直线与椭圆的位置关系

合集下载

直线和椭圆位置关系总结大全

直线和椭圆位置关系总结大全

1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。

02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。

2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。

2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。

3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。

2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。

3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。

直线与椭圆位置关系

直线与椭圆位置关系

直线与椭圆位置关系二(教师版)一.知识梳理:1.点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:(1)点P 在椭圆上⇔x 02a 2+y 02b2=1;(2)点P 在椭圆内部⇔x 02a 2+y 02b 2<1;(3)点P 在椭圆外部⇔x 02a 2+y 02b2>12.直线与椭圆的位置关系:(1)直线与椭圆有三种位置关系:①相交——直线与椭圆有两个不同的公共点;②相切——直线与椭圆有且只有一个公共点; ③相离——直线与椭圆没有公共点. 3.直线与椭圆的位置关系的判断:我们把直线与椭圆的位置关系问题转化为直线和椭圆的公共点问题,而直线与椭圆的公共点问题,又可以转化为它们的方程所组成的方程组的解的问题,而它们的方程所组成的方程组的解的问题通常又可以转化为一元二次方程解的问题,一元二次方程解的问题可以通过判别式来判断,因此,直线和椭圆的位置关系,通常可由相应的一元二次方程的判别式来判断.4.弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2,∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2,或|AB |=(1k y 1-1ky 2)2+(y 1-y 2)2=1+1k2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2.二、典例剖析例1: 已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解:(1)设F (c ,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x24+y 2=1.(2)当l ⊥x 轴时不合题意,故可设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1得(1+4k 2)x 2-16kx +12=0,当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1,从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.,又点O 到直线l 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,满足Δ>0,所以,当△OPQ 的面积最大时,k =±72,l 的方程为y =72x -2或y =-72x -2.例2 设F 1,F 2分别是椭圆:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,椭圆的离心率22,过F 1倾斜角为45°的直线l 与该椭圆相交于P ,Q 两点,点M (0,-1)满足|MP |=|MQ |,求该椭圆的方程.解 (1)直线PQ 斜率为1,设直线l 的方程为y =x +c ,其中c =a 2-b 2,设P (x 1,y 1),Q (x 2,y 2),则P ,Q 两点坐标满足方程组 ⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b2=1,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.所以|PQ |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2]=43a ,化简,得43a =4ab 2a 2+b2,故a 2=2b 2,所以椭圆的离心率e =c a =a 2-b 2a =22.(2)设PQ 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-23c ,y 0=x 0+c =c3.由|MP |=|MQ |,得k MN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3.故椭圆的方程为x 218+y 29=1. 变式训练:设1F 、2F 分别是椭圆1422=+y x 的左、右焦点.设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.本题主要考察直线、椭圆、平面向量的数量积等基础知识, 以及综合应用数学知识解决问题及推理计算能力。

直线与椭圆的位置关系讲解(全面)

直线与椭圆的位置关系讲解(全面)
求 △F1 AB 的面积.
分析:先画图熟悉题意, 点 F1 到直线 AB 的距离易知,
要求 S△F1AB ,关键是求弦长 AB. 设 A( x1 , y1 ), B( x2 , y2 ) . 由直线方程和椭圆方程联立方程组
解 例焦:2∵:点已椭,圆知过点x2F2 F21作y、2倾F斜21分的角别两为个 是4焦椭的点圆直坐2x线标2 ,F11y求(21△,10F)的1, AF左2B(1、 的, 0右 面) 积. ∴直线 AB 的方程为 y x 1 设 A( x1, y1 ), B( x2 , y2 )
是否存在一点,它到直线l的距离最小? y 最小距离是多少?
解:设直线m平行于l,
则l可写成:4x 5y k 0
x o
4x 5y k 0
由方程组
x2
y2
消去y,得25x2 8kx k 2 - 225 0
25 9 1
由 0,得64k 2 - 4 2(5 k 2 - 225) 0
平分,求此弦所在直线的方程.

