90°-α=BCsin α-β,∴AC =BC cos αsin α-β=h cos αsin α-β. 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin α-β. 即山高CD 为h cos αsin βsin α-β.12.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求圆内接四边形ABCD 的面积.解连接BD ,则四边形面积S =S △ABD +S △CBD =12AB ²AD ²sin A +12BC ²CD ²sin C .∵A +C =180°,∴sin A =sin C .∴S =12(AB ²AD +BC ²CD )²sin A =16sin A .由余弦定理:在△ABD 中,BD 2=22+42-2³2³4cos A =20-16cos A ,在△CDB 中,BD 2=42+62-2³4³6cos C =52-48cos C , ∴20-16cos A =52-48cos C .又cos C =-cos A ,∴cos A =-12.∴A =120°.∴四边形ABCD 的面积S =16sin A =8 3. 能力提升13.如图所示,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解 作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),EF =BE -FC 2+BC 2=902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得cos ∠DEF =DE 2+EF 2-DF 22DE ²EF=1302+1502-102³2982³130³150=1665.即∠DEF 的余弦值为1665.14.江岸边有一炮台高30 m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.解 如图所示:∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30, ∴BC =30,BD =30tan 30°=30 3. 在△BCD 中,CD 2=BC 2+BD 2-2BC ²BD ²cos 30°=900, ∴CD =30,即两船相距30 m.1.测量底部不可到达的建筑物的高度问题.由于底部不可到达,这类问题不能直接用解直角三角形的方法解决,但常用正弦定理和余弦定理,计算出建筑物顶部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.2.测量角度就是在三角形内利用正弦定理和余弦定理求角的正弦值或余弦值,再根据需要求出所求的角.第一章 解三角形 复习课课时目标1.掌握正弦定理、余弦定理的内容,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135°C .45°D .以上答案都不对 答案 C解析 sin B =b ²sin A a =22,且b <a ,∴B =45°.2.在△ABC 中,已知cos A cos B >sin A sin B ,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 答案 C解析 cos A cos B >sin A sin B ⇔cos(A +B )>0, ∴A +B <90°,∴C >90°,C 为钝角.3.已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k ,则k 的取值范围是( ) A .(2,+∞) B .(-∞,0) C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 由正弦定理得:a =mk ,b =m (k +1), c =2mk (m >0), ∵⎩⎪⎨⎪⎧ a +b >c a +c >b 即⎩⎪⎨⎪⎧m 2k +1>2mk 3mk >m k +1,∴k >12.4.如图所示,D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A 点的仰角分别是β、α(β<α).则A 点离地面的高AB 等于( )A.a sin αsin βsin α-β B.a sin αsin βcos α-β C.a sin αcos βsin α-β D.a cos αcos βcos α-β 答案 A解析 设AB =h ,则AD =hsin α,在△ACD 中,∵∠CAD =α-β,∴CD sin α-β=ADsin β.∴a sin α-β=h sin αsin β,∴h =a sin αsin βsin α-β. 5.在△ABC 中,A =60°,AC =16,面积为2203,那么BC 的长度为( ) A .25 B .51 C .49 3 D .49 答案 D解析 S △ABC =12AC ²AB ²sin 60°=12³16³AB ³32=2203,∴AB =55.∴BC 2=AB 2+AC 2-2AB ²AC cos 60°=552+162-2³16³55³12=2 401.∴BC =49.6.(2010²天津)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A 等于( )A .30°B .60°C .120°D .150° 答案 A解析 由sin C =23sin B ,根据正弦定理,得 c =23b ,把它代入a 2-b 2=3bc 得 a 2-b =6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ²23b=6b243b2=32. 又∵0°<A <180°,∴A =30°. 二、填空题7.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x -6=0的根,则此三角形的面积是________cm 2.答案 6解析 由5x 2-7x -6=0,解得x 1=-35,x 2=2.∵x 2=2>1,不合题意.∴设夹角为θ,则cos θ=-35,得sin θ=45,∴S =12³3³5³45=6 (cm 2).8.在△ABC 中,A =60°,b =1,S △ABC =3,则asin A =____________.答案2393 解析 由S =12bc sin A =12³1³c ³32=3,∴c =4.∴a =b 2+c 2-2bc cos A =12+42-2³1³4cos 60°=13.∴a sin A =13sin 60°=2393. 9.在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是 ______________. 答案 2<x <2 2解析 因为三角形有两解,所以a sin B <b <a ,即22x <2<x ,∴2<x <2 2. 10.一艘船以20 km/h 的速度向正北航行,船在A 处看见灯塔B 在船的东北方向,1 h 后船在C 处看见灯塔B 在船的北偏东75°的方向上,这时船与灯塔的距离BC 等于________km.答案 20 2。

