新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析
人教A版高中数学必修1全册课后习题(附解析)

结合全新各地模拟考试相关题目人教A版高中数学必修1全册课后习题(附解析)第一章集合与常用逻辑用语1.1集合的概念第1课时集合的概念与几种常见的数集课后巩固1.设集合A={2,4,5},B={2,4,6},若x∈A,且x∉B,则x的值为()A.2B.4C.5D.62.若a是R中的元素,但不是Q中的元素,则a可以是()A.3.14B.-5C.D.是实数,但不是有理数,故选D.3.若集合A只含有元素a,则下列各式正确的是()A.0∈AB.a∉AC.a∈AD.a=AA中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应该用“=”,故选C.4.下列对象能构成集合的是()A.高一年级全体较胖的学生B.sin 30°,sin 45°,cos 60°,1C.全体很大的自然数D.平面内到△ABC三个顶点距离相等的所有点较胖”与“很大”的标准不明确,所以A、C不能构成集合;对于B,由于sin 30°=cos 60°=,不满足集合中元素的互异性,故B错误;对于D,平面内到△ABC三个顶点距离相等的所有点,可知这个点就是△ABC外接圆的圆心,满足集合的定义,故选D.5.(多选题)下列关系正确的有()A.∈RB.∉RC.|-3|∈ND.|-|∈Q中,∈R,正确;B中,∉R,错误;C中,|-3|∈N,正确;D中,|-|∈Q,错误,所以正确的个数是两个,故选A,C.6.已知集合S中的元素a,b是一个四边形的两条对角线的长,那么这个四边形一定不是()A.梯形B.平行四边形C.矩形D.菱形,所以a≠b,即四边形对角线不相等,故选C.7.已知集合A中含有2个元素x+2和x2,若1∈A,则实数x的值为.x+2=1或x2=1,所以x=1或x=-1.当x=-1时,x+2=x2,不符合题意,所以x=-1舍去;当x=1时,x+2=3,x2=1,满足题意.故x=1.8.设P,Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是.a∈P,b∈Q,则a+b的取值分别为1,2,3,4,6,7,8,11,则组成的集合P+Q中有8个元素.9.已知集合A中含有两个元素a-3和2a-1.(1)若-3是集合A中的元素,试求实数a的值;(2)-5能否为集合A中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由.因为-3是集合A中的元素,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0,此时集合A含有两个元素-3,-1,符合要求;若-3=2a-1,则a=-1,此时集合A中含有两个元素-4,-3,符合要求.综上所述,满足题意的实数a的值为0或-1.(2)若-5为集合A中的元素,则a-3=-5,或2a-1=-5.当a-3=-5时,解得a=-2,此时2a-1=2×(-2)-1=-5,显然不满足集合中元素的互异性;当2a-1=-5时,解得a=-2,此时a-3=-5,显然不满足集合中元素的互异性.综上,-5不能为集合A中的元素.10.已知集合A中含有3个元素:x,,1,B中含有3个元素:x2,x+y,0,若A=B,则x2 017+y2 018=.A=B,∴解得则x2 017+y2 018=(-1)2 017+02 018=-1.11.设x,y,z是非零实数,若a=,则以a的值为元素的集合中元素的个数是.x,y,z都是正数时,a=4;当x,y,z都是负数时,a=-4;当x,y,z中有一个是正数另两个是负数或有两个是正数另一个是负数时,a=0.所以以a的值为元素的集合中有3个元素.12.设A是由一些实数构成的集合,若a∈A,则∈A,且1∉A.(1)若3∈A,求集合A;(2)证明:若a∈A,则1-∈A;(3)集合A中能否只有一个元素?若能,求出集合A;若不能,说明理由.3∈A,∴=-∈A,∴∈A,∴=3∈A,∴A=.a∈A,∴∈A,∴=1-∈A.A只有一个元素,记A={a},则a=,即a2-a+1=0有且只有一个实数解.∵Δ=(-1)2-4=-3<0,∴a2-a+1=0无实数解.这与a2-a+1=0有且只有一个实数解相矛盾,故假设不成立,即集合A中不能只有一个元素.第2课时集合的表示课后巩固1.已知集合A={x|x(x+4)=0},则下列结论正确的是()A.0∈AB.-4∉AC.4∈AD.2∈AA={x|x(x+4)=0}={0,-4},∴0∈A.2.一次函数y=x+2和y=-2x+8的交点组成的集合是()A.{2,4}B.{x=2,y=4}C.(2,4)D.{(x,y)|x=2且y=4}解得∴一次函数y=x+2与y=-2x+8的图象的交点为(2,4),∴组成的集合是{(x,y)|x=2且y=4}.3.集合用描述法可表示为()A. B.C. D.3,,即,从中发现规律,x=,n∈N*,故可用描述法表示为.4.已知集合A=m y=∈N,m∈N,用列举法表示集合A=.集合A=m y=∈N,m∈N,∴A={1,2,4}.5.(一题多空题)设集合A={x|x2-3x+a=0},若4∈A,则a=,集合A用列举法表示为.4∈A,∴16-12+a=0,∴a=-4,∴A={x|x2-3x-4=0}={-1,4}.6.用列举法表示下列集合:(1)方程组的解集;(2)不大于10的非负奇数集;(3)A=.由故方程组的解集为{(2,1)}.(2)不大于10,即小于或等于10,非负是大于或等于0,故不大于10的非负奇数集为{1,3,5,7,9}.(3)由式子可知4-x的值为1,2,3,6,从而可以得到x的值为3,2,1,-2,所以A={-2,1,2,3}.7.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x∈Z且x<5};(4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}.绝对值不大于3的整数可以表示为{x||x|≤3,x∈Z},也可表示为{-3,-2,-1,0,1,2,3};(2){x|x=3n,n∈Z};(3)∵x=|x|,∴x≥0.∵x∈Z且x<5,∴{x|x=|x|,x∈Z且x<5}还可表示为{0,1,2,3,4};(4){-2}.(特别注意x∈Z这一约束条件)8.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合;(2)24的所有正因数组成的集合;(3)平面直角坐标系内与坐标轴的距离相等的点组成的集合.用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)在平面直角坐标系内,点(x,y)到x轴的距离为|y|,到y轴的距离为|x|,所以该集合用描述法表示为{(x,y)||y|=|x|}.能力提升1.已知集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},a∈P,b∈Q,则()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P,Q,R中的任意一个a=2m(m∈Z),b=2n+1(n∈Z),则a+b=2m+2n+1=2(m+n)+1.因为m+n∈Z,与集合Q中的元素特征x=2k+1(k∈Z)相符合,所以a+b∈Q,故选B.2.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x+y∈A},则B中所含元素的个数为.A={1,2},B={(x,y)|x∈A,y∈A,x+y∈A},所以B={(1,1)},只有一个元素.3.如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M=.(x,y)xy≥0,-2≤x≤,-1≤y≤4.已知集合A={x|ax2-3x+2=0},其中a为常数,且a∈R.(1)若A中至少有一个元素,求a的取值范围;(2)若A中至多有一个元素,求a的取值范围.当A中恰有一个元素时,若a=0,则方程化为-3x+2=0,此时关于x的方程ax2-3x+2=0只有一个实数根x=;若a≠0,则令Δ=9-8a=0,解得a=,此时关于x的方程ax2-3x+2=0有两个相等的实数根.当A中有两个元素时,则a≠0,且Δ=9-8a>0,解得a<,且a≠0,此时关于x的方程ax2-3x+2=0有两个不相等的实数根.综上,a≤时,A中至少有一个元素.(2)当A中没有元素时,则a≠0,Δ=9-8a<0,解得a>,此时关于x的方程ax2-3x+2=0没有实数根.当A中恰有一个元素时,由(1)知,此时a=0或a=.综上,a=0或a≥时,A中至多有一个元素.1.2集合间的基本关系课后巩固1.已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D.2.下列集合中表示空集的是()A.{x∈R|x+5=5}B.{x∈R|x+5>5}C.{x∈R|x2=0}D.{x∈R|x2+x+1=0}分别表示的集合为{0},{x|x>0},{0},∵x2+x+1=0无解,∴{x∈R|x2+x+1=0}表示空集.3.(多选题)下列命题中,错误的是()A.空集没有子集B.任何集合至少有两个子集C.空集是任何集合的真子集D.若⌀⫋A,则A≠⌀错,空集是任何集合的子集;B错,如⌀只有一个子集;C错,空集不是空集的真子集;D正确,因为空集是任何非空集合的真子集.4.设集合A={-1,0,1},B={a,a2},则使B⊆A成立的a的值是()A.-1B.0C.1D.-1或1B⊆A,∴∴a=-1.5.满足{1}⊆A⊆{1,2,3}的集合A的个数是()A.2B.3C.4D.8满足{1}⊆A⊆{1,2,3}的集合A为:{1},{1,2},{1,3},{1,2,3},共4个.6.设集合M={y|y=x2+1},N={x|y=x2+1},能正确表示集合M与集合N的关系的Venn图是()M={y|y=x2+1}={y|y≥1},N={x|y=x2+1}=R,∴M⫋N,对应的Venn图是D.7.集合{x|1<x<6,x∈N*}的非空真子集的个数为.{x|1<x<6,x∈N*}={2,3,4,5},有4个元素,故有非空真子集24-2=14(个).8.下列各组中的两个集合相等的所有序号是.①P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z};②P={x|x=2n-1,n∈N*},Q={x|x=2n+1,n∈N*};③P={x|x2-x=0},Q=x x=,n∈Z.中对于Q,n∈Z,所以n-1∈Z,Q表示偶数集,所以P=Q;②中P是由1,3,5,…所有正奇数组成的集合,Q是由3,5,…所有大于1的正奇数组成的集合,1∉Q,所以集合P与集合Q不相等;③中P={0,1},Q中当n为奇数时,x==0;当n为偶数时,x==1,Q={0,1},所以P=Q.9.集合A={x|-1≤x≤1},B={x|a-1≤x≤2a-1},若B⊆A,则实数a的取值范围是.B=⌀,即2a-1<a-1,即a<0时,满足B⊆A.若B≠⌀,即a-1≤2a-1,即a≥0时,要使B⊆A,则满足解得0≤a≤1.综上:a≤1.≤110.已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.B是A的子集,所以B中元素必是A中的元素,若x+2=3,则x=1,符合题意.若x+2=-x3,则x3+x+2=0,所以(x+1)(x2-x+2)=0.因为x2-x+2≠0,所以x+1=0,所以x=-1,此时x+2=1,集合B中的元素不满足互异性.综上所述,存在实数x=1,使得B是A的子集,此时A={1,3,-1},B={1,3}.能力提升1.M={x|6x2-5x+1=0},P={x|ax=1},若P⊆M,则a的取值集合为()A.{2}B.{3}C.{2,3}D.{0,2,3}{x|6x2-5x+1=0}=,P={x|ax=1}.∵P⊆M,∴P=⌀或P=或P=, ∴相应地,有a=0或a=3或a=2.∴a的取值集合为{0,2,3}.2.已知集合A=x x=(2k+1),k∈Z,B=x x=k±,k∈Z,则集合A,B之间的关系为.A,k=2n时,x=(4n+1)=,n∈Z,当k=2n-1时,x=(4n-2+1)=,n∈Z, 即集合A=x x=,n∈Z,由B=x x=,k∈Z,可知A=B.3.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},(1)若B⊆A,求实数m的取值范围.(2)当x∈Z时,求A的非空真子集个数.(3)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.当m+1>2m-1即m<2时,B=⌀,满足B⊆A.当m+1≤2m-1即m≥2时,要使B⊆A成立,需可得2≤m≤3.综上,m≤3时有B⊆A.(2)当x∈Z时,A={-2,-1,0,1,2,3,4,5},所以A的非空真子集个数为:28-2=254.(3)∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},没有元素x使x∈A与x∈B同时成立.则①若B=⌀,即m+1>2m-1,得m<2时满足条件.②若B≠⌀,则要满足条件:解得m>4.综上,有m<2或m>4.1.3集合的基本运算第1课时并集和交集课后巩固1.设集合A={0,2,4,6,8,10},B={x|2x-3<4},则A∩B=()A.{4,8}B.{0,2,6}C.{0,2}D.{2,4,6}{x|x<3.5},又A={0,2,4,6,8,10},∴A∩B={0,2}.2.已知集合M={-1,0,1,2}和N={0,1,2,3}的关系的Venn图如图所示,则阴影部分所表示的集合是()A.{0}B.{0,1}C.{0,1,2}D.{-1,0,1,2,3}M∩N={0,1,2},故选C.3.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}4.集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.4A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},∴∴a=4.故选D.5.已知集合A={x|x<1或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=.,可知a=1,b=6,∴2a-b=-4.6.已知关于x的方程3x2+px-7=0的解集为A,方程3x2-7x+q=0的解集为B,若A∩B=,求A∪B.A∩B=,∴-∈A且-∈B.由-∈A,设3x2+px-7=0的另一根为m.由根与系数的关系得m=-,解得m=7.∴A=,同理B=,∴A∪B=.7.已知集合A={x|-2<x<3},B={x|m<x<m+9}.(1)若A∪B=B,求实数m的取值范围;(2)若A∩B≠⌀,求实数m的取值范围.A∪B=B,∴A⊆B,∴解得-6≤m≤-2,∴实数m的取值范围是[-6,-2].(2)当A∩B=⌀时,3≤m或者m+9≤-2,解得m≥3或m≤-11,∴A∩B≠⌀时,-11<m<3,∴实数m的取值范围是(-11,3).能力提升1.设A={x|2≤x≤6},B={x|2a≤x≤a+3},若A∪B=A,则实数a的取值范围是()A.[1,3]B.[3,+∞)C.[1,+∞)D.(1,3)A∪B=A,∴B⊆A,当B=⌀时,2a>a+3,解得a>3;当B≠⌀时,且a≤3,解得1≤a≤3.综上,a≥1.∴实数a的取值范围是[1,+∞).2.(一题多空题)设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2},且集合A∩(B∪C)={x|a≤x≤b},则a=,b=.B∪C={x|-3<x≤4},∴A⫋(B∪C).∴A∩(B∪C)=A,由题意{x|a≤x≤b}={x|-1≤x≤2}.∴a=-1,b=2.第2课时补集及其应用课后提升1.已知全集U={1,2,3,4,5},∁U A={1,3,5},则A=()A.{1,2,3,4,5}B.