作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
知识点3:中点弦问题
点差法:利用端点在曲线上,坐标满足方程,作 差构造出中点坐标和斜率.
设A(x1, y1), B(x2 , y2 ), AB中点M (x0 , y0 ),
则有:2x0 x1 x2 , 2 y0 y1 y2
1 a2
1 b2
1
a2
b2
a2b2
题型一:直线与椭圆的位置关系
练习1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有 两个公共点?有一个公共点?没有公共点?
当k= 6 时有一个交点 3
当k> 6 或k<- 6 时有两个交点

直线与椭圆的位置关系、弦长公式

直线与椭圆的位置关系、弦长公式

解:
3、弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程. 解:
韦达定理→斜率
韦达定理法:利用韦达定理及中点坐标公式来构造
3、弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程.

作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
2.2.2 椭圆的简单几何性质
1-----直线与椭圆的位置关系 2-----弦长公式
高二数学 熊超进
直线与椭圆的位置关系
种类: 相离(没有交点) 相切(一个交点) 相交(二个交点)
相离(没有交点) 相切(一个交点) 相交(二个交点)
1直线与椭圆的位置关系
1.位置关系:相交、相切、相离 2.判别方法(代数法)
例:已知斜率为1的直线L过椭圆 交椭圆于A,B两点,求弦AB之长.
的右焦点,
练习:已知椭C x2 y2 1斜率为1的 直线 l 与椭圆交
3
于 A, B 两点,且 AB 3 2求直线 l 的方程
2
3.若P(x,y)满足 x2 y2 1( y 0) ,求 y 3 的
4
x4
最大值、最小值.
( x1
x2 )2
4 x1
x2
6 5
2
2、弦长公式
设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k.
弦长公式:
弦长的计算方法: 弦长公式:
|AB|= 1 k 2 ·(x1 x2)2 4x1 x2
=
1
1 k2
·(y1
y2)
4 y1

直线和椭圆位置关系总结大全

直线和椭圆位置关系总结大全

1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。

02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。

2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。

2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。

3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。

2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。

3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。

直线与椭圆的位置关系

直线与椭圆的位置关系

直线与椭圆的位置关系
直线与椭圆的位置关系是数学几何学的一个重要问题。

在这篇
文档中,我们将讨论直线与椭圆的几种可能的位置关系。

直线位于椭圆内部
当一条直线完全位于椭圆内部时,我们可以得到以下几种情况:
1. 直线与椭圆没有交点:这意味着直线与椭圆没有任何交点,
且直线与椭圆的轴是平行的。

2. 直线与椭圆有两个交点:这说明直线与椭圆相交于两个点,
椭圆的两个焦点位于直线上。

直线与椭圆位于同一平面
当直线与椭圆位于同一平面时,我们可以得到以下几种情况:
1. 直线与椭圆相切:这种情况下,直线与椭圆只有一个交点,
并且交点是椭圆的一个焦点。

2. 直线与椭圆相交于两点:这意味着直线与椭圆相交于两个不同的点,并且这两个点分别位于椭圆的两个焦点的同侧。

3. 直线与椭圆相离:这种情况下,直线与椭圆没有任何交点,并且直线与椭圆的轴平行。

直线与椭圆相交于无穷多点
当直线与椭圆相交于无穷多点时,这种情况被称为直线与椭圆重叠。

直线与椭圆重叠意味着直线和椭圆重合,任意一点都同时位于直线和椭圆上。

结论
通过研究直线与椭圆的位置关系,我们可以得出结论:直线与椭圆的位置关系取决于直线与椭圆之间的交点数量和位置。

这个问题在计算机图形学、建筑设计等领域都有广泛的应用。

了解这些位置关系有助于我们更好地理解直线和椭圆之间的几何性质。

总之,直线与椭圆的位置关系是一个有趣且复杂的问题,通过分析直线与椭圆的交点情况,我们可以获得更多关于它们的几何特性的信息。

直线与椭圆的位置关系

直线与椭圆的位置关系例1当m 为何值时,直线l : y=x+m 与椭圆•9x 2+16y 2=144相切、相交、相离?离2、有关弦长问题例2 设直线12y x =-与椭圆2242x y +=相交于 点A B 、,求弦AB 的长注意:直线与二次曲线相交弦长的求法(1)联立方程组(2)消去一个未知数(3)利用弦长公式: 弦长公式:=|||A B AB x x =-但有关圆的弦长一般运用垂径定理!特殊的弦—通径:经过椭圆的焦点且垂直于椭圆长轴的弦 222=b AB a《成才》课后强化训练 (八)133、与弦中点有关的问题例3 椭圆221369x y +=的一条弦被(4,2)A 平分,那么这条弦所在的直线方程是A .20x y -=B .2100x y +-=C .220x y --=D .280x y +-=【答案】D注意:弦中点问题的两种处理方法:(1)联立方程组,消去一个未知数,利用韦达定理;(2)设两端点坐标,代入曲线方程相减可求出弦的斜率----点差法4、椭圆中的最值问题《成才之路》P27 例5已知椭圆2288+=x y ,在椭圆上求一点P ,使P 到直线:40-+=l x y 的距离最小,并求出最小值。