人教版必修5知识点第1章解三角形2(面积公式)有答案

人教版必修5知识点第1章解三角形2(面积公式)有答案

人教版数学必修5知识点总结第一章解三角形—面积公式一、面积公式1.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=7,b=5,c=8,则△ABC的面积S等于()A. 10B. 10√3C. 20D. 20√32.已知△ABC的面积为√3,且∠C=30∘,BC=2√3,则AB等于()A. 1B. √3C. 2D. 2√33.在△ABC中,内角A,B,C的对边分别为a,b,c,a=3√2,b=2√3,cosC=13,则△ABC的面积为()A. 3√3B. 2√3C. 4√3D. √34.△ABC中,a.b.c分别为∠A.∠B.∠C的对边,如果a.b.c成等差数列,∠B=30∘,△ABC的面积为32,那么b等于()A. 1+√32B. 1+√3 C. 2+√32D. 2+√35.在△ABC中,角A,B,C所对的边分别为a,b,c,cos2A=sinA,bc=2,则△ABC的面积为()A. 12B. 14C. 1D. 26.设△ABC的内角A,B,C的对边分别为a,b,c.已知a=2√2,cosA=34,sinB=2sinC,则△ABC的面积是()A. √7B. √74C. 165D. 857.在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=1,2b−√3c=2acosC,sinC=√32,则△ABC的面积为()A. √32B. √34C. √32或√34D. √3或√32二、面积公式与余弦定理8.△ABC中,角A,B,C所对边a,b,c,若a=3,C=120∘,△ABC的面积S=15√34,则c=()A. 5B. 6C. √39D. 79.在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a−b)2+6,C=π3,则△ABC的面积是()A. √3B. 9√32C. 3√32D. 3√310.在△ABC中,角A,B,C所对应的边分别为a,b,c,若角A,B,C依次成等差数列,且a=1,b=√3,则S△ABC=()A. √2B. √3C. √32D. 211.在△ABC中,已知BC=1,B=π3,△ABC的面积为√3,则AC的长为()A. 3B. √13C. √21D. √5712.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3√3,则BC的长是______.13.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60∘,b=4,S△ABC=4√3,则a=______ .14.已知△ABC的面积为4√33,AC=3,B=60∘,则△ABC的周长为______ .15.在△ABC中,角A,B,C的对边分别为a,b,c,且其面积S=a2+b2−c24√3,则角C=______.16.△ABC的内角A,B,C的对边分别为a,b,c.已知sinA+√3cosA=0,a=2√7,b=2(Ⅰ)求c;(Ⅱ)设D为BC边上一点,且AD⊥AC,求△ABD的面积.17.△ABC的内角A、B、C所对的边分别是,a、b、c,△ABC的面积S=√32AB⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ .(Ⅰ)求A的大小;(Ⅱ)若b+c=5,a=√7,求△ABC的面积的大小.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos A2=2√55,AB⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =3.(1)求△ABC的面积;(2)若b+c=6,求a的值.三、正余弦定理,面积公式综合19.在△ABC中,A=60∘,b=1,S△ABC=√3,则csinC=()A. 8√381B. 2√393C. 26√33D. 2√720.在△ABC中,a=1,B=45∘,S△ABC=2,则△ABC的外接圆的直径为()A. 5√22B. 5C. 5√2D. 6√221.在△ABC中,A=30∘,AB=2,且△ABC的面积为√3,则△ABC外接圆的半径为()A. 2√33B. 4√33C. 2D. 422.a,b,c是非直角△ABC中角A、B、C的对边,且sin2A+sin2B−sin2C=absinAsinBsin2C,则△ABC的面积为()A. 12B. 1C. 2D. 423.