{1,3,5}C.{2,4}D.⌀全集U={1,2,3,4,5},∁U A={1,3,5},∴A={2,4}.2.已知集合A={x|-1<x-3≤2},B={x|3≤x<4},则∁A B=()A.(2,3)∪(4,5)B.(2,3]∪(4,5]C.(2,3)∪[4,5]D.(2,3]∪[4,5]{x|2<x≤5},因为B={x|3≤x<4},所以∁A B=(2,3)∪[4,5].3.若全集U={1,2,3,4,5},且∁U A={x∈N|1≤x≤3},则集合A的真子集共有()A.3个B.4个C.7个D.8个A={1,2,3},所以A={4,5},其真子集有22-1=3个,故选A.U4.设全集U=R,集合A={x|x≤3},B={x|x≤6},则集合(∁U A)∩B=()A.{x|3<x≤6}B.{x|3<x<6}C.{x|3≤x<6}D.{x|3≤x≤6}U=R,集合A={x|x≤3},B={x|x≤6},则集合∁U A={x|x>3},所以(∁U A)∩B={x|3<x≤6}.5.已知全集U={1,3,5,7},集合A={1,3},B={3,5},则如图所示阴影区域表示的集合为()A.{3}B.{7}C.{3,7}D.{1,3,5},知A∪B={1,3,5},如图所示阴影区域表示的集合为∁U(A∪B)={7}.6.已知集合U={2,3,a2+2a-3},A={2,3},∁U A={5},则实数a的值为.5∈U,故得a2+2a-3=5,即a2+2a-8=0,解得a=-4或a=2.当a=-4时,U={2,3,5},A={2,3},符合题意.当a=2时,U={2,3,5},A={2,3},符合题意.所以a=-4或a=2.7.(一题多空题)设集合U=-2,,2,3,A={x|2x2-5x+2=0},B=3a,,若∁U A=B,则a=,b=.A={x|2x2-5x+2=0}=,2,∁U A=B,故B={-2,3},则3a=3,=-2,所以a=1,b=-2.-28.已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(∁U B);(4)B∩(∁U A);(5)(∁U A)∩(∁U B).①.(1)A∩B={x|0≤x<5}.(2)A∪B={x|-5<x<7}.图①(3)如图②.图②∁U B={x|x<0,或x≥7},∴A∪(∁U B)={x|x<5,或x≥7}.(4)如图③.图③∁U A={x|x≤-5,或x≥5},B∩(∁U A)={x|5≤x<7}.(5)(方法一)∵∁U B={x|x<0,或x≥7},∁U A={x|x≤-5,或x≥5},∴如图④.图④(∁U A)∩(∁U B)={x|x≤-5,或x≥7}.(方法二)(∁U A)∩(∁U B)=∁U(A∪B)={x|x≤-5,或x≥7}.9.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁R A)=R,B∩(∁R A)={x|0<x<1,或2<x<3},求集合B.A={x|1≤x≤2},∴∁R A={x|x<1,或x>2}.又B∪(∁R A)=R,A∪(∁R A)=R,可得A⊆B.而B∩(∁R A)={x|0<x<1,或2<x<3},∴{x|0<x<1,或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1,或2<x<3}={x|0<x<3}.能力提升1.设全集U={1,2,3,4,5},若A∩B={2},(∁U A)∩B={4},(∁U A)∩(∁U B)={1,5},则下列结论正确的是()A.3∉A,且3∉BB.3∉B,但3∈AC.3∉A B.3∈A,且3∈BA∩B={2},故2∈B,且2∈A,(∁U A)∩B={4},所以4∈B但4∉A,(∁U A)∩(∁U B)=∁U(A∪B)={1,5},故1∉A,1∉B且5∉A,5∉B,所以3∉B,但3∈A.2.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中的元素个数为()A.1B.2C.3D.4A={1,2},B={x|x=2a,a∈A}={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5},故选B.3.设全集U={1,2,3,4,5,6},且U的子集可表示为由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若M={2,3,6},则∁U M表示的6位字符串为;(2)已知A={1,3},B⊆U,若集合A∪B表示的字符串为101001,则满足条件的集合B的个数是.由已知得,∁U M={1,4,5},则∁U M表示的6位字符串为100110.(2)由题意可知A∪B={1,3,6},而A={1,3},B⊆U,则B可能为{6},{1,6},{3,6},{1,3,6},故满足条件的集合B的个数是4.(2)44.设U=R,集合A={x|x2-x-2=0},B={x|x2+mx+m-1=0}.(1)当m=1时,求(∁R B)∩A;(2)若(∁U A)∩B=⌀,求实数m的取值.x2-x-2=0,即(x+1)(x-2)=0,解得x=-1或x=2.故A={-1,2}.(1)当m=1时,方程x2+mx+m-1=0为x2+x=0,解得x=-1或x=0.故B={-1,0},∁R B={x|x≠-1,且x≠0}.所以(∁R B)∩A={2}.(2)由(∁U A)∩B=⌀可知,B⊆A.方程x2+mx+m-1=0的判别式Δ=m2-4×1×(m-1)=(m-2)2≥0.①当Δ=0,即m=2时,方程x2+mx+m-1=0为x2+2x+1=0,解得x=-1,故B={-1}.此时满足B⊆A.②当Δ>0,即m≠2时,方程x2+mx+m-1=0有两个不同的解,故集合B中有两个元素.又因为B⊆A,且A={-1,2},所以A=B.故-1,2为方程x2+mx+m-1=0的两个解,由根与系数之间的关系可得解得m=-1.综上,m的取值为2或-1.1.4充分条件与必要条件课后巩固1.“四边形是平行四边形”是“四边形是正方形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件“四边形是平行四边形”不一定得出“四边形是正方形”,但由“四边形是正方形”必推出“四边形是平行四边形”,故“四边形是平行四边形”是“四边形是正方形”的必要不充分条件.2.设a,b∈R,则“a>b”是“a2>b2”的()A.充分必要条件B.既不充分也不必要条件C.充分不必要条件D.必要不充分条件a=1,b=-4,满足a>b,此时a2>b2不成立;若a2>b2,如a=-4,b=1,此时a>b不成立.3.的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件当x=1,y=7时,满足但不能满足故为必要不充分条件.4.设集合A={1,a2,-2},B={2,4},则“a=2”是“A∩B={4}”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要“a=2”时,显然“A∩B={4}”;但当“A∩B={4}”时,a可以为-2,故不能推出“a=2”.5.已知p:a≠0,q:ab≠0,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≠0,不一定有ab≠0,如b=0时;但是ab≠0则一定需a≠0.6.已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,那么:(1)s是q的什么条件?(2)p是q的什么条件?∵q⇒s,s⇒r⇒q,∴s是q的充分也是必要条件.(2)∵q⇒s⇒r⇒p,∴p是q的必要条件.7.设x,y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.:如果xy=0,那么,①x=0,y≠0;②x≠0,y=0;③x=0,y=0.于是|x+y|=|x|+|y|.如果xy>0,即x>0,y>0或x<0,y<0,当x>0,y>0时,|x+y|=x+y=|x|+|y|,当x<0,y<0时,|x+y|=-x-y=(-x)+(-y)=|x|+|y|,总之,当xy≥0时,|x+y|=|x|+|y|.必要性:由|x+y|=|x|+|y|及x,y∈R,得(x+y)2=(|x|+|y|)2,即x2+2xy+y2=x2+2|xy|+y2,得|xy|=xy,所以xy≥0,故必要性成立.综上,原命题成立.能力提升1.已知条件p:x>1,条件q:≤1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≤1,得-1≤0,≤0,即x≥1或x<0.所以由p能推出q,反之不成立.故p是q的充分不必要条件.2.已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.:因为a+b=1,所以a+b-1=0.所以a3+b3+ab-a2-b2=(a+b)(a2-ab+b2)-(a2-ab+b2)=(a+b-1)(a2-ab+b2)=0.充分性:因为a3+b3+ab-a2-b2=0,即(a+b-1)(a2-ab+b2)=0,又ab≠0,所以a≠0且b≠0.因为a2-ab+b2=b2>0,所以a+b-1=0,即a+b=1.综上可得,当ab≠0时,a+b=1的充要条件是a3+b3+ab-a2-b2=0.1.5全称量词与存在量词课后巩固1.下列命题中全称量词命题的个数为()①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0B.1C.2D.32.命题“∃x∈R,使得x+1<0”的否定是()A.∀x∈R,均有x+1<0B.∀x∈R,均有x+1≥0C.∃x∈R,使得x+1≥0D.∃x∈R,使得x+1=03.已知命题p:某班所有的男生都爱踢足球,则命题p为()A.某班至多有一个男生爱踢足球B.某班至少有一个男生不爱踢足球C.某班所有的男生都不爱踢足球D.某班所有的女生都爱踢足球p是一个全称量词命题,它的否定是一个存在量词命题.4.下列四个命题中,既是存在量词命题又是真命题的是()A.斜三角形的内角是锐角或钝角B.至少有一个实数x,使x3>0C.任一无理数的平方必是无理数D.存在一个负数x,使>2A,C中的命题是全称量词命题,选项D中的命题是存在量词命题,但是假命题.只有B既是存在量词命题又是真命题.5.已知命题p:∀x>3,x>m成立,则实数m的取值范围是()A.m≤3B.m≥3C.m<3D.m>3x>3,x>m恒成立,即大于3的数恒大于m,所以m≤3.6.命题“有些负数满足不等式(1+x)(1-9x)>0”用“∃”或“∀”可表述为.,所以命题可改写为“∃x<0,(1+x)(1-9x)>0”.x<0,(1+x)(1-9x)>07.已知命题p“∃x≥3,使得2x-1<m”是假命题,则实数m的最大值是.p“∃x≥3,使得2x-1<m”是假命题,所以“∀x≥3,使得2x-1≥m”是真命题,故m≤5.8.用符号“∀”(“∀”表示“任意”)或“∃”(“∃”表示“存在”)表示下面的命题,并判断真假:(1)实数的平方大于或等于0;(2)存在一对实数(x,y),使2x-y+1<0成立.这是全称量词命题,隐藏了全称量词“所有的”.改写后命题为:∀x∈R,x2≥0,它是真命题.(2)改写后命题为:∃(x,y),x∈R,y∈R,2x-y+1<0,它是真命题.如x=0,y=2时,2x-y+1=0-2+1=-1<0成立.能力提升1.“x∈R,关于x的不等式x3+1>0有解”等价于()A.∃x∈R,使得x3+1>0成立B.∃x∈R,使得x3+1≤0成立C.∀x∈R,使得x3+1>0成立D.∀x∈R,使得x3+1≤0成立x∈R,“关于x的不等式x3+1>0有解”为存在量词命题,则根据存在量词命题的定义可知命题等价为∃x∈R,使得x3+1>0成立.2.命题“∀x∈R,x2-2ax+1>0”是假命题,则实数a的取值范围是.,命题“∀x∈R,x2-2ax+1>0”是假命题,可得出二次函数与x轴有公共点, 又由二次函数的性质,可得Δ≥0,即4a2-4≥0,解得a≤-1或a≥1.-∞,-1]∪[1,+∞)3.已知命题p:∀x∈R,x2+(a-1)x+1≥0成立,命题q:∃x∈R,ax2-2ax-3>0不成立,若p假q真,求实数a的取值范围.p:∀x∈R,x2+(a-1)x+1≥0是假命题,所以命题p:∃x∈R,x2+(a-1)x+1<0是真命题,则Δ=(a-1)2-4>0,即(a-1)2>4,故a-1<-2或a-1>2,即a<-1或a>3.因为命题q:∃x∈R,ax2-2ax-3>0不成立,所以命题q:∀x∈R,ax2-2ax-3≤0成立,当a=0时,-3<0成立;当a<0时,必须Δ=(-2a)2+12a≤0,即a2+3a≤0,解得-3≤a<0,故-3≤a≤0.综上所述,-3≤a<-1.所以实数a的取值范围是[-3,-1).。
新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析

选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。
新教材人教A版高中数学选择性必修第一册 第三章 圆锥曲线的方程 课后练习及章末测验 含解析

第三章圆锥曲线的方程课后练习及章末测验3.1.1椭圆及其标准方程................................................................................................. - 1 -3.1.2第1课时椭圆的简单几何性质............................................................................. - 6 -3.1.2第2课时椭圆的标准方程及性质的应用........................................................... - 12 -3.2.1双曲线及其标准方程........................................................................................... - 20 -3.2.2双曲线的简单几何性质....................................................................................... - 27 -3.3.1抛物线及其标准方程........................................................................................... - 34 -3.3.2抛物线的简单几何性质....................................................................................... - 40 -第三章章末测验............................................................................................................ - 47 -3.1.1椭圆及其标准方程一、选择题1.已知点M是平面α内的动点,F1,F2是平面α内的两个定点,则“点M 到点F1,F2的距离之和为定值”是“点M的轨迹是以F1,F2为焦点的椭圆”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件C[若点M到点F1,F2的距离之和恰好为F1,F2两点之间的距离,则点M 的轨迹不是椭圆,所以前者不能推出后者.根据椭圆的定义,椭圆上的点到两焦点的距离之和为常数2a,所以后者能推出前者,故前者是后者的必要不充分条件,故选C.]2.椭圆x225+y2169=1的焦点坐标是()A.(±5,0) B.(0,±5)C.(0,±12) D.(±12,0)C[由标准方程知,椭圆的焦点在y轴上,且c2=169-25=144,∴c=±12,故焦点为(0,±12).]3.