特征质子的化学位移
不同类型质子的化学位移范围

不同类型质子的化学位移范围
不同类型的质子在化学位移上具有不同的范围。
以下是一些常见类型质子的化学位移范围:
1. 甲基质子(CH3):通常在0.8到
2.5 ppm的范围内。
2. 亚甲基质子(CH2):通常在1.2到2.8 ppm的范围内。
3. 亚甲质子(CH):通常在1.5到3.0 ppm的范围内。
4. 芳香质子(Ar-H):通常在6.5到9.0 ppm的范围内。
5. 羟基质子(OH):通常在1.5到5.0 ppm的范围内。
6. 醛、酮质子(C=O):通常在2.0到3.5 ppm的范围内。
需要注意的是,这些范围只是一般性的规律,实际上每种化合物的质子化学位移范围会受到其他因素的影响,如分子结构、相邻基团的影响等。
因此,在具体实验中,还需要通过比对实验数据和已有的文献数据来准确确定质子的化学位移范围。
不同类型质子的化学位移

B0
C16
16
O
C
O (C)
C
C
三、影响化学位移的因素
3. 炔键的磁各向异性效应 炔键的电子环流在键轴方向附近产生反屏蔽区域,化学位移向高 场方向移动。如下图所示:
17
17
三、影响化学位移的因素
三、氢键效应 连接在杂原子(如O、N、S)上的质子容易形成氢键,氢键状态 对形成氢键质子化学位移的影响称为氢键效应。活泼氢形成氢键后, 所受的屏蔽效应变小,化学位移值移向低场。 分子间氢键形成的程度与试样浓度、温度以及溶剂的种类有关。 分子内氢键的特点是不随非极性溶剂的稀释而改变其缔合程度,据此 可与分子间氢键相区别。
CH3X X 的电负性 δ CH3F 4.0 4.26 CH3Cl 3.1 3.05
12
CH3Br 2.8 2.68
CH3I 2.5 2.16
CH4 2.1 0.23
12
三、影响化学位移的因素
一、电性效应
2. 共轭效应 共轭取代基可使与之共轭结构中的价电子分布发生改变,从而引起质 子的化学位移变化。如醛基(-CHO)与苯环间呈吸电子共轭效应, 使苯环上总的电子云密度减少,苯环上各质子δ 值都大于未取代苯上 质子的δ 值。
2
B0 标准 - 样品
共振频率差(Δν ,Hz)与外磁场强度B0成正比。同一样品的同一磁性核
用不同MHz仪器测得的共振频率差不同。如我们假定一个峰在300
MHz仪器上对于频率为1200 Hz9 ,如果换作600 MHz的仪器,我们 指定的峰将会是2400 Hz的位置。
9
二、化学位移标准物质和化学位移的表示
6
6
二、化学位移标准物质和化学位移的表示
乙炔化学位移

乙炔化学位移乙炔是一种有机化合物,化学式为C2H2。
它是最简单的炔烃,也是一种重要的工业原料。
乙炔的化学位移是指它在核磁共振(NMR)谱图中的特征峰位移。
本文将探讨乙炔化学位移的相关知识。
在核磁共振谱图中,乙炔的化学位移通常以ppm(部分百万)为单位进行表示。
化学位移与乙炔分子中的质子环境有关,不同的质子环境会导致不同的化学位移。
乙炔分子中有两个质子,一个位于碳原子上,另一个位于氢原子上。
它们分别对应着不同的峰位。
在乙炔的核磁共振谱图中,乙炔质子的化学位移通常在2.5至3.0 ppm之间。
这个范围内的峰位是由于乙炔中碳原子上的质子引起的。
乙炔的碳原子上的质子受到共轭效应的影响,使得化学位移较高。
乙炔分子中的氢原子也会对核磁共振谱图产生影响。
乙炔分子中氢原子的化学位移通常在2.0至2.5 ppm之间。
这个范围内的峰位是由于乙炔中氢原子引起的。
乙炔分子中的氢原子受到乙炔的π电子云的影响,使得化学位移较低。
乙炔的化学位移不仅受到乙炔本身结构的影响,还受到实验条件的影响。
例如,溶剂的选择、温度和pH值等因素都可能导致乙炔化学位移的变化。
因此,在进行核磁共振实验时,需要注意这些因素对乙炔化学位移的影响。
除了乙炔本身的化学位移,乙炔也可以通过与其他化合物反应产生新的化学位移。
例如,乙炔与氢气反应生成乙烯,乙烯的化学位移与乙炔有所不同。