在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知sinBsinCsinA =3√72,b=4a,a+c=5,则△ABC的面积为______.24.设△ABC三个内角A,B,C所对的边分别为a,b,c,若a2sinC=4sinA,(ca+cb)(sinA−sinB)=sinC(2√7−c2),则△ABC的面积为______ .25.在△ABC中,角A,B,C所对的边分别为a,b,c,asinB=√2sinC,cosC=13,△ABC的面积为4,则c=______.26.如图,在平面四边形ABCD中,△ACD的面积为√3,AB=2,BC=√3−1,∠ABC=120∘,∠BCD=135∘,则AD=______.27.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为a2.3sinA(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.28.已知a,b,c分别是△ABC内角A,B,C的对边,且满足(b−c)2=a2−bc.(1)求角A的大小;(2)若a=3,sinC=2sinB,求△ABC的面积.29.如图,在梯形ABCD中,已知AD//BC,AD=1,BD=2√10,∠CAD=π,tan∠ADC=−2,求:4(1)CD的长;(2)△BCD的面积.30. 在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2b −c)cosA −acosC =0(1)求角A .(2)若边长a =√3,且△ABC 的面积是3√34,求边长b 及c .31. 如图,在△ABC 中,点P 在BC 边上,∠PAC =60∘,PC =2,AP +AC =4.(Ⅰ) 求∠ACP ;(Ⅱ) 若△APB 的面积是3√32,求sin∠BAP .32. 如图,在△ABC 中,B =π4,角A 的平分线AD 交BC 于点D ,设∠BAD =α,sinα=√55. (Ⅰ)求sinC ; (Ⅱ)若BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =28,求AC 的长.33.△ABC的内角A、B、C的对边分别为a、b、c,已知△ABC的面积为accosB,BC的中点为D.(Ⅰ)求cosB的值;(Ⅱ)若c=2,asinA=5csinC,求AD的长.34.在△ABC中,a,b,c分别为内角A,B,C的对边,2bsinB=(2a+c)sinA+(2c+a)sinC.(Ⅰ)求B的大小;(Ⅱ)若b=√3,A=π,求△ABC的面积.435.已知a、b、c分别为△ABC三个内角A、B、C的对边,c=√3asinC−ccosA.(1)求A;(2)若a=2,△ABC的面积为√3,求b、c.36.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=2,cosB=3.5(1)若b=4,求sinA的值;(2)若△ABC的面积S△ABC=4,求b、c的值.37.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足b2+c2−a2=2bcsin(B+C).(1)求角A的大小;(2)若a=2,B=π,求△ABC的面积.3c.38.在△ABC中,角A,B,C所对的边分別为a,b,c,且asinAcosC+csinAcosA=13(1)若c=1,sinC=1,求△ABC的面积S;3(2)若D是AC的中点,且cosB=2√5,BD=√26,求△ABC的最短边的边长.539.在△ABC中,角A,B,C所对的边长分别为a,b,c,且满足csinB=√3bcosC,a2−c2=2b2(Ⅰ)求C的大小;(Ⅱ)若△ABC的面积为21√3,求b的值.40.已知a,b,c分别为△ABC三个内角A,B,C的对边,且acosC+√3asinC=b+c.(1)求A;(2)若a=√7,△ABC的面积为3√3,求b与c的值.241.已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若acosC+ccosA=−2bcosA.(1)求角A的值;(2)若a=2√3,b+c=4,求△ABC的面积.42.设△ABC的角A,B,C所对边的长分别为a,b,c,且2bcosA=acosC+ccosA.(1)求角A的大小;(2)若a=2,b+c=4,求△ABC的面积.43.如图,在△ABC中,点D在BC边上,∠ADC=60∘,CD=2.