已知P为椭圆C上一点,F1,F2为椭圆的焦点,且|F1F2|=23,若|PF1|与|PF2|的等差中项为|F1F2|,则椭圆C的标准方程为()A .x 212+y 29=1 B .x 212+y 29=1或x 29+y 212=1 C .x 29+y 212=1D .x 248+y 245=1或x 245+y 248=1B [∵2c =|F 1F 2|=23,∴c = 3.∵2a =|PF 1|+|PF 2|=2|F 1F 2|=43,∴a =2 3. ∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.]4.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1B [由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又|PF 1|∶|PF 2|=2∶1,∴|PF 1|=4,|PF 2|=2,由22+42=(25)2,可知△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×4×2=4,故选B.]5.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15B [由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.]二、填空题6.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为____________.x 24+y 23=1 [由题意知⎩⎨⎧ a +c =3,a -c =1,解得⎩⎨⎧a =2,c =1,则b 2=a 2-c 2=3,故椭圆的标准方程为x 24+y 23=1.]7.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0),B (4,0),点C 在椭圆x 225+y 29=1上,则sin A +sin B sin C =________.54 [由题意知|AB |=8,|AC |+|BC |=10,所以sin A +sin B sin C =|BC |+|AC ||AB |=108=54.] 8.已知P 是椭圆y 25+x 24=1上的一点,F 1,F 2是椭圆的两个焦点,且∠F 1PF 2=30°,则△F 1PF 2的面积是________.8-43 [由椭圆的标准方程,知a =5,b =2, ∴c =a 2-b 2=1,∴|F 1F 2|=2. 又由椭圆的定义,知 |PF 1|+|PF 2|=2a =2 5.在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2, 即4=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-2|PF 1|·|PF 2|cos 30°, 即4=20-(2+3)|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=16(2-3).∴S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×16(2-3)×12=8-4 3.]三、解答题9.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.[解] 设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).设焦点F 1(-c,0),F 2(c,0)(c >0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0, 而F 1A →=(-4+c,3), F 2A →=(-4-c,3),∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5. ∴F 1(-5,0),F 2(5,0). ∴2a =|AF 1|+|AF 2|=(-4+5)2+32+(-4-5)2+32=10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15. ∴所求椭圆的标准方程为x 240+y 215=1.10.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.[解] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>2.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点的椭圆(左顶点除外),则a =2,c =1,故b 2=a 2-c 2=4-1=3,故所求C 的方程为x 24+y 23=1(x ≠-2).11.(多选题)下列说法中错误的是( )A .已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于8的点的轨迹是椭圆B .已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于6的点的轨迹是椭圆C .平面内到点F 1(-4,0),F 2(4,0)两点的距离之和等于点M (5,3)到F 1,F 2的距离之和的点的轨迹是椭圆D .平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是椭圆ABD [A 中,|F 1F 2|=8,则平面内到F 1,F 2两点的距离之和等于8的点的轨迹是线段,所以A 错误;B 中,到F 1,F 2两点的距离之和等于6,小于|F 1F 2|,这样的轨迹不存在,所以B 错误;C 中,点M (5,3)到F 1,F 2两点的距离之和为(5+4)2+32+(5-4)2+32=410>|F 1F 2|=8,则其轨迹是椭圆,所以C 正确;D 中,轨迹应是线段F 1F 2的垂直平分线,所以D 错误.故选ABD.]12.若α∈⎝ ⎛⎭⎪⎫0,π2,方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是( )A .⎝ ⎛⎭⎪⎫π4,π2B .⎝ ⎛⎦⎥⎤0,π4C .⎝ ⎛⎭⎪⎫0,π4D .⎣⎢⎡⎭⎪⎫π4,π2A [易知sin α≠0,cos α≠0,方程x 2sin α+y 2cos α=1可化为x 21sin α+y 21cos α=1.因为椭圆的焦点在y 轴上,所以1cos α>1sin α>0,即sin α>cos α>0.又α∈⎝ ⎛⎭⎪⎫0,π2,所以π4<α<π2.]13.(一题两空)已知椭圆x 29+y 22=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2=________.若∠F 1PF 2=90°,则△F 1PF 2的面积是________.120° 2 [由题得a 2=9,b 2=2,∴a =3,c 2=a 2-b 2=9-2=7,∴c =7,∴|F 1F 2|=27.∵|PF 1|=4,∴|PF 2|=2a -|PF 1|=2. ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22×|PF 1|×|PF 2|=42+22-(27)22×4×2=-12,又0<∠F 1PF 2<180°,∴∠F 1PF 2=120°.又|PF 1|2+|PF 2|2=|F 1F 2|2=(27)2=28, 配方得(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=28,∴36-2|PF 1||PF 2|=28,即|PF 1||PF 2|=4,∴S △F 1PF 2=12|PF 1||PF 2|=2.]14.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________.23 [设正三角形POF 2的边长为c ,则34c 2=3,解得c =2,从而|OF 2|=|PF 2|=2,连接PF 1(略),由|OF 1|=|OF 2|=|OP |知,PF 1⊥PF 2, 则|PF 1|=|F 1F 2|2-|PF 2|2=42-22=23, 所以2a =|PF 1|+|PF 2|=23+2,即a =3+1, 所以b 2=a 2-c 2=(3+1)2-4=2 3.]15.已知椭圆y 2a 2+x 2b 2=1(a >b >0)的焦点分别是F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的标准方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值. [解] (1)依题意,知c 2=1,又c 2=a 2-b 2,且3a 2=4b 2, 所以a 2-34a 2=1,即14a 2=1,所以a 2=4,b 2=3, 故椭圆的标准方程为y 24+x 23=1.(2)由于点P 在椭圆上,所以|PF 1|+|PF 2|=2a =2×2=4.又|PF 1|-|PF 2|=1,所以|PF 1|=52,|PF 2|=32.又|F 1F 2|=2c =2,所以由余弦定理得cos ∠F 1PF 2=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫322-222×52×32=35. 故∠F 1PF 2的余弦值等于35.3.1.2第1课时椭圆的简单几何性质一、选择题1.已知椭圆x 2+my 2=1的焦点在x 轴上,且长轴长是短轴长的2倍,则m =( )A .14B .12C.2 D.4D[将椭圆方程化为标准形式为x2+y2 1m=1,所以长轴长为2,短轴长为21m,由题意得2=2×21m,解得m=4.]2.椭圆x225+y29=1与x29-k+y225-k=1(0<k<9)的关系为()A.有相等的长轴B.有相等的短轴C.有相同的焦点D.有相等的焦距D[由25-9=(25-k)-(9-k)知,两椭圆有相等的焦距.]3.已知椭圆x2+y2b2+1=1(b>0)的离心率为1010,则b等于() A.3 B.13C.910D.31010B[易知b2+1>1,由题意得(b2+1)-1b2+1=b2b2+1=110,解得b=13或b=-13(舍去),故选B.]4.如图所示,把椭圆x225+y216=1的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…,P7七个点,F是椭圆的左焦点,则|P1F|+|P2F|+…+|P7F|=()A.35 B.30C.25 D.20A[设椭圆右焦点为F′(图略),由椭圆的对称性,知|P1F|=|P7F′|,|P2F|=|P6F′|,|P3F|=|P5F′|,所以原式=(|P7F|+|P7F′|)+(|P6F|+|P6F′|)+(|P5F|+|P5F′|)+|P4F|=7a=35.]5.设e 是椭圆x 24+y 2k =1的离心率,且e ∈⎝ ⎛⎭⎪⎫12,1,则实数k 的取值范围是( )A .(0,3)B .⎝ ⎛⎭⎪⎫3,163C .(0,3)∪⎝ ⎛⎭⎪⎫163,+∞D .(0,2)C [当0<k <4时,e =ca =4-k 2∈⎝ ⎛⎭⎪⎫12,1,即12<4-k 2<1⇒1<4-k <4,即0<k <3. 当k >4时,e =ca =k -4k∈⎝ ⎛⎭⎪⎫12,1,即12<k -4k <1⇒14<k -4k <1⇒14<1-4k <1⇒0<4k <34⇒k >163.综上,实数k 的取值范围为(0,3)∪⎝ ⎛⎭⎪⎫163,+∞.]二、填空题6.已知长方形ABCD ,AB =4,BC =3,则以A ,B 为焦点,且过C ,D 的椭圆的离心率为________.12 [如图,AB =2c =4,∵点C 在椭圆上,∴CB +CA =2a =3+5=8,∴e =2c2a =48=12.]7.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过P (-5,4),则椭圆的标准方程为________.x 245+y 236=1 [∵e =c a =55,∴c 2a 2=a 2-b 2a 2=15, ∴5a 2-5b 2=a 2,即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a 2=1(a >0),∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1. 解得a 2=45.∴椭圆的标准方程为x 245+y 236=1.]8.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为________. 4,3 [过椭圆焦点的最长弦为长轴,其长度为2a =4;最短弦为垂直于长轴的弦,因为c =1,将x =1代入x 24+y 23=1,得124+y 23=1,解得y 2=94,即y =±32,所以最短弦的长为2×32=3.]三、解答题9.已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形,求该椭圆的离心率.[解] 根据椭圆的对称性,不妨设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦点坐标为F 1(-c,0),F 2(c,0).依题意设点A 的坐标为⎝ ⎛⎭⎪⎫-c ,b 2a ,则点B 的坐标为⎝ ⎛⎭⎪⎫-c ,-b 2a ,所以|AB |=2b 2a .由△ABF 2是正三角形得2c =32×2b 2a ,即3b 2=2ac .又因为b 2=a 2-c 2,所以3a 2-3c 2-2ac =0,两边同除以a 2,得3⎝ ⎛⎭⎪⎫c a 2+2·c a -3=0,解得e =c a =33(负值舍去).10.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求实数m 的值及椭圆的长轴长和短轴长,并写出焦点坐标和顶点坐标.[解] 椭圆方程可化为x 2m +y 2m m +3=1,由m -mm +3=m (m +2)m +3>0,可知m >m m +3,所以a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3,由e =32,得m +2m +3=32,解得m =1.于是椭圆的标准方程为x 2+y 214=1,则a =1,b =12,c =32.所以椭圆的长轴长为2,短轴长为1;两焦点坐标分别为⎝ ⎛⎭⎪⎫-32,0,⎝ ⎛⎭⎪⎫32,0;四个顶点坐标分别为(-1,0),(1,0),⎝ ⎛⎭⎪⎫0,-12,⎝ ⎛⎭⎪⎫0,12.11.(多选题)某宇宙飞船的运行轨道是以地球中心F 为焦点的椭圆(地球看作是球体),测得近地点A 距离地面m km ,远地点B 距离地面n km ,地球半径为R km ,关于这个椭圆有下列说法,正确的有( )A .长轴长为m +n +2RB .焦距为n -mC .短轴长为(m +R )(n +R )D .离心率e =n -m m +n +2RABD [由题意,得n +R =a +c ,m +R =a -c ,可解得2c =n -m ,a =m +n +2R 2,2a =m +n +2R .∴2b =2a 2-c 2=2(m +R )(n +R ),e =n -m m +n +2R ,故ABD 正确,C 不正确.]12.已知椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 分别为椭圆的左顶点和上顶点,F 为右焦点,且AB ⊥BF ,则椭圆的离心率为( )A .22B .32C .3-12D .5-12D [在Rt △ABF 中,|AB |=a 2+b 2,|BF |=a ,|AF |=a +c ,由|AB |2+|BF |2=|AF |2,得a 2+b 2+a 2=(a +c )2.