分析:即求与:40-+=l x y 平行的椭圆的切线与:40-+=l x y 间的距离课后作业:=1、如果椭圆2212x y +=的弦被点1122⎛⎫ ⎪⎝⎭,平分,求这弦所在的直线方程。

【答案】2430x y +-=2、(2009汕头)如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),l 交椭圆于A 、B 两个不同点。

(1)求椭圆的方程;(2)求m 的取值范围;(3)求证直线MA 、MB 与x 轴始终围成一个等腰三角形.解:(1)设椭圆方程为)0(12222>>=+b a by a x ……1分 则⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧=+=2811422222b a b a b a 解得……………3分 ∴椭圆方程为12822=+y x ………4分 (2)∵直线l 平行于OM ,且在y 轴上的截距为m又K OM =21 m x y l +=∴21的方程为:…………………5分 由0422128212222=-++∴⎪⎪⎩⎪⎪⎨⎧=++=m m x x y x m x y ………6分 ∵直线l 与椭圆交于A 、B 两个不同点,分且解得8...........................................................0,22,0)42(4)2(22≠<<->--=∆∴m m m m(3)设直线MA 、MB 的斜率分别为k 1,k 2,只需证明k 1+k 2=0即可…………9分设42,2),,(),,(221212211-=-=+m x x m x x y x B y x A 且……………………10分则21,21222111--=--=x y k x y k 由可得042222=-++m mx x42,222121-=-++m x x m x x ………………………10分 而)2)(2()2)(1()2()1(2121211221221121----+---=--+--=+x x x y x y x y x y k k )2)(2()1(4)2)(2(42)2)(2()1(4))(2()2)(2()2)(121()2)(121(212212*********------+-=----+++=----++--+=x x m m m m x x m x x m x x x x x m x x m x13......................................................0)2)(2(444242212122=+∴=--+-+--=k k x x m m m m 分 故直线MA 、MB 与x 轴始终围成一个等腰三角形.…14分4、综合问题例1已知椭圆()2222:10x y C a b a b +=>>的离心率为3(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A B 、两点,坐标原点O 到直线lAOB ∆面积的最大值。

直线与椭圆的位置关系


再结合韦达定理解决问题。
弦长问题
例3、已知椭圆
x2 y2 1的左右焦点 2 1
分别为F1,F2,若过点P(0,-2)
及F1的直线交椭圆于A,B两点,
求Δ ABF2的面积
中点问题
例4.已知点A(4,2)是直线l被椭
x y 1 圆 36 9
2 2
截得线段的中点,
求直线l的方程
中点问题
2.弦的中点问题
x2 y2 1 36 9
x2 y 2 练习:椭圆 2 4 1 中,过P(1,1)的弦恰被P 点平分,求该弦所在直线的斜率.
小结:(1)弦长的计算 (2)中点弦问题
(3)韦达定理的应用
x2 2 y 1 ,求过P(1/2,1/2)且被P平 1.巳知椭圆 2 分的弦所在的直线方程.
(2)当 0 时,直线和椭圆有且只有一个公共点,此 时直钱和椭圆相切.
(3)当 0 时,直线和椭圆无公共点,此时称直线和 椭圆相离.
例题选讲
例1、判断直线 kx y 3 0
x y 例题选讲
例2、若直线 y kx 1(k R)
直线与椭圆
教学目的
使学生掌握有关直线与椭圆位置
关系问题,会用设而不求的方法求
弦长.能够解决有关弦的中点问题.
重点:直线与椭圆的位置关糸,弦长公式
的应用
难点:弦长公式及应用.
一、判断直线和椭圆的位置关系
1.联立方程组
2.消去y(或x)得一元二次方程,考察判别式
(1)当 >0 时,直线和椭圆有两个公共点,此时直线和 椭圆相交.
例5、已知中心在原点,长轴在x 轴上的椭圆的两准线间的距离为 2 3 ,若椭圆被直线x+y+1=0截 2 得的弦的中点的横坐标是 3,求 椭圆的方程