(Ⅰ)若AD=BD=3,求△ABC的面积;(Ⅱ)若AD=2,BD=4,求sinB的值.44.设钝角△ABC的内角A,B,C的对边分别为a,b,c,满足2asinA=(2b−√3c)sinB+(2c−√3b)sinC.(Ⅰ)求角A的大小;(Ⅱ)若a=2,b=2√3,求△ABC的面积.45.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.(1)求角A的大小;(2)若a=√3,c=2,求△ABC的面积.46.如图,在△ABC中,点D在BC边上,∠ADC=60∘,AB=2√7,BD=4.(1)求▵ABD的面积.(2)若∠BAC=120∘,求AC的长.47.在▵ABC,角A,B,C所对的边分别为a,b,c,且bcosA−ccosB=(c−a)cosB.(1)求角B的值;(2)若▵ABC的面积为3√3,b=√13,求a+c的值.48.△ABC的内角A,B,C的对边分别为a,b,c,sin2A=2sin2B,c=2b.(1)求cosB;(2)若△ABC的面积为√7,求△ABC的周长.人教版数学必修5知识点总结(教师版)第一章 解三角形—面积公式一、 面积公式1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =7,b =5,c =8,则△ABC 的面积S 等于( B ) A. 10 B. 10√3 C. 20 D. 20√3 2. 已知△ABC 的面积为√3,且∠C =30∘,BC =2√3,则AB 等于( C )A. 1B. √3C. 2D. 2√33. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =3√2,b =2√3,cosC =13,则△ABC 的面积为( C ) A. 3√3B. 2√3C. 4√3D. √34. △ABC 中,a.b.c 分别为∠A.∠B.∠C 的对边,如果a.b.c 成等差数列,∠B =30∘,△ABC 的面积为32,那么b 等于( B )A. 1+√32B. 1+√3C. 2+√32D. 2+√35. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos2A =sinA ,bc =2,则△ABC 的面积为( A )A. 12B. 14C. 1D. 26. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知a =2√2,cosA =34,sinB =2sinC ,则△ABC 的面积是( A )A. √7B. √74C. 165 D. 85【解析】∵a =2√2,cosA =34,sinB =2sinC ,可得:b =2c.sinA =√1−cos 2A =√74, ∴由a 2=b 2+c 2−2bccosA ,可得:8=4c 2+c 2−3c 2,解得c =2,b =4. ∴S △ABC =12bcsinA =12×2×4×√74=√7.故选A .7. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,2b −√3c =2acosC ,sinC =√32,则△ABC 的面积为( C )A. √32B. √34C. √32或√34D. √3或√32【解析】∵2b −√3c =2acosC ,∴由正弦定理可得2sinB −√3sinC =2sinAcosC ,∴2sin(A +C)−√3sinC =2sinAcosC ,∴2cosAsinC =√3sinC , ∴cosA =√32∴A =30∘,∵sinC =√32,∴C =60∘或120∘A =30∘,C =60∘,B =90∘,a =1,∴△ABC 的面积为12×1×2×√32=√32,A =30∘,C =120∘,B =30∘,a =1,∴△ABC 的面积为12×1×1×√32=√34,故选:C .二、面积公式与余弦定理8.△ABC中,角A,B,C所对边a,b,c,若a=3,C=120∘,△ABC的面积S=15√34,则c=( D )A. 5B. 6C. √39D. 79.在△ABC中,内角A,B,C所对的边分别是a,b,c,若c2=(a−b)2+6,C=π3,则△ABC的面积是( C )A. √3B. 9√32C. 3√32D. 3√310.在△ABC中,角A,B,C所对应的边分别为a,b,c,若角A,B,C依次成等差数列,且a=1,b=√3,则S△ABC=( C )A. √2B. √3C. √32D. 2【解析】∵A、B、C依次成等差数列,∴B=60∘∴由余弦定理得:b2=a2+c2−2accosB,得:c=2∴由三角形面积公式得:S△ABC=12acsinB=√32,故选C.11.