将b 2=a 2-c 2代入,得a 2-ac -c 2=0,即e 2+e -1=0, 解得e =-1±52,因为0<e <1,所以e =5-12.故选D.]13.(一题两空)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为A ,左焦点为F ,若该椭圆的上顶点到焦点的距离为2,离心率e =12,则椭圆的标准方程是________.若点P 为椭圆上任意一点,则AP →·FP →的取值范围是________.x 24+y 23=1 [0,12] [因为椭圆的上顶点到焦点的距离为2,所以a =2. 因为离心率e =12,所以c =1,b =a 2-c 2=3, 则椭圆的方程为x 24+y 23=1,所以点A 的坐标为(-2,0),点F 的坐标为(-1,0). 设P (x ,y ),则AP →·FP →=(x +2,y )·(x +1,y )=x 2+3x +2+y 2. 由椭圆的方程,得y 2=3-34x 2,所以AP →·FP →=x 2+3x -34x 2+5=14(x +6)2-4. 因为x ∈[-2,2],所以AP →·FP →∈[0,12].]14.已知P (m ,n )是椭圆x 2+y 22=1上的一个动点,则m 2+n 2的取值范围是________.[1,2] [因为P (m ,n )是椭圆x 2+y 22=1上的一个动点,所以m 2+n 22=1,即n 2=2-2m 2,所以m 2+n 2=2-m 2,又-1≤m ≤1,所以1≤2-m 2≤2,所以1≤m 2+n 2≤2.]15.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|; (2)若cos ∠AF 2B =35,求椭圆E 的离心率. [解] (1)由|AF 1|=3|F 1B |,|AB |=4, 得|AF 1|=3,|F 1B |=1. 因为△ABF 2的周长为16,所以由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8. 故|AF 2|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k . 由椭圆定义可得,|AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得,|AB |2=|AF 2|2+|BF 2|2-2|AF 2|·|BF 2|·cos ∠AF 2B , 即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )·(2a -k ). 化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k . 于是有|AF 2|=3k =|AF 1|,|BF 2|=5k . 因此|BF 2|2=|F 2A |2+|AB |2,可得F 1A ⊥F 2A , 故△AF 1F 2为等腰直角三角形. 从而c =22a ,所以椭圆E 的离心率e =c a =22.3.1.2第2课时椭圆的标准方程及性质的应用一、选择题1.若直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( ) A .(-∞,0)∪(1,+∞) B .(1,3)∪(3,+∞) C .(-∞,-3)∪(-3,0) D .(1,3)B [由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1,消去y ,整理得(3+m )x 2+4mx +m =0. 若直线与椭圆有两个公共点, 则⎩⎨⎧3+m ≠0,Δ=(4m )2-4m (3+m )>0, 解得⎩⎨⎧m ≠-3,m <0或m >1.由x 2m +y 23=1表示椭圆,知m >0且m ≠3. 综上可知,m >1且m ≠3,故选B.]2.过椭圆x 2+2y 2=4的左焦点作倾斜角为π3的弦AB ,则弦AB 的长为( ) A .67 B .167 C .716D .76B [易求得直线AB 的方程为y =3(x +2).由⎩⎨⎧y =3(x +2),x 2+2y 2=4消去y 并整理,得7x 2+122x +8=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1227,x 1x 2=87.由弦长公式,得|AB |=1+k 2·|x 1-x 2|=1+(3)2·⎝⎛⎭⎪⎫-12272-4×87=167.]3.在椭圆x 216+y 29=1内,过点M (1,1)且被该点平分的弦所在的直线方程为( )A .9x -16y +7=0B .16x +9y -25=0C .9x +16y -25=0D .16x -9y -7=0C [设弦的两个端点的坐标分别是(x 1,y 1),(x 2,y 2),则有x 2116+y 219=1,x 2216+y 229=1,两式相减,又x 1+x 2=y 1+y 2=2,因此x 1-x 216+y 1-y 29=0,即y 1-y 2x 1-x 2=-916,所求直线的斜率是-916,弦所在的直线方程是y -1=-916(x -1),即9x +16y -25=0,故选C.] 4.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34D .45C [如图所示,△F 2PF 1是底角为30°的等腰三角形,则有|F 1F 2|=|PF 2|,∠PF 1F 2=∠F 2PF 1=30°所以∠PF 2A =60°,∠F 2P A =30°,所以|PF 2|=2|AF 2|=2⎝ ⎛⎭⎪⎫32a -c =3a -2c .又因为|F 1F 2|=2c ,所以,2c =3a -2c ,所以e =c a =34.]5.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .x 245+y 236=1 B .x 236+y 227=1 C .x 227+y 218=1D .x 218+y 29=1D [设A (x 1,y 1),B (x 2,y 2),直线AB 的斜率k =-1-01-3=12,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,两式相减得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,即1a 2+(y 1+y 2)(y 1-y 2)b 2(x 1+x 2)(x 1-x 2)=0⇔1a 2+1b 2×12×-22=0,即a 2=2b 2,c 2=9,a 2=b 2+c 2,解得:a 2=18,b 2=9,方程是x 218+y 29=1,故选D.]二、填空题6.过椭圆x 25+y 24=1的右焦点F 作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.53 [由已知可得直线方程为y =2x -2,联立方程组⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得A (0,-2),B ⎝ ⎛⎭⎪⎫53,43,∴S △AOB =12·|OF |·|y A -y B |=53.]7.设F 1、F 2分别为椭圆C :x 24+y 23=1的左、右两个焦点,过F 1作斜率为1的直线,交C 于A 、B 两点,则|AF 2|+|BF 2|=________.327 [由x 24+y 23=1知,焦点F 1(-1,0),所以直线l :y =x +1,代入x 24+y 23=1得3x 2+4(x +1)2=12,即7x 2+8x -8=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=-87,x 1x 2=-87,故|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=247.由定义有,|AF 2|+|BF 2|+|AB |=4a , 所以|AF 2|+|BF 2|=4×2-247=327.]8.椭圆C :x 22+y 2=1的左、右顶点分别为A 1、A 2,点P 在C 上且直线P A 1斜率的取值范围是[1,2],那么直线P A 2斜率的取值范围是________.⎣⎢⎡⎦⎥⎤-12,-14 [由椭圆C :x 22+y 2=1的方程可得a 2=2,b 2=1,由椭圆的性质可知:k P A 1·k P A 2=-12,∴k P A 2=-12k P A 1,∵k P A 1∈[1,2],则k P A 2∈⎣⎢⎡⎦⎥⎤-12,-14.]三、解答题9.设直线y =x +b 与椭圆x 22+y 2=1相交于A ,B 两个不同的点. (1)求实数b 的取值范围; (2)当b =1时,求|AB |.[解] (1)将y =x +b 代入x 22+y 2=1, 消去y 并整理,得3x 2+4bx +2b 2-2=0.①因为直线y =x +b 与椭圆x 22+y 2=1相交于A ,B 两个不同的点,所以Δ=16b 2-12(2b 2-2)=24-8b 2>0,解得-3<b < 3.所以b 的取值范围为(-3,3).(2)设A (x 1,y 1),B (x 2,y 2),当b =1时,方程①为3x 2+4x =0.解得x 1=0,x 2=-43. 所以y 1=1,y 2=-13.所以|AB |=(x 1-x 2)2+(y 1-y 2)2=423.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22,直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求实数k 的值.[解](1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得c =2,b =2, 所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0,设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则 y 1=k (x 1-1),y 2=k (x 2-1), x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2,又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2, 所以△AMN 的面积为S =12|MN |·d =|k |4+6k 21+2k 2,由|k |4+6k 21+2k 2=103, 化简得7k 4-2k 2-5=0,解得k =±1.11.(多选题)设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( )A .必在圆x 2+y 2=1外B .必在圆x 2+y 2=74上 C .必在圆x 2+y 2=2内 D .必在圆x 2+y 2=94上ABC [e =12⇒c a =12⇒c =a 2,a 2-b 2a 2=14⇒b 2a 2=34⇒b a =32⇒b =32a . ∴ax 2+bx -c =0⇒ax 2+32ax -a 2=0⇒x 2+32x -12=0, ∴x 1+x 2=-32,x 1x 2=-12, ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74. ∵1<74<2,∴点P 在圆x 2+y 2=1外,在x 2+y 2=74上,在x 2+y 2=2内,故应选ABC.] 12.已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,直线l :y =24x 与椭圆C 相交于A ,B 两点,若|AB |=2c ,则椭圆C 的离心率为( )A .32B .34C .12D .14A [设直线与椭圆在第一象限内的交点为A (x ,y ),则y =24x 由|AB |=2c ,可知|OA |=x 2+y 2=c ,即x 2+⎝ ⎛⎭⎪⎫24x 2=c ,解得x =223c ,所以A ⎝ ⎛⎭⎪⎫223c ,13c ,把点A 代入椭圆方程得到⎝ ⎛⎭⎪⎫223c 2a 2+⎝ ⎛⎭⎪⎫13c 2b 2=1,整理得8e 4-18e 2+9=0,即(4e 2-3)(2e 2-3)=0,因0<e <1,所以可得e =32.]13.(一题两空)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,则椭圆方程为________,若直线l 交椭圆于M ,N 两点,且△BMN 的重心恰好为椭圆的右焦点F ,则直线l 方程为________.x 220+y 216=1 6x -5y -28=0 [由题意得b =4,又e 2=c 2a 2=a 2-b 2a 2=1-16a 2=15,解得a 2=20.∴椭圆的方程为x 220+y 216=1.∴椭圆右焦点F 的坐标为(2,0), 设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF →=2FQ →,从而(2,-4)=2(x 0-2,y 0), 解得x 0=3,y 0=-2,所以点Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4, 且x 2120+y 2116=1,x 2220+y 2216=1,以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线的方程为y +2=65(x -3),即6x -5y -28=0.]14.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.⎝⎛⎭⎪⎫0,22 [∵MF 1→⊥MF 2→,∴点M 在以F 1F 2为直径的圆上,又点M 在椭圆内部,∴c <b ,∴c 2<b 2=a 2-c 2,即2c 2<a 2,∴c 2a 2<12,即c a <22.又e >0,∴0<e<22.]15.设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,下顶点为B ,过A 、O 、B (O 为坐标原点)三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫32,-12.(1)求椭圆的方程;(2)已知点M 在x 轴正半轴上,过点B 作BM 的垂线与椭圆交于另一点N ,若∠BMN =60°,求点M 的坐标.[解] (1)依题意知A (a,0),B (0,-b ),∵△AOB 为直角三角形,∴过A 、O 、B 三点的圆的圆心为斜边AB 的中点, ∴a 2=32,-b 2=-12,即a =3,b =1, ∴椭圆的方程为x 23+y 2=1.(2)由(1)知B (0,-1),依题意知直线BN 的斜率存在且小于0, 设直线BN 的方程为y =kx -1(k <0), 则直线BM 的方程为:y =-1k x -1,由⎩⎨⎧x 2+3y 2=3,y =kx -1.消去y 得(1+3k 2)x 2-6kx =0,解得:x N =6k1+3k 2,y N=kx N -1, ∴|BN |=x 2N +(y N +1)2=x 2N +k 2x 2N=1+k 2|x N |∴|BN |=1+k 2|x N -x B |=1+k 2·6|k |1+3k 2,在y =-1k x -1中,令y =0得x =-k ,即M (-k,0) ∴|BM |=1+k 2,在Rt △MBN 中,∵∠BMN =60°,∴|BN |=3|BM |, 即1+k 2·6|k |1+3k 2=3·1+k 2, 整理得3k 2-23|k |+1=0,解得|k |=33,∵k <0,∴k =-33,∴点M 的坐标为⎝ ⎛⎭⎪⎫33,0.3.2.1双曲线及其标准方程一、选择题1.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( )A .x 216-y 29=1 B .x 216-y 29=1(x ≥4) C .x 29-y 216=1D .x 29-y 216=1(x ≥3)D [由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16,∴M 点的轨迹方程为x 29-y 216=1(x ≥3).] 