直线与椭圆的位置关系

直线与椭圆的位置关系【重要考点】1. 直线与椭圆的位置关系及判断方法(1)直线和椭圆有三种位置关系:相交、 相切 、 相离 ;(2)直线和椭圆的位置关系的判断:设直线方程:y =kx +m ,椭圆方程:22221x y a b+=(0a b >>),两方程联立消去y 可得:Ax 2+Bx +C =0,其判别式为Δ=B 2-4AC 。

当Δ>0时,直线与椭圆 相交 ; 当Δ=0时,直线与椭圆 相切 ; 当Δ<0时,直线与椭圆 相离 。

2. 向量的运算及其中一些特殊几何关系在直线和椭圆解题中的运用,例如直线AB ⊥AC 可转化为0AB AC ⋅=。

【易错点辨析】解答直线和椭圆相关问题要注意避免出现如下两种错误:(1)对直线l 斜率的存在性不作讨论而直接设为点斜式,出现漏解或思维不全造成步骤缺失;(2)对二次项系数不为零或Δ≥0这个前提忽略而直接使用根与系数的关系。

例题1 在直角坐标系xOy 中,椭圆C :x 24+y 23=1的左、右焦点分别为F 1、F 2,点M(23,263)为C 上的一点,点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与曲线C 交于A 、B 两点,若以AB 为直径的圆经过坐标原点O ,求直线l 的方程。

解析:由MN →=MF 1→+MF 2→知四边形MF 1NF 2是平行四边形,其中心为坐标原点O ,因为l ∥MN ,所以l 与OM 的斜率相同。

故l 的斜率k =26323=6。

设l 的方程为y =6(x -m )。

由⎩⎨⎧3x 2+4y 2=12,y =6(x -m ),消去y 并化简得 9x 2-16mx +8m 2-4=0。

设A (x 1,y 1),B (x 2,y 2),x 1+x 2=16m9,x 1x 2=8m 2-49。

因为OA ⊥OB ,所以x 1x 2+y 1y 2=0。

x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m9+6m 2=19(14m 2-28)=0。

直线和椭圆位置关系总结大全

直线和椭圆位置关系总结大全1.直线不交于椭圆:当直线与椭圆不相交时,可以分为以下两种情况:(1)直线在椭圆外部:此时直线与椭圆没有交点;(2)直线在椭圆内部:此时直线与椭圆没有交点。

2.直线与椭圆外切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆外切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆外切于一条线段:此时直线与椭圆有且仅有两个切点。

3.直线与椭圆内切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆内切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆内切于一条线段:此时直线与椭圆有且仅有两个切点。

4.直线穿过椭圆:当一条直线穿过椭圆时,可以分为以下三种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆没有交点:此时直线与椭圆相离。

5.直线包围椭圆:当一条直线将椭圆切割成两个部分时,可以分为以下两种情况:(1)直线穿过椭圆:此时直线将椭圆分成内外两个部分;(2)直线在椭圆外部:此时直线将椭圆分成两个不相交的部分。

6.直线与椭圆重合:当直线与椭圆方程相同或者参数相同时,直线与椭圆重合。

7.直线与椭圆相交:当直线与椭圆有交点时,可以分为以下几种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆相交于两条线段:此时直线穿过椭圆。