在△ABC中,已知BC=1,B=π3,△ABC的面积为√3,则AC的长为( B )A. 3B. √13C. √21D. √57【解析】解:∵BC=1,B=π3,△ABC的面积为√3=12BC⋅AB⋅sinB=12×AB×1×√32,∴AB=4,∴AC=√AB2+BC2−2AB⋅BC⋅cosB=√16+1−2×4×1×12=√13.故选:B.12.在锐角△ABC中,AB=3,AC=4,若△ABC的面积为3√3,则BC的长是______.【答案】√1313.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60∘,b=4,S△ABC=4√3,则a=______ .【答案】4【解析】解1:∵A=60∘,b=4,S△ABC=4√3=12bcsinA=12×4×c×√32,∴解得c=4,由b=c=4,且A=60∘有∆ABC是等边三角形,故a=4解2:a=√b2+c2−2bccosA=√42+42−2×4×4×12=4.故答案为:4.14.已知△ABC的面积为4√33,AC=3,B=60∘,则△ABC的周长为______ .【答案】8【解析】由三角形面积公式可知12acsin60∘=4√33,ac=163,由余弦定理可知:b2=a2+c2−2ac⋅cos60,即9=a2+c2−ac,可得:a2+c2=433,推出(a+c)2=25,则:a+c=5,所以周长:a+c+b=5+3=8.故答案为:8.15.在△ABC中,角A,B,C的对边分别为a,b,c,且其面积S=2224√3,则角C=______.【答案】616. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sinA +√3cosA =0,a =2√7,b =2(Ⅰ)求c ;(Ⅱ)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【解析】(Ⅰ)∵sinA +√3cosA =0,∴tanA =−√3, ∵0<A <π,∴A =2π3,由余弦定理可得a 2=b 2+c 2−2bccosA ,即28=4+c 2−2×2c ×(−12),即c 2+2c −24=0, 解得c =−6(舍去)或c =4,故c =4. (Ⅱ)∵c 2=b 2+a 2−2abcosC ,∴16=28+4−2×2√7×2×cosC ,∴cosC =2√7,∴CD =ACcosC =22√7=√7∴CD =12BC ,∵S △ABC =12AB ⋅AC ⋅sin∠BAC =12×4×2×√32=2√3,∴S △ABD =12S △ABC =√3.17. △ABC 的内角A 、B 、C 所对的边分别是,a 、b 、c ,△ABC 的面积S =√32AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ . (Ⅰ)求A 的大小;(Ⅱ)若b +c =5,a =√7,求△ABC 的面积的大小.【解析】(Ⅰ)∵S =√32AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =√32bccosA , 又∵S =12bcsinA ,可得:tanA =√3,∴由A ∈(0,π),可得:A =π3 (Ⅱ)∵由余弦定理a 2=b 2+c 2−2bccosA ,可得:7=b 2+c 2−bc ,∴可得:(b +c)2−3bc =7,∴由b +c =5,可得:bc =6,∴△ABC 的面积S =12bcsinA =3√3218. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=2√55,AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =3. (1)求△ABC 的面积;(2)若b +c =6,求a 的值. 【解析】(1)因为cos A2=2√55,所以cosA =2cos 2A 2−1=35,sinA =45.又由AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =3得bccosA =3,所以bc =5因此S △ABC =12bcsinA =2. (2)由(1)知,bc =5,又b +c =6,由余弦定理,得a 2=b 2+c 2−2bccosA =(b +c)2−165bc =20,所以a =2√5.三、 正余弦定理,面积公式综合19. 