2.若ax 2+by 2=b (ab <0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上C .椭圆,焦点在x 轴上D .椭圆,焦点在y 轴上B [因为ab <0,方程可化为x 2b a +y 2=1,∴ba <0,方程表示的曲线为焦点在y轴上的双曲线,故选B.]3.已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A .x 22-y 23=1 B .x 23-y 22=1 C .x 24-y 2=1D .x 2-y 24=1C [由⎩⎨⎧|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(25)2, ⇒(|PF 1|-|PF 2|)2=16,即2a =4,解得a =2,又c =5,所以b =1,故选C.]4.双曲线x 225-y 29=1上的点P 到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .2 A [根据双曲线的方程得2a =2×5=10,由定义知||PF |-12|=10,可解得|PF |=22或2,故选A.]5.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A .13B .12C .23D .32D [因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0). 因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ).因为P 是C 上一点, 所以4-y 2P3=1,解得y P =±3, 所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D.] 二、填空题6.若方程x 22-m +y 2|m |-3=1表示双曲线,则实数m 的取值范围为________.(-3,2)∪(3,+∞) [依题意有⎩⎨⎧ 2-m >0,|m |-3<0或⎩⎨⎧2-m <0,|m |-3>0,解得-3<m <2或m >3.所以实数m 的取值范围是(-3,2)∪(3,+∞).]7.已知双曲线的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线的左支交于A ,B 两点,线段AB 的长为5.若2a =8,那么△ABF 2的周长是________.26 [根据双曲线定义知,|AF 2|-|AF 1|=8,|BF 2|-|BF 1|=8.∴|AF 2|+|BF 2|=16+|AF 1|+|BF 1|=16+|AB |=16+5=21.所以△ABF 2的周长是|AF 2|+|BF 2|+|AB |=21+5=26.]8.如图所示,已知双曲线以长方形ABCD 的顶点A ,B 为左、右焦点,且双曲线过C ,D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为________.x 2-y 23=1 [设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).由题意得B (2,0),C (2,3), 所以⎩⎪⎨⎪⎧4=a 2+b 2,4a 2-9b 2=1,解得⎩⎨⎧a 2=1,b 2=3,所以双曲线的标准方程为x 2-y 23=1.]三、解答题9.已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值,分别指出方程所表示的曲线类型.[解] (1)当k =0时,y =±2,表示两条与x 轴平行的直线;(2)当k =1时,方程为x 2+y 2=4,表示圆心在原点,半径为2的圆; (3)当k <0时,方程为y 24-x 2-4k =1,表示焦点在y 轴上的双曲线;(4)当0<k <1时,方程为x 24k +y 24=1,表示焦点在x 轴上的椭圆;(5)当k >1时,方程为x 24k +y 24=1,表示焦点在y 轴上的椭圆.10.已知双曲线x 24-y 29=1,F 1,F 2是其两个焦点,点M 在双曲线上. (1)若∠F 1MF 2=90°,求△F 1MF 2的面积;(2)若∠F 1MF 2=120°,△F 1MF 2的面积是多少?若∠F 1MF 2=60°,△F 1MF 2的面积又是多少?(3)观察以上计算结果,你能看出随∠F 1MF 2的变化,△F 1MF 2的面积将怎样变化吗?试证明你的结论.[解] 设|MF 1|=r 1,|MF 2|=r 2(不妨设r 1>r 2),θ=∠F 1MF 2,因为S △F 1MF 2=12r 1r 2sin θ,θ已知,所以只要求r 1r 2即可,因此考虑到用双曲线定义及余弦定理的知识,求出r 1r 2.(1)当θ=90°时,S △F 1MF 2=12r 1r 2sin θ=12r 1r 2.由双曲线方程知a =2,b =3,c =13,由双曲线定义,得|r 1-r 2|=2a =4,两边平方,得r 21+r 22-2r 1r 2=16, 又r 21+r 22=|F 1F 2|2,即|F 1F 2|2-4S △F 1MF 2=16,也即52-16=4S △F 1MF 2,求得S △F 1MF 2=9.(2)若∠F 1MF 2=120°,在△MF 1F 2中,|F 1F 2|2=r 21+r 22-2r 1r 2cos 120°=(r 1-r 2)2+3r 1r 2=52,所以r 1r 2=12, 求得S △F 1MF 2=12r 1r 2sin 120°=3 3.同理,可求得若∠F 1MF 2=60°,S △F 1MF 2=9 3.(3)由以上结果可见,随着∠F 1MF 2的增大,△F 1MF 2的面积将减小. 证明如下:由双曲线定义及余弦定理,得 ⎩⎨⎧(r 1-r 2)2=4a 2, ①r 21+r 22-2r 1r 2cos θ=4c 2. ② ②-①,得r 1r 2=4c 2-4a 22(1-cos θ),所以S △F 1MF 2=12r 1r 2sin θ=(c 2-a 2)sin θ1-cos θ=b 2cot θ2.因为0<θ<π,所以0<θ2<π2, 在⎝ ⎛⎭⎪⎫0,π2内,cot θ2是减函数. 因此当θ增大时,S △F 1MF 2=b 2cot θ2减小.11.(多选题)设θ是三角形的一个内角,对于方程x 2sin θ+y 2cos θ=1的说法正确的是( )A .当0<θ<π2时,方程表示椭圆 B .当θ=π2时,方程不表示任何图形C .当π2<θ<3π4时,方程表示焦点在x 轴上的双曲线 D .当3π4<θ<π时,方程表示焦点在y 轴上的双曲线BC [当0<θ<π2时,sin θ>0,cos θ>0,但当θ=π4时,sin θ=cos θ>0表示圆,故A 错误;当θ=π2时,cos θ=0,方程无意义,所以不表示任何图形,故B正确;当π2<θ<π时,sin θ>0,cos θ<0,所以不论π2<θ<3π4还是3π4<θ<π时,方程表示焦点在x 轴上的双曲线,所以C 正确,D 错误,故选BC.]12.(多选题)已知方程x 24-t +y 2t -1=1表示的曲线为C .给出以下判断,正确的是( )A .当1<t <4时,曲线C 表示椭圆B .当t >4或t <1时,曲线C 表示双曲线 C .若曲线C 表示焦点在x 轴上的椭圆,则1<t <52 D .若曲线C 表示焦点在y 轴上的双曲线,则t >4BCD [A 错误,当t =52时,曲线C 表示圆;B 正确,若C 为双曲线,则(4-t )(t -1)<0,∴t <1或t >4;C 正确,若曲线C 为焦点在x 轴上的椭圆,则4-t >t -1>0,∴1<t <52;D 正确,若曲线C 为焦点在y 轴上的双曲线,则⎩⎨⎧4-t <0,t -1>0,∴t>4.]13.(一题两空)已知△ABC 的两个顶点A ,B 分别为椭圆x 2+5y 2=5的左焦点和右焦点,则|AB |=________.又三个内角A ,B ,C 满足关系式sin B -sin A =12sin C .则点C 的轨迹方程为________.4 x 2-y 23=1(x >1) [将椭圆方程化为标准形式为x 25+y 2=1.∴a 2=5,b 2=1,c 2=a 2-b 2=4, 则A (-2,0),B (2,0),|AB |=4.又∵sin B -sin A =12sin C ,∴由正弦定理得 |CA |-|CB |=12|AB |=2<|AB |=4,即动点C 到两定点A ,B 的距离之差为定值. ∴动点C 的轨迹是双曲线的右支,并且c =2,a =1, ∴所求的点C 的轨迹方程为x 2-y 23=1(x >1).]14.过双曲线x 2144-y 225=1的一个焦点作x 轴的垂线,则垂线与双曲线的一个交点到两焦点的距离分别为________.2512,31312 [因为双曲线方程为x 2144-y 225=1,所以c =144+25=13,设F 1,F 2分别是双曲线的左、右焦点,则F 1(-13,0),F 2(13,0).设过F 1且垂直于x 轴的直线l 交双曲线于A (-13,y )(y >0),则y 225=132144-1=25144,所以y =2512,即|AF 1|=2512.又|AF 2|-|AF 1|=2a =24, 所以|AF 2|=24+2512=31312.即所求距离分别为2512,31312.]15.设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点M ⎝ ⎛⎭⎪⎫355,455,F (5,0),且P 为L 上动点.求||MP -|FP ||的最大值.[解] (1)两圆的圆心分别为A (-5,0),B (5,0),半径为2,设圆C 的半径为r .由题意得|CA |=r -2,|CB |=r +2或|CA |=r +2,|CB |=r -2,两式相减得|CA |-|CB |=-4或|CA |-|CB |=4,即||CA |-|CB ||=4.则圆C 的圆心轨迹为双曲线,其中2a =4,c =5,b 2=1, ∴圆C 的圆心轨迹L 的方程为x 24-y 2=1.(2)由(1)知F 为双曲线L 的一个焦点,如图,连接MF 并延长交双曲线于一点P ,此时|PM |-|PF |=|MF |为||PM |-|FP ||的最大值.又|MF |=⎝ ⎛⎭⎪⎫355-52+⎝ ⎛⎭⎪⎫4552=2, ∴||MP |-|FP ||的最大值为2.3.2.2双曲线的简单几何性质一、选择题1.若实数k满足0<k<5,则曲线x216-y25-k=1与曲线x216-k-y25=1的()A.实半轴长相等B.虚半轴相等C.离心率相等D.焦距相等D[由于16+(5-k)=(16-k)+5,所以焦距相等.]2.若a>1,则双曲线x2a2-y2=1的离心率的取值范围是()A.(2,+∞) B.(2,2) C.(1,2) D.(1,2)C[由题意得双曲线的离心率e=a2+1 a.即e2=a2+1a2=1+1a2.∵a>1,∴0<1a2<1,∴1<1+1a2<2,∴1<e< 2.故选C.]3.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的焦距为10,点P(2,1)在C的渐近线上,则双曲线C的方程为()A.x220-y25=1 B.x25-y220=1C.x280-y220=1 D.x220-y280=1A[双曲线C的渐近线方程为x2a2-y2b2=0,又点P(2,1)在C的渐近线上,所以4a2-1b2=0,即a2=4b2①.又a2+b2=c2=25②.由①②,得b2=5,a2=20,所以双曲线C的方程为x220-y25=1,故选A.] 4.过双曲线x2a2-y2b2=1的右焦点F2作垂直于实轴的弦PQ,F1是左焦点,若∠PF 1Q =90°,则双曲线的离心率是( )A . 2B .1+ 2C .2+ 2D .3- 2B [因为|PF 2|=|F 2F 1|, P 点满足c 2a 2-y 2b 2=1,∴y =ba c 2-a 2,∴2c =b a c 2-a 2,即2ac =b 2=c 2-a 2,∴2=e -1e ,又e >0,故e =1+ 2.] 5.已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A .32B .3C .2 3D .4B [根据题意,可知其渐近线的斜率为±33,且右焦点为F (2,0),从而得到∠FON =30°,所以直线MN 的倾斜角为60°或120°,根据双曲线的对称性,设其倾斜角为60°, 可以得出直线MN 的方程为y =3(x -2), 分别与两条渐近线y =33x 和y =-33x 联立, 求得M (3,3) ,N ⎝ ⎛⎭⎪⎫32,-32,所以|MN |=⎝ ⎛⎭⎪⎫3-322+⎝ ⎛⎭⎪⎫3+322=3.] 二、填空题6.(一题两空)若双曲线x 2-y 2m =1的离心率为3,则实数m =________,渐近线方程是________.2 y =±2x [a 2=1,b 2=m ,e 2=c 2a 2=a 2+b 2a 2=1+m =3,m =2.渐近线方程是y =±mx =±2x .]7.以y =±x 为渐近线且经过点(2,0)的双曲线方程为________.x 24-y 24=1 [以y =±x 为渐近线的双曲线为等轴双曲线,方程可设为x 2-y 2=λ(λ≠0),代入点(2,0)得λ=4,∴x 2-y 2=4,即x 24-y 24=1.]8.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.x 24-y 2=1 [法一:∵双曲线的渐近线方程为y =±12x , ∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3),∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2, ∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得 ⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎨⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1.] 三、解答题9.求满足下列条件的双曲线的标准方程: (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).[解] (1)由题意知双曲线的焦点在y 轴上,且c =13, 因为c a =135,所以a =5,b =c 2-a 2=12. 故所求双曲线的标准方程为y 225-x 2144=1. (2)法一:因为双曲线的渐近线方程为y =±12x ,若焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则b a =12①. 因为点A (2,-3)在双曲线上,所以4a 2-9b 2=1 ②.联立①②,无解.若焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0), 则a b =12.③ ∵A (2,-3)在双曲线上,∴9a 2-4b 2=1. ④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1. 法二:由双曲线的渐近线方程为y =±12x , 可设双曲线方程为x 222-y 2=λ(λ≠0), ∵A (2,-3)在双曲线上, ∴422-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.10.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点是F (2,0),离心率e =2.