这种反应可以通过核磁共振谱图来监测和分析。
乙炔的化学位移是指它在核磁共振谱图中的特征峰位移。
乙炔的化学位移与其分子结构和实验条件有关,可以通过核磁共振实验来确定和分析。
乙炔的化学位移是研究乙炔性质和反应的重要手段之一,对于有机化学和材料科学等领域具有重要意义。
希望通过本文的介绍,读者对乙炔化学位移有了更加全面的了解。
各类质子的化学位移

各类质子的化学位移碳上质子的化学位移值取决于质子的化学环境。
因此,我们也可以反过来由质子的化学位移推测质子的化学环境及分子的结构。
各类质子的化学位移大体有一个范围,下面给出各类质子的粗略化学位移:碳上的氢(H)脂肪族CH(C上无杂原子)0——2.0β-取代脂肪族CH1.0——2.0炔氢1.6——3.4α-取代脂肪族CH(C上有O、N、X或与烯键、炔键相连) 1.5——5.0烯氢4.5——7 .5苯环、芳杂环上氢6.0——9.5醛基氢9——10 .5氧上的氢(OH)醇类0.5——5.5酚类4 .0——8.0酸9——13.0氮上的氢(NH)脂肪族0.6——3.5芳香胺3.0——5.0酰胺5——8.5对于大部分有机化合物来说氢谱的化学位移值在0-13 ppm. 大致可分以下几个区0-0.8 ppm :很少见,典型化合物; 环丙烷,硅烷,以及金属有机化合物。
0.8-1.5 ppm :烷烃区域. 氢直接与脂肪碳相连,没有强电负性取代基。
化学位移地次序CH>CH2>CH3.。
如果有更多的取代基化学位移移向低场。
2-3 ppm:羰基αH(醛、酮、羧酸、酯)、苄位碳H。
1.5-2ppm:烯丙位碳H卤代烃(氯、溴、碘)同碳氢:2-4ppm,氟代烃:4-4.53.0-4.5 ppm:醚区域。
即醚,羟基或者酯基碳氧单键的αH如果有更多的电负性取代基化学位移移向低场。
5.0-7.0 ppm :双键区域,氢直接与C=C 双键相连。
炔氢化学位移2-3。
7.0-8.0 ppm :芳环质子区域. 磁各向异性作用,导致芳环质子处于去屏蔽区。
同样现象发生在醛由于羰基地磁各向异性,醛质子化学位移在9-10 ppm-OH 可以出现在任何位置,谱线的性质由多重因此影响H的交换:pH.浓度,温度,溶剂等。
一般芳环酚羟基更趋于低场。
醇羟基0.5-5.5ppm,酚羟基4-8ppm 醇在DMSO中4.0-6.5大多数的-NHR, -NH2和醇一样,可被交换,在 2-3 ppm 区域显示宽峰。
核磁共振氢谱 (PMR或1HNMR)

核磁共振氢谱(PMR或1HNMR)核磁共振技术是20世纪50年代中期开始应用于有机化学领域,并不断发展成为有机物结构分析的最有用的工具之一。
它可以解决有机领域中的以下问题:(1)结构测定或确定,一定条件下可测定构型和构象;(2)化合物的纯度检查;(3)混合物分析,主要信号不重叠时,可测定混合物中各组分的比例;(4)质子交换、单键旋转、环的转化等化学变化速度的测定及动力学研究。
NMR的优点是:能分析物质分子的空间构型;测定时不破坏样品;信息精密准确。
NMR通常与IR并用,与MS、UV及化学分析方法等配合解决有机物的结构问题,还广泛应用于生化、医学、石油、物理化学等方面的分析鉴定及对微观结构的研究。
一、基本概念核磁共振(简称为NMR)是指处于外磁场中的物质原子核系统受到相应频率(兆赫数量级的射频)的电磁波作用时,在其磁能级之间发生的共振跃迁现象。
检测电磁波被吸收的情况就可以得到核磁共振波谱。
因此,就本质而言,核磁共振波谱是物质与电磁波相互作用而产生的,属于吸收光谱(波谱)范畴。
根据核磁共振波谱图上共振峰的位置、强度和精细结构可以研究分子结构。
发展历史1.1946 年美国斯坦福大学的F. Bloch 和哈佛大学E.M .Purcell领导的两个研究组首次独立观察到核磁共振信号,由于该重要的科学发现,他们两人共同荣获1952 年诺贝尔物理奖。
NMR发展最初阶段的应用局限于物理学领域,主要用于测定原子核的磁矩等物理常数。