在△ABC 中,A =60∘,b =1,S △ABC =√3,则csinC =( B )A. 8√381B. 2√393C. 26√33D. 2√7【解析】△ABC 中,A =60∘,b =1,S ∆ABC =√3,∴12bcsinA =12×1×c ×sin60∘=√3, 解得c =4;∴a 2=b 2+c 2−2bccosA =12+42−2×1×4×cos60∘=13,∴a =√13; ∴c sinC=a sinA=√13√32=2√393.故选B .20. 在△ABC 中,a =1,B =45∘,S △ABC =2,则△ABC 的外接圆的直径为( C )A. 5√22B. 5C. 5√2D. 6√221. 在△ABC 中,A =30∘,AB =2,且△ABC 的面积为√3,则△ABC 外接圆的半径为( C )A. 2√33B. 4√33C. 2D. 4【解析】在△ABC 中,由A =30∘,c =AB =2,得到S △ABC =12bcsinA =12b ×2×12=√3, 解得b =2√3,根据余弦定理得:a 2=12+4−2×2√3×2×√32=4,解得a =2,根据正弦定理得:asinA =2R(R 为外接圆半径),则R =22×12=2.故选C .22. a ,b ,c 是非直角△ABC 中角A 、B 、C 的对边,且sin 2A +sin 2B −sin 2C =absinAsinBsin2C ,则△ABC的面积为( A )A. 12B. 1C. 2D. 4【解析】∵sin 2A +sin 2B −sin 2C =absinAsinBsin2C ,∴由正弦定理可得:a 2+b 2−c 2=2a 2b 2sinCcosC ,∴2abcosC =12absinC ⋅4abcosC , ∵cosC ≠0,∴S △ABC =12absinC =2abcosC4abcosC =12.故选:A .23. 在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sinBsinC sinA =3√72,b =4a ,a +c =5,则△ABC 的面积为______.【答案】3√74【解析】由正弦定理及sinBsinC sinA =3√72,得bsinC a =3√72, 又B =4α,∴sinC = 3√78,∵△ABC 为锐角三角形,∴cosC = 18,∴cosC ==a 2+b 2−c 22ab =a 2+(4a)2−(5−a)22a×4a,18解得A =1,B =4,c =4,∴S △ABC = 12absinC = 12×1×4×3√78= 3√74。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修5__第一章_解三角形复习知识点总结与练习高中数学必修5第一章解三角形复习一、知识点总结【正弦定理】1.正弦定理:ainAbinBcinC2RR为三角形外接圆的半径2正弦定理的一些变式:iabcinAinBinC;iiinAa2R,inBb2R,inCc2R;2Riiia2RinA,b2RinB,b2RinC;(4)3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角abcinAinBinC(2)已知两边和其中一边的对角,求其他边角(可能有一解,两解,无解)中,已知a,b及A时,解得情况:解法一:利用正弦定理计算解法二:图形一解两解一解一解无解A 为锐角A为钝角或直角关系式解的个数【余弦定理】a2b2c22bccoA2221.余弦定理:bac2accoB2推论:设a、b、c是C的角、、C的对边,则:①若abc,则C90;②若abc,则C90;③若abc,则C90.3两类余弦定理解三角形的问题:(1)已知三边求三角(2)已知两边和他们的夹角,求第三边和其他两角12222222【面积公式】已知三角形的三边为a,b,c,1.S1aha1abinC1rabc(其中r为三角形内切圆半径)12abc,S/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时到达C点观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?扩展阅读:高中数学必修5第一章解三角形知识点复习及经典练习高中数学必修五第一章解三角形知识点复习及经典练习一、知识点总结abc2R或变形:a:b:cinA:inB:inC1.正弦定理:inAinBinC推论:①定理:若α、β>0,且αβ<,则α≤βinin,等号当且当α=β时成立。