(1)求双曲线C 的方程;(2)若斜率为1的直线l 与双曲线C 交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求直线l 的方程.[解] (1)由已知得c =2,e =2,所以a =1,b = 3. 所以所求双曲线方程为x 2-y 23=1.(2)设直线l 的方程为y =x +m ,点M (x 1,y 1),N (x 2,y 2). 联立⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1,整理得2x 2-2mx -m 2-3=0.(*)设MN 的中点为(x 0,y 0),则x 0=x 1+x 22=m 2,y 0=x 0+m =3m 2,所以线段MN垂直平分线的方程为y -3m 2=-⎝ ⎛⎭⎪⎫x -m 2,即x +y -2m =0,与坐标轴的交点分别为(0,2m ),(2m,0),可得12|2m |·|2m |=4,得m 2=2,m =±2,此时(*)的判别式Δ>0,故直线l 的方程为y =x ± 2.11.(多选题)关于双曲线C 1:4x 2-9y 2=-36与双曲线C 2:4x 2-9y 2=36的说法正确的是( )A .有相同的焦点B .有相同的焦距C .有相同的离心率D .有相同的渐近线BD [两方程均化为标准方程为y 24-x 29=1和x 29-y 24=1,这里均有c 2=4+9=13,所以有相同的焦距,而焦点一个在x 轴上,另一个在y 轴上,所以A 错误,B 正确;又两方程的渐近线均为y =±23x ,故D 正确.C 1的离心率e =132,C 2的离心率e =133,故C 错误.]12.设双曲线x 2a 2-y 2b 2=1(b >a >0)的半焦距为c ,且直线l 过(a,0)和(0,b )两点,已知原点到直线l 的距离为3c4,则双曲线的离心率为( )A .233B . 2C . 3D .2D [直线l 的方程为x a +yb =1,即bx +ay -ab =0,原点到直线l 的距离d =ab a 2+b 2=ab c=34c , 即ab =34c 2,所以a 2(c 2-a 2)=316c 4.整理得3e 4-16e 2+16=0,解得e 2=4或e 2=43, 又b >a >0,所以e 2=1+b 2a 2>2,故e =2.]13.(一题两空)已知椭圆x 26+y 22=1与双曲线x 23-y 2=1的公共焦点为左焦点F 1,右焦点F 2,点P 是两条曲线在第一象限内的一个公共点,则|PF 1|=________,cos ∠F 1PF 2的值为________.6+3 13 [因为F 1,F 2分别为左、右焦点,点P 在第一象限,由椭圆与双曲线的定义可得⎩⎨⎧|PF 1|+|PF 2|=26,|PF 1|-|PF 2|=23,解得⎩⎨⎧|PF 1|=6+3,|PF 2|=6-3,又|F 1F 2|=4,所以由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=13.]14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l 与双曲线的右支有且只有一个交点,则此双曲线的离心率e 的取值范围是________.[2,+∞) [由题意,知b a ≥3,则b 2a 2≥3,所以c 2-a 2≥3a 2,即c 2≥4a 2,所以e 2=c 2a 2≥4,所以e ≥2.]15.已知椭圆C 1:x 23+y 2=1的左右顶点是双曲线C 2:x 2a 2-y 2b 2=1的顶点,且椭圆C 1的上顶点到双曲线C 2的渐近线的距离为32.(1)求双曲线C 2的方程;(2)若直线与C 1相交于M 1,M 2两点,与C 2相交于Q 1,Q 2两点,且OQ 1→·OQ 2→=-5,求|M 1M 2|的取值范围.[解] (1)由椭圆C 1:x 23+y 2=1的左右顶点为(-3,0),(3,0),可得a 2=3,又椭圆C 1的上顶点(0,1)到双曲线C 2的渐近线bx -ay =0的距离为32,由点到直线的距离公式有a a 2+b2=32可得b =1, 所以双曲线C 2的方程为x 23-y 2=1.(2)易知直线l 的斜率存在,设直线l 的方程为y =kx +m ,代入x 23-y 2=1,消去y 并整理得(1-3k 2)x 2-6kmx -3m 2-3=0,要与C 2相交于两点,则应有⎩⎨⎧1-3k 2≠036k 2m 2-4(1-3k 2)(-3m 2-3)>0 ⇒⎩⎨⎧1-3k 2≠01+m 2>3k 2①,设Q 1(x 1,y 1),Q 2(x 2,y 2),则有:x 1+x 2=6km1-3k 2,x 1·x 2=-3+3m 21-3k 2.又OQ 1→·OQ 2→=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2,又OQ 1→·OQ 2→=-5,所以有11-3k2[(1+k 2)(-3m 2-3)+6k 2m 2+m 2(1-3k 2)]=-5 整理得m 2=1-9k 2②,将y =kx +m ,代入x 23+y 2=1,消去y 并整理得:(1+3k 2)x 2+6kmx +3m 2-3=0,要有两交点,则Δ=36k 2m 2-4(1+3k 2)(3m 2-3)>0⇒3k 2+1>m 2 ③。
高中数学人教A版选择性必修第一册3.1.1椭圆及其标准方程 课时分层练习题含答案解析

3.1.1 椭圆及其标准方程基础练习一、单选题1.已知P 是椭圆2212516x y +=上的一个点,1F 、2F 是椭圆的两个焦点,若13PF =,则2PF 等于( ) A .10 B .7 C .5 D .22.以()11,0F -,()21,0F 为焦点,且经过点1,2⎛⎫ ⎪⎝⎭的椭圆的标准方程为( )A .22132x y +=B .22143x y +=C .22134x y +=D .2214x y +=3.已知椭圆143x y +=的两个焦点为1F ,2F ,过2F 的直线交椭圆于M ,N 两点,若1F MN△的周长为( ) A .2 B .4C .6D .84.椭圆22221(0)x y a b a b +=>>的左右焦点分别为12(2,0),(2,0)F F -,P 为椭圆上一点,若12||||6PF PF +=,则12PF F △的周长为( )A .10B .8C .6D .45.已知椭圆C :21y x k+=的一个焦点为(0,-2),则k 的值为( )A .5B .3C .9D .25标准方程是( )A .221168x y +=B .221168y x +=C .2212416x y +=D .221249x y +=7.已知椭圆C :()2210x y a b a b+=>>的右焦点为),右顶点为A ,O 为坐标原点,过OA的中点且与坐标轴垂直的直线交椭圆C 于M ,N 两点,若四边形OMAN 是正方形,则C 的方程为( )A .2213x y +=B .22153x y +=C .22175x y +=D .22197x y +=【答案】A8.已知点12,F F分别是椭圆1259x y+=的左、右焦点,点P在此椭圆上,1260F PF∠=,则12PF F∆的面积等于A B.C.D.60及三角形面积公式即可求解【详解】椭圆225x+9.已知m为3与5的等差中项,n为4与16的等比中项,则下列对曲线22:1x yCm n+=描述正确的是()A.曲线C可表示为焦点在y轴的椭圆B.曲线C可表示为焦距是4的双曲线C.曲线C的椭圆D.曲线C可表示为渐近线方程是y=的双曲线A .M 到两定点()0,2,()0,2-的距离之和为4B .M 到两定点()0,2,()0,2-的距离之和为6C .M 到两定点()3,0,()3,0-的距离之和为6D .M 到两定点()3,0,()3,0-的距离之和为8 【答案】BD【分析】根据椭圆的定义进行逐一判断即可.【详解】因为两定点()0,2,()0,2-的距离为46<,所以选项A 不符合椭圆定义,选项B 符合椭圆定义;因为两定点()3,0,()3,0-的距离为68<,所以选项C 不符合椭圆定义,选项D 符合,11.在曲线()22:10,0C Ax By A B +=>>中,( )A .当AB >时,则曲线C 表示焦点在y 轴的椭圆 B .当A B ≠时,则曲线C 为椭圆 C .曲线C 关于直线y x =对称D .当A B ≠时,则曲线C 的焦距为【答案】ABD12.若椭圆221254x y +=上一点P 到焦点1F 的距离为3,则点P 到另一焦点2F 的距离为______.【详解】 又PF 13.过椭圆142x y +=的一个焦点1F 的弦AB 与另一个焦点2F 围成的2ABF 的周长是______.【答案】8,利用椭圆的定义可得出2ABF 的周长由题意可知,2ABF 的周长为12BF BF +14.椭圆22115x y m ++=的焦距为4,则m =______.1715.已知方程164x y m m +=+-表示焦点在y 轴上的椭圆,则实数m 的取值范围是_______;16.椭圆194x y +=的短轴长为______.17.椭圆123x y +=1的一个焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点M 的纵坐标为_____.19.已知椭圆22110036x y+=上一点P到左焦点的距离为7,求点P到右焦点的距离.20.已知椭圆的两个焦点分别为1和2,再添加什么条件,可使得这个椭圆的方程为221 259x y+=?(1)22110064x y +=; (2)221916x y +=;(3)2222x y +=.49-,求点A 的轨迹方程..用圆规画一个圆,然后在圆内标记点,并把圆周上的点1折叠到点,连接1,标记出1OP 与折痕1l 的交点1M (如图),若不断在圆周上取新的点2P ,3P ,…进行折叠并得到标记点2M ,3M ,…,则点1M ,2M ,3M ,…形成的轨迹是什么?并说明理由.24.已知定点1、2和动点.(1)再从条件①、条件②这两个条件中选择一个作为已知,求:动点M 的轨迹及其方程. 条件①:1212MF MF += 条件②:128MF MF +=(2)()1220MF MF a a +=>,求:动点M 的轨迹及其方程.一、单选题1.椭圆22110064x y+=的焦点为1F,2F,椭圆上的点P满足1260F PF∠=︒,则点P到x轴的距离为()A B C D.64 312PF F S=2.已知1F 、2F 是椭圆2:1163x y C +=的两个焦点,P 为椭圆上一点,则12PF PF ⋅( )A .有最大值,为16B .有最小值,为16C .有最大值,为4D .有最小值,为43.已知椭圆C :221259x y +=,1F ,2F 分别为它的左右焦点,A ,B 分别为它的左右顶点,点P是椭圆上的一个动点,下列结论中正确的有( ) A .存在P 使得122F PF π∠=B .12cos F PF ∠的最小值为725-C .12PF PF ⊥,则12F PF △的面积为9D .直线PA 与直线PB 斜率乘积为定值925根据120D D F F ⋅<得,结合余弦定理与基本不等式求解判断进而计算面积判断选项,由于()(124,3,4,3F F D D =--=-,1216D D F F ⋅=-12F PF S=对于D 4.舒腾尺是荷兰数学家舒腾设计的一种作图工具,如图,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处的铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动.当点D 在滑槽AB 内做往复移动时,带动点N 绕O 转动,点M 也随之而运动.记点N 的运动轨迹为1C ,点M 的运动轨迹为2C .若1O N D N ==,3MN =,过2C 上的点P 向1C 作切线,则切线长的最大值为______.依题意,2MD DN =,且1DN ON ==,)()00,2x y x t y -=-,且()0220x t x y ⎧-⎪⎨+⎪⎩5.如图,1,2分别是椭圆的左、右焦点,点P 是以12为直径的圆与椭圆在第一象限内的一个交点,延长2PF 与椭圆交于点Q ,若124PF QF =,则直线2PF 的斜率为_______.在1PF Q 中,6.与椭圆22194x y +=有相同的焦点,且过点()3,2-的椭圆方程为______.【答案】2211510x y +=【分析】结合已知条件求出c ,然后利用7.已知直线y =与椭圆在第一象限内交于M 点,又MF 2⊥x 轴,F 2是椭圆的右焦点,另一个焦点为F 1,若122MF MF ⋅=,求椭圆的标准方程.,进而由122MF MF ⋅=求得.⎝又因为122MF MF ⋅=,所以122,MF MF c ⎛⋅=- ⎝()2,2M ,1F 矩形的最大面积.9.已知P 是椭圆221259x y +=上的一点,1F 、2F 为椭圆的两个焦点.(1)若1290F PF ∠=︒,求12PF F 的面积; (2)求12PF PF ⋅的最大值. 12Rt F PF 中,11002PF -⋅12F PF 的面积为(1)求曲线C 的方程;(2)曲线C 上是否存在点M 使12MF MF ⊥?若存在,求出点M 的坐标;若不存在,说明理由.11.已知椭圆1C 与椭圆2:1305x y C +=具有共同的焦点1F ,2F ,点P 在椭圆1C 上,12PF PF ⊥,______.在下面三个条件中选择一个,补充在上面的横线上,并作答.①椭圆1C 过点();②椭圆1C 的短轴长为10;③椭圆1C 的离心率为2.(1)求椭圆1C 的标准方程; (2)求12PF F △的面积.12PF F S=12.已知椭圆()2210x y a b a b +=>>的长轴长为4,右焦点到直线4x =的距离为3.(1)求椭圆的方程;(2)若直线y x =M ,N 两点,椭圆上存在点P ,使得()()0OP OM ON λλ=+>,求实数λ的值.所以(0,OM =-,87ON ⎛= ⎝又()83,7OP OM ON λλ⎛=+= ⎝8363,77P λλ⎛⎫- ⎪ ⎪⎝⎭,13.已知P 点坐标为(0,2)-,点,A B 分别为椭圆22:1(0)x yE a b a b+=>>的左、右顶点,ABP △是等腰直角三角形,长轴长是短轴长的2倍. (1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于,M N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.所以0OM ON ⋅>,即12121x x y y x +=)(2122k x x k +-。
最新教材高中数学课后习题答案大全2019人A版

(2) ( x-1) ( x+2) = 0 的解为 x = 1 或 x = - 2,
∴ 集合 A = {1,-2} .
(3) 由-3<2x-1<3,得-1<x<2.∵ x∈Z,∴ x =
0 或 x = 1.
∴ 集合 B = {0,1} .
综合运用
3.解析 (1) { x | x = 2n,n∈Z 且 1≤n≤5} .
2.解析 (1) p 是 q 的必要不充分条件. ( 2) p
是 q 的充要条件.(3) p 是 q 的充分不必要条
件.(4) p 是 q 的必要不充分条件. ( 5) p 是 q
的既不充分又不必要条件.
3.解析 (1) 真.(2) 假.(3) 假.(4) 假.
综合运用
4.解析 (1) 充分条件.(2) 必要条件.( 3) 充要
3.解析 充 分 条 件: ( 1) ∠1 = ∠4, ( 2) ∠1 =
∠2,(3) ∠1+∠3 = 180°.
必要条件:( 1) ∠1 = ∠4,( 2) ∠1 = ∠2,( 3)
∠1+∠3 = 180°.
1.4.2 充要条件
练习
1.解析 ( 1) p 是 q 的充要条件. ( 2) p 是 q 的
A∪( B∩C) = {1,2,3,4,5,6,7,8} .
3.解析 “ 每位同学最多只能参加两项比赛”
表示为 A∩B∩C = ⌀.
(1) A∪B 表示参加 100 m 或参加 200 m 跑
的同学.
(2) A∩C 表示既参加 100 m 又参加 400 m
跑的同学.