2.1950 年前后W .G. Proctor等发现处在不同化学环境的同种原子核有不同的共振频率,即化学位移。
接着又发现因相邻自旋核而引起的多重谱线,即自旋—自旋耦合,这一切开拓了NMR 在化学领域中的应用和发展。
3.20 世纪60 年代,计算机技术的发展使脉冲傅里叶变换核磁共振方法和谱仪得以实现和推广,引起了该领域的革命性进步。
随着NMR 和计算机的理论与技术不断发展并日趋成熟,NMR 无论在广度和深度方面均出现了新的飞跃性进展,具体表现在以下几方面:1)仪器向更高的磁场发展,以获得更高的灵敏度和分辨率,现己有300、400、500、600MHz,甚至1000MHz 的超导NMR 谱仪;2)利用各种新的脉冲系列,发展了NMR 的理论和技术,在应用方面作了重要的开拓;3)提出并实现了二维核磁共振谱以及三维和多维核磁谱、多量子跃迁等NMR 测定新技术,在归属复杂分子的谱线方面非常有用。
化学位移1.2

化学位移1.2
化学位移(chemical shift)是指核磁共振(NMR)谱中吸收峰的位置发生偏移的现象。
在核磁共振谱中,化学位移通常用ppm(百万分之一)表示,即相对于参考化合物的吸收峰位置的偏移量。
化学位移的大小与分子结构、环境因素以及共振频率等因素有关。
例如,在氢原子中,由于其电子云周围的化学环境不同,其吸收峰的位置也会发生变化。
因此,通过观察化学位移的变化,可以推断出分子中不同位置上的氢原子所处的化学环境。
化学位移还可以用于确定化合物的结构、纯度和组成等信息。
例如,在有机化合物的分析中,可以通过观察不同碳原子上的氢原子的化学位移来确定其所处的化学环境,从而推断出该碳原子所连接的其他基团的种类和数量。
核磁共振氢谱 (PMR或1HNMR)

核磁共振氢谱(PMR或1HNMR)核磁共振技术是20世纪50年代中期开始应用于有机化学领域,并不断发展成为有机物结构分析的最有用的工具之一。
它可以解决有机领域中的以下问题:(1)结构测定或确定,一定条件下可测定构型和构象;(2)化合物的纯度检查;(3)混合物分析,主要信号不重叠时,可测定混合物中各组分的比例;(4)质子交换、单键旋转、环的转化等化学变化速度的测定及动力学研究。
NMR的优点是:能分析物质分子的空间构型;测定时不破坏样品;信息精密准确。
NMR通常与IR并用,与MS、UV及化学分析方法等配合解决有机物的结构问题,还广泛应用于生化、医学、石油、物理化学等方面的分析鉴定及对微观结构的研究。
一、基本概念核磁共振(简称为NMR)是指处于外磁场中的物质原子核系统受到相应频率(兆赫数量级的射频)的电磁波作用时,在其磁能级之间发生的共振跃迁现象。
检测电磁波被吸收的情况就可以得到核磁共振波谱。
因此,就本质而言,核磁共振波谱是物质与电磁波相互作用而产生的,属于吸收光谱(波谱)范畴。
根据核磁共振波谱图上共振峰的位置、强度和精细结构可以研究分子结构。
发展历史1.1946 年美国斯坦福大学的F. Bloch 和哈佛大学E.M .Purcell领导的两个研究组首次独立观察到核磁共振信号,由于该重要的科学发现,他们两人共同荣获1952 年诺贝尔物理奖。
NMR发展最初阶段的应用局限于物理学领域,主要用于测定原子核的磁矩等物理常数。
2.1950 年前后W .G. Proctor等发现处在不同化学环境的同种原子核有不同的共振频率,即化学位移。
接着又发现因相邻自旋核而引起的多重谱线,即自旋—自旋耦合,这一切开拓了NMR 在化学领域中的应用和发展。
3.20 世纪60 年代,计算机技术的发展使脉冲傅里叶变换核磁共振方法和谱仪得以实现和推广,引起了该领域的革命性进步。
随着NMR 和计算机的理论与技术不断发展并日趋成熟,NMR 无论在广度和深度方面均出现了新的飞跃性进展,具体表现在以下几方面:1)仪器向更高的磁场发展,以获得更高的灵敏度和分辨率,现己有300、400、500、600MHz,甚至1000MHz 的超导NMR 谱仪;2)利用各种新的脉冲系列,发展了NMR 的理论和技术,在应用方面作了重要的开拓;3)提出并实现了二维核磁共振谱以及三维和多维核磁谱、多量子跃迁等NMR 测定新技术,在归属复杂分子的谱线方面非常有用。