②判断三角解时,可以利用如下原理:inA>inBA>Ba>bcoAcoBAB(co在0,上单调递减)b2c2a2coA2bca2b2c22bccoA2a2c2b2222.余弦定理:bac2accoB或coB2acc2b2a22bacoCb2a2c2coC2ab3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题:1、已知三边求三角2、已知两边和他们的夹角,求第三边和其他两角4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5.三角形中的基本关系:inABinC,coABcoC,tanABtanC,in已知条件一边和两角(如a、B、C)ABCABCABCco,coin,tancot222222一般解法由ABC=180,求角A,由正弦定理求出b与c,在有解时有一解。

定理应用正弦定理两边和夹角如a、b、c余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由ABC=180求出另一角,在有解时有一解。

三边如a、b、c余弦定理由余弦定理求出角A、B,再利用ABC=180,求出角C在有解时只有一解。

解三角形[基础训练A组]一、选择题1.在△ABC中,若C900,a6,B300,则cb等于()A.1B.1C.23D.232.若A为△ABC的内角,则下列函数中一定取正值的是()A.inAB.coAC.tanAD.1tanA3.在△ABC中,角A,B均为锐角,且coAinB,则△ABC 的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为60,则底边长为()A.2B.03C.3D.2325.在△ABC中,若b2ainB,则A等于()A.30或60B.45或60C.120或60D.30或1506.边长为5,7,8的三角形的最大角与最小角的和是()A.90B.120C.135D.150000000000000二、填空题01.在Rt△ABC中,C90,则inAinB的最大值是_______________。

2.在△ABC中,若abbcc,则A_________。

3.在△ABC中,若b2,B30,C135,则a_________。

4.在△ABC中,若inA∶inB∶inC7∶8∶13,则C_____________。

5.在△ABC中,AB0022262,C300,则ACBC的最大值是________。

三、解答题1.在△ABC中,若acoAbcoBccoC,则△ABC的形状是什么?abcoBcoAcbaba3.在锐角△ABC中,求证:inAinBinCcoAcoBcoC。

2.在△ABC中,求证:4.在△ABC中,设ac2b,AC3,求inB的值。

解三角形[综合训练B组]一、选择题1.在△ABC中,A:B:C1:2:3,则a:b:c等于()A.1:2:3B.3:2:1C.1:3:2D.2:3:12.在△ABC中,若角B为钝角,则inBinA的值()A大于零B小于零C等于零D不能确定3.在△ABC中,若A2B,则a等于()A.2binAB.2bcoAC.2binBD.2bcoB4.在△ABC中,若ginAgcoBginCg2,则△ABC的形状是()A.直角三角形B.等边三角形C.不能确定D.等腰三角形5.在△ABC中,若abcbca3bc,则AA.90B.60C.135D.1506.在△ABC中,若a7,b8,coC0000131111,则最大角的余弦是()A.B.C.D.1457.在△ABC中,若tanABa2bab,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题1.若在△ABC中,A600,b1,SABC3,则abcinAinBinC=_______。

2.若A,B是锐角三角形的两内角,则tanAtanB_____1(填>或ab等于()cABABABABA.2coB.2coC.2inD.2in22222.在△ABC中,若C900,则三边的比3.在△ABC中,若a7,b3,c8,则其面积等于()A.12B.21C.28D.63204.在△ABC中,C90,0A45,则下列各式中正确的是()00A.inAcoAB.inBcoAC.inAcoBD.inBcoB5.在△ABC中,若acacbbc,则A()A.90B.60C.120D.1500000tanAa22,则△ABC的形状是()6.在△ABC中,若tanBbA.直角三角形B.等腰或直角三角形C.不能确定D.等腰三角形二、填空题1.在△ABC中,若inAinB,则A一定大于B,对吗?填_________(对或错)2.在△ABC中,若coAcoBcoC1,则△ABC的形状是______________。