综合运用
4. 解 析 因 为 A = { x | 3 ≤ x < 7 }, B =
新教材高中数学第一章空间向量与立体几何2空间向量基本定理基础过关含解析新人教A版选择性必修第一册

空间向量基本定理基础过关练题组一 空间向量基本定理及相关概念的理解1.设x=a+b ,y=b+c ,z=c+a ,且{a ,b ,c}是空间的一个基底,给出下列向量组:①{a ,b ,x};②{x ,y ,z};③{b ,c ,z};④{x ,y ,a+b+c},则其中可以作为空间的基底的向量组有(深度解析) A.1个 B.2个 C.3个 D.4个2.若p:a ,b ,c 是三个非零向量;q:{a ,b ,c}为空间的一个基底,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.已知{e 1,e 2,e 3}为空间的一个基底,若a=e 1+e 2+e 3,b=e 1+e 2-e 3,c=e 1-e 2+e 3,d=e 1+2e 2+3e 3,且d=αa+βb+γc,则α,β,γ分别为 . 题组二 用空间的基底表示空间向量4.在三棱柱A 1B 1C 1-ABC 中,D 是四边形BB 1C 1C 的中心,且AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(深度解析)A.12a+12b+12c B.12a-12b+12c C.12a+12b-12cD.-12a+12b+12c5.(2020广东汕头金山中学高二上期中)已知正方体ABCD-A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则x ,y 的值分别为( )A.1,1B.1,12 C.12,12 D.12,16.已知PA⊥平面ABCD ,四边形ABCD 为正方形,G 为△PDC 的重心,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =j ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =k ,试用基底{i ,j ,k}表示AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .题组三利用空间向量基本定理解决几何问题7.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,平行六面体的各棱长均相等.给出下列结论:①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.其中正确结论的个数为( )A.1B.2C.3D.48.(2020黑龙江省实验中学高二上期中) 如图,在三棱柱ABC-A1B1C1中,底面ABC为正三角形,侧棱垂直于底面,AB=4,AA1=6.若E是棱BB1的中点,则异面直线A1E与AC1所成角的余弦值为( )A.√1313B.2√1313C.3√1313D.√13269.如图所示,在正方体ABCD-A1B1C1D1中,O为AC与BD的交点,G为CC1的中点,求证:A1O⊥平面GBD.10.如图所示,在平行四边形ABCD 中,AD=4,CD=3,∠ADC=60°,PA⊥平面ABCD ,PA=6,求线段PC 的长.能力提升练题组一 利用基底表示空间向量 1.(2020安徽淮北一中高二上期中,)已知M 、N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN上,且MP=2PN ,设向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =( )A.16a+16b+16c B.13a+13b+13c C.16a+13b+13cD.13a+16b+16c2.(2019北京第八十中学高二下月考,)已知空间的一个基底{a ,b ,c},m=a-b+c ,n=xa+yb+c ,若m ,n共线,则x= ,y= . 3.(2020广东深圳实验学校高二上期中,)如图,在三棱锥O-ABC 中,G 是△ABC 的重心(三条中线的交点),P 是空间任意一点.(1)用向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 表示向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,并证明你的结论;(2)设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,x ,y ,z∈R,请写出点P 在△ABC 的内部(不包括边界)的充分必要条件(不必给出证明).题组二证明平行和垂直4.(多选)()在三棱锥P-ABC中,三条侧棱PA,PB,PC两两垂直,且PA=PB=PC=3,G是△PAB的重心,E,F分别为BC,PB上的点,且BE∶EC=PF∶FB=1∶2,则下列说法正确的是(深度解析)A.EG⊥PGB.EG⊥BCC.FG∥BCD.FG⊥EF5.(2020海南五指山农垦实验中学高二上期中,)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=√2AD,若E、F分别为PC、BD的中点.求证:2(1)EF∥平面PAD;(2)EF⊥平面PDC.(用向量方法证明)深度解析6.(2020陕西西北大学附属中学高二上期中,)如图所示,已知四面体ABCD的棱长为1,点E,F,G分别⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b,AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c,{a,b,c}为空间向量的一个基底,计算:⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a,AA是AB,AD,CD的中点,设AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;(2)|AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ |.⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA(1)AA7.(2020浙江余姚中学高二上期中,)在所有棱长均为2的三棱柱ABC-A 1B 1C 1中,∠B 1BC=60°,求证:(1)AB 1⊥BC; (2)A 1C⊥平面AB 1C 1.题组三 求线段长度和两条异面直线所成角 8.(多选)()如图,一个结晶体的形状为平行六面体ABCD-A 1B 1C 1D 1,其中,以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°,下列说法中正确的是( )A.AC 1=6√6B.AC 1⊥DBC.向量A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是60°D.BD 1与AC 所成角的余弦值为√63 9.(2020浙江杭州学军中学高二上期中,)棱长为a 的正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与AB 所成角的大小是 ,线段EF 的长度为 . 10.(2020天津一中高二期末,)如图,在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°,棱AA 1=2,点N为AA 1的中点. (1)求AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的模;(2)求cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >的值.答案全解全析 基础过关练1.C 结合长方体,如图,可知向量a ,b ,x 共面,x ,y ,z 不共面,b ,c ,z 不共面,x ,y ,a+b+c 也不共面,故选C.方法归纳 判断给出的某一个向量组中的三个向量能否作为基底,关键是要判断它们是否共面,如果从正面难以入手,常用反证法或借助一些常见的几何图形帮助我们进行判断.2.B 空间不共面的三个向量可以作为空间的一个基底,若a ,b ,c 是三个共面的非零向量,则{a ,b ,c}不能作为空间的一个基底;但若{a ,b ,c}为空间的一个基底,则a ,b ,c 不共面,所以a ,b ,c 是三个非零向量,所以p 是q 的必要不充分条件,故选B.3.答案 52,-1,-12解析 由题意得,a 、b 、c 为三个不共面的向量,∴由空间向量基本定理可知必然存在唯一的有序实数组(α,β,γ),使d=αa+βb+γc.∴d=α(e 1+e 2+e 3)+β(e 1+e 2-e 3)+γ(e 1-e 2+e 3)=(α+β+γ)e 1+(α+β-γ)e 2+(α-β+γ)e 3. 又∵d=e 1+2e 2+3e 3,∴{A +A +A =1,A +A -A =2,A -A +A =3⇒{A =52,A =-1,A =-12.4.D A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =12(A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=-12a+12b+12c ,故选D. 方法归纳 用基底表示向量的策略:(1)若基底确定,则充分利用向量加法、减法的三角形法则和平行四边形法则以及数乘向量的运算律表示向量;(2)若没有设定基底,首先选择基底,选择基底时,要尽量使所选的基向量能方便地表示其他向量,再就是看基向量的模及其夹角已知或易求.5.C AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以x=12,y=12,故选C. 6.解析 如图所示,延长PG 交CD 于E ,则E 为CD 的中点.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =13(-k+i+j-k+j)=13i+23j-23k.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=-i+k+13i+23j-23k =-23i+23j+13k.AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i+(-23A +23A +13A )=13i+23j+13k.7.C ∵A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∥A 1P ⃗⃗⃗⃗⃗⃗⃗⃗ ,从而A 1M∥D 1P ,∵D 1P ⊂平面DCC 1D 1,A 1M ⊄平面DCC 1D 1,∴A 1M∥平面DCC 1D 1,同理A 1M∥平面D 1PQB 1,故①③④正确.又B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行,故②不正确.故选C.8.A 设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}构成空间的一个基底, A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =a-12c ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b+c ,cos<A 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=A 1E ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗|A 1E ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗| =(A -12A )·(A +A )|A -12A ||A +A |=5×2√13=-√1313, 所以异面直线A 1E 与AC 1所成角的余弦值为√1313.9.证明 AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 是三个不共面的向量,它们构成空间的一个基底{AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ },A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ , AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =[12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ]·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,A 1O ⃗⃗⃗⃗⃗⃗⃗⃗ ·AA⃗⃗⃗⃗⃗⃗⃗⃗⃗ =[12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ]·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=0, 所以A 1O⊥DG,A 1O⊥BG,又DG ,BG ⊂平面GBD ,BG∩DG=G,所以A 1O⊥平面GBD.10.解析 因为在平行四边形ABCD 中,∠ADC=60°,所以∠BAD=120°,又PA⊥平面ABCD ,所以PA⊥AB,PA⊥AD.因为AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=√AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=√9+16+36+2×3×4×(-12)-0-0=7,即线段PC 的长为7.能力提升练1.C AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+13×12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13b+13c+16a ,故选C. 2.答案 1;-1解析 ∵m ,n 共线,∴∃λ∈R,使m=λn, ∴a-b+c=λ(xa+yb+c),得{1=AA ,-1=AA ,1=A ,解得{A =1,A =1,A =-1.3.解析 (1)AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ). 证明如下:AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +23×12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +13[(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )] =13(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ).(2)若AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +y AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +z AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,x ,y ,z∈R,则点P 在△ABC 的内部(不包括边界)的充分必要条件是: x+y+z=1,且0<x<1,0<y<1,0<z<1.4.ABD 如图,设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}是空间的一个正交基底, 则a·b=a·c=b·c=0,取AB 的中点H ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =23×12(a+b)=13a+13b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13a+13b-23b-13c=13a-13b-13c ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c-b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13a+13b-13b=13a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13b-(13A +23A )=-13c-13b ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,A 正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,B 正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ≠λAA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (λ∈R),C 不正确;AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,D 正确.故选ABD.解题反思 本题在解决过程中,重点应用了以下知识点.如图,△ABC 中,若BD ∶DC=λ∶μ,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA +A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA +A AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ .在分线段成比例的图形中,要注意这个公式的应用.5.证明 (1)AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )-12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以向量AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 共面, 又EF ⊄平面PAD ,DA ,PD ⊂平面PAD , 所以EF∥平面PAD.(2)因为侧面PAD⊥底面ABCD ,侧面PAD∩底面ABCD=AD ,底面ABCD 是正方形,所以CD⊥平面PAD ,CD⊥PA. 设AD=1,则AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2-2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,即1=12+12-2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 所以AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,所以AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0, 所以EF⊥PD,EF⊥CD,由PD ,CD ⊂平面PCD ,PD∩CD=D,可得EF⊥平面PCD.解题反思 用向量方法证明线面平行或垂直,理论依据是线面平行的判定定理和线面垂直的判定定理,其中涉及的线线平行用共线向量证明,涉及的线线垂直用数量积为0证明.6.解析 (1)由题意得|a|=|b|=|c|=1,a·b=a·c=b·c=12,∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12c-12a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-a , ∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(12A -12A )·(-a)=-14+12=14.(2)∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(b+c)-12a ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(12A +12A -12A )2=14a 2+14b 2+14c 2+12b·c -12b·a -12a·c=12, ∴|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√22.7.证明 (1)易知<AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=120°,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2×(-12)+2×2×12=0.所以AB 1⊥BC.(2)易知四边形AA 1C 1C 为菱形,所以A 1C⊥AC 1.