共轭效应使质子的化学位移值

共轭效应使质子的化学位移值
共轭效应是有机化学中一个重要的概念,它能够影响质子的化学位移值。
质子的化学位移值是核磁共振(NMR)谱图中的一个重要参数,能够提供有关分子结构和化学环境的信息。
在有机分子中,共轭效应指的是共轭双键或环中的π电子系统对相邻原子的化学环境产生的影响。
共轭双键或环中的π电子系统能够通过电子共轭作用来影响相邻原子的电子密度分布,从而改变质子的化学位移值。
共轭效应可以通过改变π电子的分布来改变相邻原子的电子云密度。
当共轭双键或环中的π电子系统与相邻原子的有机基团形成共轭体系时,共轭体系中的π电子能够在整个体系中传递电子,从而改变相邻原子的电子云分布。
这种电子共轭作用可以导致相邻原子电子云的偏移,从而改变质子的化学位移值。
例如,苯环是一个典型的共轭体系。
苯环中的π电子能够在整个环中传递电子,从而改变相邻原子的电子云密度。
这种电子共轭作用导致苯环中的质子化学位移值出现了特征性的峰。
共轭效应还可以通过改变相邻原子的电荷分布来影响质子的化学位移值。
当共轭体系中的π电子系统与相邻原子的有机基团发生共轭作用时,π电子系统能够改变相邻原子的电荷分布,导致质子的化学位移值发生改变。
共轭效应是影响质子化学位移值的重要因素。
通过共轭作用,π电子能够改变相邻原子的电子云分布和电荷分布,从而影响质子的化学位移值。
在有机化学中,理解和应用共轭效应对于解读NMR谱图和确定分子结构具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R2CHCOOR
2~2、2
RCH2F
4~4、5
RCOOCH3
3、7~4
RCH2Cl
3~4
RC≡CCOCH3
2~3
RCH2Br
3、5~4
RNH2或R2NH
0、5~5(峰不尖锐,常呈馒头形)
RCH2I
3、2~4
ROH
0、5~5、5(温度、溶剂
、浓度改变时影响很大)
RCONRH或ArCONRH
5~9、4
[1]
烷烃
甲烷氢的化学位移值为0、23,其它开链烷烃中,一级质子在高场δ≈9处出现,二级质子移向低场在δ≈1、33处出现,三级质子移向更低场在δ≈1、5处出现。例如:
烷烃
CH4
CH3—CH3
CH3—CH2—CH3
(CH3)3CH
δ
0、23
0、86
0、86
0、91
1、33
0、91
0、86
1、50
甲基峰一般具有比较明显的特征,亚甲基峰与次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0、7~4-5这一范围。
特征质子的化学位移
由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子就是重要的,而确定质子类型对于阐明分子结构就是十分有意义的。下表列出了一些特征质子的化学位移,表中黑体字的H就是要研究的质子。
特征质子的化学位移
质子的类型
化学位移
质子的类型
化学位移
RCH3
0、9
ArOH
4、5-4、7(分子内缔合10、5~16)
炔烃
炔基氢就是与三键碳相连的氢,由于炔键的屏蔽作用,炔氢的化学位移移向高场,一般δ=1、7~3-5处有一吸收峰。例如,HC≡CH(1、80),RC≡CH(1、73~1、88),ArC≡CH(2、71~3-37),—CH=CH-C≡CH(2、60~3、10),—C≡C—C≡CH(1、75~2、42),CH3-C≡C-C≡C-C≡CH(1、87)。HC≡C—若连在一个没有氢的原子上,则炔氢显示一个尖锐的单峰。炔基对甲基、亚甲基的化学位移有影响,与炔基直接相连的碳上的氢化学位移影响最大,其δ值约为1、8~2、8。[1]
R2CH2
1、3
R3CH