3.在△ABC中,∠C是钝角,设inC,inAinB,coAcoB,则,,的大小关系是___________________________。

4.在△ABC中,若ac2b,则coAcoCcoAcoC2221inAinC______。

35.在△ABC中,若2gtanBgtanAgtanC,则B的取值范围是_______________。

6.在△ABC中,若bac,则coACcoBco2B的值是_________。

2三、解答题1.在△ABC中,若abinABabinAB,请判断三角形的形状。

2.如果△ABC内接于半径为R的圆,且2Rin2Ain2C2abinB,求△ABC的面积的最大值。

22223.已知△ABC的三边abc且ac2b,AC2,求a:b:c4.在△ABC中,若abcabc3ac,且tanAtanC33,AB边上的高为43,求角A,B,C的大小与边a,b,c的长[基础训练A组]一、选择题30,batan3023,c2b44,,4D作出图形,inB2inAinB,inA2AinB,2A,B都是锐角,则2AB,AB2,C21,A300或150025282721,600,180********为所求6B设中间角为,则co2582二、填空题,15,0abbinA62,∶b∶cinA∶inB∶inC7∶8∶13,a2b2c21,C1200令a7,b8,c13coC2ab2ACBCABACBCAB,,ACBCinBinAinCinBinAinCABAB2 62inAinB462inco22AB4co4,ACBCma42三、解答题541.解:acoAbcoBccoC,inAcoAinBcoBinCcoCin2Ain2Bin2C,2inABcoAB2inCcoCcoABcoAB,2coAcoB0coA0或coB0,得A所以△ABC是直角三角形。

2或B2a2c2b2b2c2a22证明:将coB,coA代入右边2ac2bca2c2b2b2c2a22a22b2得右边c2abc2abc2aba2b2ab左边,abba∴abcoBcoAcbaba3.证明:∵△ABC是锐角三角形,∴AB∴inAin2,即2A2B0B,即inAcoB;同理inBcoC;inCcoA2∴inA inBinCcoAcoBcoCACACBBco4inco,4解:∵ac2b,∴inAinC2inB,即2in2222∴inBB1AC3B13,而0,∴co,co22222424∴inB2inBB31339co222448[综合训练B组]一、选择题1.CA6,B3,C2,a:b:cinA:inB:inC132::1:3:,AB,且A,B都是锐角,inAinB,2,2,inA2coBinCcoBinCcoBinCinBC2coBinC,inBcoCcoBinC0,inBC0,BC,等腰三角形5Babcbca3bc,bca3bc,22b2c2a21A,bca3bc,9,c3,B为最大角,coB22217ABABinABabinAinB22,ABAB2,tanAB0,或tanAB1tanAB222tan2所以AB或AB2tan二、填空题1113239SABCbcinAc22233c,a42,a13,13abca13239inAinBinCinA332inB,AB,即tanAtanB222coB2coB11,tanAtanB1,coBcoCinBcoCcoBinCinBC为最大角,coC0,C为锐角62223122222222a2b2c6.5,13a2c2bc2b2a13c2222,4c9,5c13, 5c1322c942三、解答题1.解:SABC21bcinA3,bc4,22abc2bcoA,b所以b1,c42c,而5cb2.证明:∵△ABC是锐角三角形,∴AB∴inAin2,即2A2B02B,即inAcoB;同理inBcoC;inCcoA∴inAinBinCcoAcoBcoC,∴tanAtanBtanC13.证明:∵inAinBinC2ininAinBinC1coAcoBcoCABABcoinAB22ABABABAB2inco2inco2222ABABAB2incoco222CAB2co2coco222ABC4cococo222ABC∴inAinBinC4cococo222aba2acb2bc1,只要证1,4.证明:要证2bcacabbcacc即abcab而∵AB120,∴C6000222a2b2c22coC,ab2c22abco600ab2ab∴原式成立。

相关文档
最新文档