因为AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2×12-4-2×2×12+4 =0,所以AB 1⊥A 1C ,又AC 1∩AB 1=A ,所以A 1C⊥平面AB 1C 1.8.AB 因为以顶点A 为端点的三条棱长均为6,且它们彼此的夹角都是60°, 所以AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =6×6×cos60°=18,(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+2AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +2AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +2AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗=36+36+36+3×2×18=216,则|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=6√6, 所以A 正确;AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2-AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=0,所以B 正确; 显然△AA 1D 为等边三角形,则∠AA 1D=60°.因为A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ =A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,且向量A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是120°,所以A 1C ⃗⃗⃗⃗⃗⃗⃗⃗ 与AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的夹角是120°,所以C 不正确; 因为AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,所以|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=6√2,|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=6√3,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=36,所以cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=6√2×6√3=√66,所以D 不正确.故选AB. 9.答案π4;√22a 解析 设AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =c ,则{a ,b ,c}是空间的一个基底,∴|a|=|b|=|c|=a ,a·b=a·c=b·c=12a 2.∵AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ -AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12(a+b)-12c ,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12a 2+12a·b -12a·c=12a 2,|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√(12A +12A -12A )2=√22a ,∴cos<AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=12A 2√22a ×a =√22,∴异面直线EF 与AB 所成的角为π4.10.解析 (1)∵在直三棱柱ABC-A 1B 1C 1中,CA=CB=1,∠BCA=90°, ∴AB=√2,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 1,故AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )2=AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2+AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +14AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 2=2+14×4=3, ∴|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√3.(2)∵CA=CB=1,∠BCA=90°, ∴∠ABC=45°,∴AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |cos(180°-∠ABC)=√2×1×cos135°=-1, 又AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =4, ∴AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )·(AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ) =AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+0+0+4=3,又|AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6×√5=√30, ∴cos<AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ >=√30=√3010.。
人教A版高中数学选择性必修第一册课后习题 第2章 直线和圆的方程 2.2.1 直线的点斜式方程

2.2 直线的方程2.2.1 直线的点斜式方程课后训练巩固提升A组1.已知直线的方程是y+2=-x-1,则( )A.直线经过点(-1,2),斜率为-1B.直线经过点(-1,2),斜率为1C.直线经过点(-1,-2),斜率为-1D.直线经过点(-1,-2),斜率为1解析:根据直线的点斜式方程y-y0=k(x-x0),知C选项正确.答案:C2.直线y=3x-a与y=3x的位置关系是( )A.相交B.平行C.平行或重合D.重合解析:两条直线的斜率均为3,当a=0时,两条直线重合;当a≠0时,两条直线平行.答案:C3.经过点P(2,1),且倾斜角是直线l:y=x-1的倾斜角的两倍的直线方程为( ) A.y=12(x-1)B.x=2C.y-1=2(x-2)D.y-1=2x解析:∵直线l:y=x-1的斜率k=1,∴倾斜角α=45°. ∴所求直线的倾斜角α'=2α=90°. 又直线经过点P(2,1),∴直线方程为x=2. 答案:B4.若直线y=-12ax-12与直线y=3x-2垂直,则a 的值为( )A.-3B.3C.-23D.23解析:∵两条直线垂直,∴-a 2×3=-1,解得a=23. 答案:D5.(多选题)函数y=ax+1a 的图象可能是( )解析:∵a≠0,∴C 错;当a>0时,1a>0,即直线的倾斜角为锐角,且在y 轴上的截距大于0,故A 可能;当a<0时,1a <0,即直线的倾斜角为钝角,且在y 轴上的截距小于0,故B 可能,D 不可能. 答案:AB6.斜率与直线y=32x 的斜率相等,且经过点(-4,3)的直线的点斜式方程是 .解析:直线y=32x 的斜率为32,则所求直线的斜率为32,且过点(-4,3),故所求直线的点斜式方程为y-3=32(x+4).答案:y-3=32(x+4)7.已知直线l 1经过点P(-1,2),斜率为-√33,将l 1绕点P 沿顺时针方向旋转30°角,得到直线l 2,则直线l 2的斜截式方程为 .解析:因为k 1=-√33,所以直线l 1的倾斜角α1=150°.如图,将l 1绕点P 沿顺时针方向旋转30°角,得到的直线l 2的倾斜角α2=150°-30°=120°,所以k 2=tan120°=-√3.所以直线l 2的方程为y-2=-√3(x+1),即y=-√3x+2-√3.答案:y=-√3x+2-√38.过原点O 作直线l 的垂线,垂足为H(-2,1),则直线l 的斜截式方程为 . 解析:由题意得OH ⊥l.∵k OH =-12,∴k l =2,又直线l 经过点H(-2,1).∴直线l 的方程为y-1=2(x+2),即y=2x+5. 答案:y=2x+59.已知△ABC 的顶点坐标是A(-5,0),B(3,-3),C(0,2),求△ABC 的三条边所在直线的点斜式方程. 解:边AB 所在直线的斜率k AB =-3-03-(-5)=-38,直线经过点A(-5,0),因此,边AB所在直线的点斜式方程为y=-38(x+5).同理可得,边BC 所在直线的点斜式方程为y-2=-53x,边AC 所在直线的点斜式方程为y-2=25x.10.当a 为何值时,直线l 1:y=(2a-1)x+3与直线l 2:y=4x-3 (1)平行?(2)垂直?解:由题意可知,直线l 1的斜率k 1=2a-1,直线l 2的斜率k 2=4. (1)若l 1∥l 2,则k 1=k 2,即2a-1=4,解得a=52.故当a=52时,直线l 1:y=4x+3与直线l 2:y=4x-3平行.(2)若l 1⊥l 2,则k 1k 2=-1,即4(2a-1)=-1,解得a=38.故当a=38时,直线l 1:y=-14x+3与直线l 2:y=4x-3垂直.B 组1.直线y=k(x-1)+2恒过定点( ) A.(-1,2) B.(1,2)C.(2,-1)D.(2,1)解析:把直线方程化为点斜式为y-2=k(x-1),可知该直线恒过定点(1,2). 答案:B2.将直线y=√3(x-2)绕点(2,0)沿逆时针方向旋转60°后所得直线的点斜式方程是( )A.y=-√3(x-2)B.y=√3(x+2)C.y=-√3(x+2)D.y=√3(x-2)解析:∵直线y=√3(x-2)的倾斜角是60°,且恒过定点(2,0),∴绕点(2,0)沿逆时针方向旋转60°后的直线的倾斜角为120°,则斜率为-√3.又过点(2,0),∴直线方程为y=-√3(x-2). 答案:A3.若直线l 经过点(0,2),且倾斜角的正弦值为45,则直线l 的点斜式方程为( )A.y+2=43xB.y-2=43xC.y-2=43x,y-2=-43xD.y+2=43x,y+2=-43x解析:设直线l 的倾斜角为θ,∵sinθ=45,且0≤θ<180°,∴tanθ=±43.又经过点(0,2),∴直线l 的点斜式方程为y-2=43x 或y-2=-43x.答案:C4.已知直线l 1:y=x+12a,l 2:y=(a 2-3)x+1,若l 1∥l 2,则a 的值为( )A.4B.2C.-2D.±2解析:由l 1∥l 2,得a 2-3=1,且a 2≠1,解得a=-2. 答案:C5.直线y=m ∈R)恒过定点 .解析:把直线方程化为点斜式为y-2=m(x-3),则该直线恒过定点(3,2). 答案:(3,2)6.如图,直线l 的斜截式方程为y=kx+b,则点(k,b)在第 象限.解析:由题图知,直线l 的倾斜角是钝角,则k<0;直线l 与y 轴的交点在y 轴的正半轴上,则b>0. 故点(k,b)在第二象限. 答案:二7.已知直线l 经过点(-5,-4),且它与两坐标轴围成的三角形的面积为5,求直线l 的点斜式方程.解:由题意知直线l 的斜率存在.设直线l 的斜率为k,显然k≠0,则直线l 的方程为y+4=k(x+5). 令x=0,得y=5k-4; 令y=0,得x=4-5k k .由题意得12·|4-5kk|·|5k -4|=5,即(5k -4)2|k |=10,得25k 2-30k+16=0或25k 2-50k+16=0,解得k=85或k=25.故直线l 的点斜式方程为y+4=85(x+5)或y+4=25(x+5). 8.已知直线l:5ax-5y-a+3=0,(1)求证:不论a 为何值,直线l 总过第一象限; (2)为了使直线l 不过第二象限,求a 的取值范围.(1)证明:直线l 的方程可化为y-35=a (x −15),由点斜式方程可知直线l 的斜率为a,且恒过定点A (15,35).由于点A 在第一象限,故直线一定过第一象限.(2)解由(1)知直线l 的斜率为a,且经过定点A (15,35).根据题意,画出图象,如图所示,其中AP 为垂直于x 轴的直线.当直线l 介于直线AO 与AP 之间(包含直线AO 但不包含直线AP)时,直线l 不过第二象限. 由于直线AO 的斜率k AO =35-015-0=3,直线AP 的斜率不存在,故a 的取值范围是[3,+∞).。
人教A版高中数学选择性必修第一册课后习题 第一章 1.2 空间向量基本定理

1.2 空间向量基本定理A 级必备知识基础练1.如图,在平行六面体ABCD-A 1B 1C 1D 1中,AC 与BD 的交点为M,AB ⃗⃗⃗⃗⃗ =a,AD ⃗⃗⃗⃗⃗ =b,AA 1⃗⃗⃗⃗⃗⃗⃗ =c,则下列向量中与C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 相等的向量是( )A.-12a+12b+cB.12a+12b+cC.-12a-12b-cD.-12a-12b+c2.已知正方体ABCD-A 1B 1C 1D 1,点E 为上底面A 1B 1C 1D 1的中心,若AE ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗ ,则x,y 的值分别为( ) A.1,1B.1,12C.12,12D.12,13.在正方体ABCD-A 1B 1C 1D 1中,设AB ⃗⃗⃗⃗⃗ =a,AD ⃗⃗⃗⃗⃗ =b,AA 1⃗⃗⃗⃗⃗⃗⃗ =c,A 1C 1与B 1D 1的交点为E,则BE⃗⃗⃗⃗⃗ = . 4.已知三棱柱ABC-A 1B 1C 1的侧棱垂直于底面,∠BAC=90°.求证:AB ⊥AC 1.B 级关键能力提升练5.如图,在三棱柱ABC-A 1B 1C 1中,M 为A 1C 1的中点,若AB ⃗⃗⃗⃗⃗ =a,AA 1⃗⃗⃗⃗⃗⃗⃗ =c,BC ⃗⃗⃗⃗⃗ =b,则下列向量与BM⃗⃗⃗⃗⃗⃗ 相等的是( )A.-12a+12b+cB.12a+12b+cC.-12a-12b+cD.12a-12b+c6.在四面体O-ABC 中,G 1是△ABC 的重心,G 是OG 1上的一点,且OG=3GG 1,若OG ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,则(x,y,z)为( ) A.(14,14,14)B.(34,34,34) C.(13,13,13) D.(23,23,23) 7.在棱长为a 的正四面体ABCD 中,E,F 分别为棱AD,BC 的中点,则异面直线EF 与AB 所成角的大小是 ,线段EF 的长度为 .8.(广东深圳质检)已知四面体ABCD 中,AB ⃗⃗⃗⃗⃗ =a-2c,CD ⃗⃗⃗⃗⃗ =5a+6b-8c,AC,BD 的中点分别为E,F,则EF ⃗⃗⃗⃗ = .C 级学科素养创新练9.在如图所示的平行六面体ABCD-A 1B 1C 1D 1中,已知AB=AA 1=AD,∠BAD=∠DAA 1=60°,∠BAA 1=30°,N 为A 1D 1上一点,且A 1N=λA 1D 1.若BD ⊥AN,则λ的值为 .1.2 空间向量基本定理1.C C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ −AC 1⃗⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )-(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CC 1⃗⃗⃗⃗⃗⃗⃗ )=-12a-12b-c. 2.C 因为AE ⃗⃗⃗⃗⃗ =12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AC 1⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ ,所以x=12,y=12.故选C.3.-12a+12b+c 如图,BE ⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1E ⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +12(B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗ +12(AD ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ )=-12a+12b+c.4.证明设AB ⃗⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗⃗ =b,AA 1⃗⃗⃗⃗⃗⃗⃗ =c,则AC 1⃗⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CC 1⃗⃗⃗⃗⃗⃗⃗ =b+c. 所以AB ⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =a·(b+c)=a·b+a·c. 因为AA 1⊥平面ABC,∠BAC=90°, 所以a·b=0,a·c=0, 得AB ⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =0, 故AB ⊥AC 1.5.A BM ⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +12(B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=AA 1⃗⃗⃗⃗⃗⃗⃗ +12(BA ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ )=12(-a+b)+c=-12a+12b+c.6.A 如图所示,连接AG 1交BC 于点E,则E 为BC 的中点,AE⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12(OB ⃗⃗⃗⃗⃗ -2OA ⃗⃗⃗⃗⃗ +OC⃗⃗⃗⃗⃗ ),AG 1⃗⃗⃗⃗⃗⃗⃗ =23AE ⃗⃗⃗⃗⃗ =13(OB ⃗⃗⃗⃗⃗ -2OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ). 因为OG ⃗⃗⃗⃗⃗ =3GG 1⃗⃗⃗⃗⃗⃗⃗ =3(OG 1⃗⃗⃗⃗⃗⃗⃗ −OG ⃗⃗⃗⃗⃗ ),所以OG ⃗⃗⃗⃗⃗ =34OG 1⃗⃗⃗⃗⃗⃗⃗ .则OG ⃗⃗⃗⃗⃗ =34OG 1⃗⃗⃗⃗⃗⃗⃗ =34(OA ⃗⃗⃗⃗⃗ +AG 1⃗⃗⃗⃗⃗⃗⃗ )=34(OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗)=14OA ⃗⃗⃗⃗⃗ +14OB ⃗⃗⃗⃗⃗ +14OC⃗⃗⃗⃗⃗ . 7.π4√22a 设AB ⃗⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗⃗ =b,AD ⃗⃗⃗⃗⃗ =c,则{a,b,c}是空间的一个基底,|a|=|b|=|c|=a,a·b=a·c=b·c=12a 2. ∴EF ⃗⃗⃗⃗⃗ =AF ⃗⃗⃗⃗⃗ −AE⃗⃗⃗⃗⃗ =12(a+b)-12c, ∴EF ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =12a 2+12a·b -12a·c=12a 2,|EF⃗⃗⃗⃗⃗ |=√(12a +12b -12c) 2=√22a. ∴cos<EF ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ >=EF ⃗⃗⃗⃗⃗ ·AB⃗⃗⃗⃗⃗ |EF ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗|=12a 2√22a×a =√22, ∴异面直线EF 与AB 所成的角为π4. 8.3a+3b-5c 如图所示,取BC 的中点G,连接EG,FG,则EF ⃗⃗⃗⃗⃗ =GF ⃗⃗⃗⃗⃗ −GE ⃗⃗⃗⃗⃗ =12CD ⃗⃗⃗⃗⃗ −12BA ⃗⃗⃗⃗⃗ =12CD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ =12(5a+6b-8c)+12(a-2c)=3a+3b-5c.9.√3-1 取空间中一组基底:AB ⃗⃗⃗⃗⃗ =a,AD ⃗⃗⃗⃗⃗ =b,AA 1⃗⃗⃗⃗⃗⃗⃗ =c, 设AB=1, 因为BD ⊥AN, 所以BD⃗⃗⃗⃗⃗⃗ ·AN ⃗⃗⃗⃗⃗⃗ =0. 因为BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b-a,AN ⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =c+λb, 所以(b-a)·(c+λb)=0, 所以12+λ-√32−λ2=0,所以λ=√3-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。