1、5
Rபைடு நூலகம்C=CR—OH
15~19(分子内缔合)
0、22
RCH2OH
3、4~4
R2C=CH2
4、5~5、9
ROCH3
3、5~4
R2C=CRH
5、3
RCHO
9~10
R2C=CR—CH3
1、7
RCOCR2—H
2~2、7
RC≡CH
7~3、5
HCR2COOH
2~2、6
ArCR2—H
2、2~3
羧酸衍生物
酯中烷基上的质子RCOOCH2R的化学位移δH=3、7~4。酰胺中氮上的质子RCONHR的化学位移,一般在δ= 5~9、4之间,往往不能给出一个尖锐的峰。
羰基或氮基附近α碳上的质子具有类似的化学位移= 2~3,例如,CH3COClδH=2、67,CH3COOCH3δH=2、03, RCH2COOCH3δH=2、13,CH3CONH2δH= 2、08,RCH2CONH2δH=2、23,CH3CNδH=1、98,RCH2CNδH=2、30。[1]
环己烷构象的转换[1]
其它未取代的环烷烃在常温下也只有一个吸收峰。环丙烷的δ值为0、22,环丁烷的δ值为1、96,别的环烷烃的δ值在1、5左右。取代环烷烃中,环上不同的氢有不同的化学位移,它们的图谱有时呈比较复杂的峰形,不易辨认。[1]
C6D11H在不同温度下的1H-NMR谱[1]
烯烃
烯氢就是与双键碳相连的氢,由于碳碳双键的各向异性效应,烯氢与简单烷烃的氢相比δ值均向低场移动3~4乙烯氢的化学位移约为5、25,不与芳基共轭的取代烯氢的化学位移约在4、5~6、5范围内变化,与芳基共轭时δ值将增大。乙烯基对甲基、亚甲基、次甲基的化学位移也有影响。例如:
其她
醇的核磁共振谱的特点参见后文。醚α-H的化学位移约在3、54附近。
酚羟基氢的核磁共振的δ值很不固定,受温度、浓度、溶剂的影响很大,只能列出它的大致范围。一般酚羟基氢的δ值在4~8范围内,发生分子内缔合的酚羟基氢的δ值在10、5~16范围内。
羧酸H的化学位移在2~2、6之间。羧酸中羧基的质子由于受两个氧的吸电子作用,屏蔽大大降低,化学位移在低场。R2CHCOOHδH=10~12。
芳烃
由于受π电子环流的去屏蔽作用,芳氢的化学位移移向低场,苯上氢的δ=7、27。萘上的质子受两个芳环的影响δ值更大,α质子的δ为7、81,β质子的δ为7、46。一般芳环上质子的在δ值在6、3~8、5范围内,杂环芳香质子的δ值在6、0~9、0范围内。[1]
卤代烃
由于卤素电负性较强,因此使直接相连的碳与邻近碳上质子所受屏蔽降低,质子的化学位移向低场方向移动,影响按F,Cl,Br,I的次序依次下降。与卤素直接相连的碳原子上的质子化学位移一般在δ=2、16~4、4之间,相邻碳上质子所受影响减小,δ=1、25~1、55之间,相隔一个碳原子时,影响更小,δ= 1、03~1、08之间。[1]
化合物
CH4
CH3—CH=CH2
CH3—CH3
CH3—CH2—CH=CH2
(CH3)2CH2
(CH3)2CH—CH=CH2
δ
0、23
1、71
0、86
0、86
1、00
2、00
1、33
1、73
从上面的数据可以瞧出,同碳上有乙烯基的氢δ值约在1、59~2、14之间,变化较大,邻碳上有乙烯基的氢,δ值变化较小。[1]
环己烷的各向异性屏蔽效应[1]
环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的各向异性屏蔽作用,不同氢的δ值略有差异。例如,在环己烷的椅型构象中,由于C-I上的平伏键氢处于C⑵—C⑶键及C⑸—C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,(图环己烷的各向异性屏蔽效应)。所以平伏键氢比直立键氢的化学位移略高0、2~0、5。在低温(-100℃)构象固定时,NMR谱图上可以清晰地瞧出两个吸收峰,一个代表直立键氢,一个代表平伏键氢。但在常温下,由于构象的迅速转换(图环己烷构象的转换),一般只瞧到一个吸收峰(见右图)。