总之,直线和椭圆之间的位置关系相当复杂,可以分为不交、外切、内切、相离、穿过、重合和相交等情况。

具体的位置关系可以通过解方程或者观察图形进行判断,同时利用相关的几何性质也可以得到更加精确的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x y 1 相交于 AB 两点, 是的 AB 中 c
点.若 AB 2 2 ,
oc 斜率为
求椭圆方程.
2 (O为原点), 2
x 2 作业:1、已知椭圆 y 1 4
2
(1)当m为何值时,直线 l : y x m 与椭圆相交、相切、 相离? (2)直线 l : y x m 过椭圆的右焦点,交椭圆于A、B 两点,求弦AB的长。
x2 y2 1 上的点到直线 x 2 y 2 0 2.求椭圆 16 4
ex:中心在原点,一个焦点为 F (0,5 2 )的椭圆截直线 y 3x 2 所得弦的中点横坐标为 1 ,求椭圆的 2 方程.
直线与椭圆的位置关系(3)
x y ex1.已知F1 , F2是椭圆 1的左, 右焦点, k 2 k 1 1 弦AB过点F1,若ABF2的周长是8,求e.
x y 2、y=kx+1与椭圆 1 恰有公共点,则m的 5 m 范围( C )
A、(0,1) B、(0,5 ) C、[ 1,5)∪(5,+ ∞ ) D、(1,+ ∞ )
2
2
例1:当m取何值时直线y=x+m与椭圆 4 x2 y 2 16 相交,相切,相离?
解:将y=x+m代入 整理得5x2+2mx+m2-16=0
1 则AB两点的直线可设为:y x b 2
1 y 2 x b 由 2 x y2 1 4 3
消y得 : x2 bx b2 3 0
2 b 2
b2 4(b2 3) 3b2 12 0 设两对称点A( x1, y1 ), B( x2 , y2 )
2
2
三、中点弦问题
例2:在椭圆x2+4y2=16中,求通过点M(2,1)且 被这一点平分的弦所在的直线方程.
法1:联立直线与椭圆, 利用韦达定理建立k的方 程
y2 -4 M(2,1) 4
0
x
法2:点差法(将两个点代 -2 2 入椭圆再相减)2 x y 1 练. 例1.椭圆 1, 设直线y x 1与椭圆交于 直线和椭圆相交有关弦的中点问题,常用设而不求 16 4 2 的思想方法. A、B两点,求线段AB的中点坐标。
1.已知过点 0,2)的直线l与椭圆x 2 y 1交于点A, B, (
2 2
且满足OA OB,求直线l的方程
2. 已知椭圆5x2+9y2=45,椭圆的右焦点为F, (1)求过点F且斜率为1的直线被椭圆截得的弦长. (2)判断点A(1,1)与椭圆的位置关系,并求以A为中点 椭圆的弦所在的直线方程. 3:已知椭圆 mx2 ny2 1 与直线
直线与椭圆的位置关系(1)
直线与椭圆的位置关系
• 围绕直线与椭圆的公共点展开的,将直线方程与 椭圆方程组成方程组,消元后得到一个一元二次 方程, • 当Δ=0时,直线与椭圆相切; • 当Δ>0时,直线与椭圆相交; • 当Δ<0时,直线与椭圆相离。
一、
直线与椭圆的位置关系的判断
2 2
ex1.判断直线y=x+1与椭圆 4 x y 16 的位置关系?
x y ex2.已知椭圆 2 2 1(a b 0)的左焦点为F , a b 右顶点为A, 点B在椭圆上,且 x轴,直线AB BF 交y轴于点P, 若 AP 2 PB, 求e
2 2
2
2
2
1 2
ex3.已知F1,F2是椭圆的两个焦点,满 足 MF1.MF2 0的点M总在椭圆的内部,求 的 e 范围。
2
2
分析: 解:
设直线m平行于l, 则lm 可写成:x 5 y k 0 4
l m
.
P
x
o
思考:
2
x 2 已知椭圆 y 1上点P( x, y ), 求x 2 y的最值 2
小 结: 1、直线与椭圆的三种位置关系及等价条件: 当Δ=0时,直线与椭圆相切; 当Δ>0时,直线与椭圆相交; 当Δ<0时,直线与椭圆相离。 思考:如何判断点和椭圆的位置关系?
思考:
x2 y2 试确定实数 m 的取值范围,使得椭圆 1 4 3 上存在关于直线 y 2 x m 对称的点.
1 分析:存在直线y x b与椭圆交与两点, 2 且两交点的中点在直线y 2 x m上。
解 : 假设椭圆上存在关于直线y 2 x m对称的两点A, B
2 2
x y 2.过椭圆 1 的右焦点与x轴垂直的直线与椭圆 13 12 交于A,B两点,求弦长|AB| 通径
x y 2b 椭圆 2 2 1(a b 0)的通径长为: a b a
2
2
2
x y 例 1:已知点 F1 、F2 分别是椭圆 1 的左、右 2 1 焦点,过 F2 作倾斜角为 的直线交椭圆于 A、B 两点, 4 求 △F1 AB 的面积.
2 2
d
4 x0 5 y0 40

4 x0 5 y0 40 41
l

m
x0 2 25

y0 2 9
m
1
作出直线 m 及椭圆, 观察图形,数形结合思考.
.
P
x y 1 ,直线 4 x 5 y 40 0 ,椭圆 例 2.已知椭圆 25 9 上是否存在一点,到直线 l 的距离最小?最小距离是多 少? y
4m 2 20 (m 2 16 ) 16 m 2 16 20 16 (m 2 20 )
当Δ 0时, 即 2 5 m 2 5 时, 直线与椭圆相交
当Δ 0时,
即m 2 5 时,直线与椭圆相切
当 0时,即m 2 5或m 2 5时,直线与椭圆相离
的最大距离直线与椭圆Βιβλιοθήκη 位置关系(2)二、弦长问题
设 因
A(x1,y1) B(x2,y2) 直线 l
的方程:y kx b
A(x1,y1)
A(x1,y1), B(x2,y2) 在直线
y1 kx1 b
l 上 y2 kx2 b
y1 y2 (kx1 b) (kx2 b)
通 法
1 1 2 y1 y2 k
设而不求
练习1.已知直线y=x-
1 2
与椭圆x2+4y2=2 ,判断它们的位
置关系?若相交,求所得的弦长是多少,交点坐标?
解:联立方程组
因为
1 y x 2
消去y
x2+4y2=2
5x 2 4x 1 0 ----- (1)
∆>0
所以,方程(1)有两个根,则原方程组有两组解….
x2 y2 6 例3.已知椭圆 2 2 1(a b 0)的离心率e , a b 3 3 过点A(0, b), B(a,0)的直线与原点的距离为 。 2 ( )求椭圆的方程 1 椭圆交于CD两点,问:是否存在 的值,使以 k CD为直径的圆过E点?请说明理由。
(2)已知定点E (1,0), 若直线y kx 2(k 0)与
=4b -4(a b)(b 1) 0 ab a b
2
M
设A( x1, y1 ), B( x2 , y2 )
o
B
x
2b b 1 b a x1 x2 , x1 x2 AB中点M ( , ) ab ab ab ab a 2 又 AB 1 k 2 ( x1 x2 ) 2 4 x1 x2 k MO b 2a b 2 1 2 2b 2 b 1 a ,b 2 2 2 ( ) 4 ab ab 3 3
2 2
x y ex4.已知椭圆 2 2 1(a b 0), F1,F2分别 a b 是它的左,右焦点,如 果在椭圆上存在一点
2 (0, ) 2
1 M ( x0 , y0 ),使得F1MF2 ,求e的范围。 [ ,1) 3 2

5. 以椭圆的焦距为直径并过两焦点的圆,交椭圆 于四个不同的点,顺次连接这四个点和两个焦点 恰好组成一个正六边形,那么这个椭圆的离心率 _________ 3 1
x y 1 ,直线 4 x 5 y 40 0 ,椭圆 例 2.已知椭圆 25 9 上是否存在一点,它到直线 l 的距离最小?最小距离是 多少?
分析:设 P( x0 , y0 ) 是椭圆上任一点, 试求点 P 到直线 4 x 5 y 40 0 的距离的表达式.
2
2
4 5 尝试遇到困难怎么办?
弦长公式:
k ( x1 x2 )
B(x2,y2)
|AB| = ( x1 x2 ) 2 ( y1 y2 ) 2 ( x1 x2 ) 2 k ( x1 x2 ) 2
(1 k 2 )( x1 x2 ) 2
1 k x1 x2
2
(1 k 2 ) ( x1 x2 ) 2 4 x1 x2
y M
F1
o
F2
x
x2 y2 变式. 设M点是椭圆 a 2 b 2 1上一点, F1、F2为
椭圆的左右焦点,如果∠MF1F2=600, ∠MF2F1=300, 求此椭圆的离心率
例.已知椭圆的焦点 F1 (3,0), F2 (3,0) , 且和直线
x y 9 0有公共点,求其中长轴最短的椭圆方程
x1 x2 b
1 3 y1 y2 ( x1 x2 ) 2b b 2 2 b 3b AB中点( , )在直线y 2 x m上 2 4 3b b b 4 m 2 m 4 2 1 1 m 2 4m 2 2 2
例4、如图,已知椭圆
ax by 1与直线x+y-1=0交
相关文档
最新文档