全国初一初中数学单元试卷带答案解析
全国初一初中数学单元试卷带答案解析

全国初一初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.x的与5的差不小于3,用不等式可表示为______.2.当x______时,式子3x-5的值大于5x+3.3.不等式x≤的正整数解为______,不等式-2≤x<1的整数解为______.4.已知x>2,化简x-|2-x|=______.5..如果0<a<1,那么a,1和的大小关系(用“<”连接)是 ______.6.若不等式组有解,则m的取值范围是______.7.若不等式2x<a的解集为x<2,则a=______.8.某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对______道题,成绩才能在60分以上.二、选择题1.已知a<b,则下列不等式中不正确的是().A.4a<4b B.a+4<b+4C.-4a<-4b D.a-4<b-42..不等式的正整数解有().A.1个B.2个C.3个D.4个3.满足-1<x≤2的数在数轴上表示为().4.如果|x-2|=x-2,那么x的取值范围是().A.x≤2B.x≥2C.x<2D.x>25.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约为().A.1小时~2小时B.2小时~3小时C.3小时~4小时D.2小时~4小时6.不等式组的解集是().A.x<-1B.x≤2C.x>1D.x≥27.若方程3m(x+1)+1=m(3-x)-5x的解是负数,则m的取值范围是().A.m>-1.25B.m<-1.25C.m>1.25D.m<1.258.三、其他某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是().A.5千米B.7千米C.8千米D.15千米四、解答题1.(本题8分)解不等式.2.(本题10分)解不等式组,并求其整数解.3.(本题10分)已知方程组当m为何值时,x>y?4.(本题11分)娃哈哈矿泉水每瓶售价1.2元,现甲、乙两家商场给出优惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.若你是消费者,选哪家商场购买比较合适?5.(本题12分)有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个,如果每只猴子分5个,有一只猴子分得的桃子不足5个.你能求出有几只猴子,几个桃子吗?6.(本题13分)(2008年桂林市)某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费。
全国初一初中数学单元试卷带答案解析

全国初一初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤12..不等式的正整数解有().A.1个B.2个C.3个D.4个3.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A.3,4B.4,5C.3,4,5D.不存在4.如果|x-2|=x-2,那么x的取值范围是().A.x≤2B.x≥2C.x<2D.x>25.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约为()A.1小时~2小时B.2小时~3小时C.3小时~4小时D.2小时~4小时6.不等式组的解集是().A.x<-1B.x≤2C.x>1D.x≥27.不等式<6的非负整数解有()A.2个B.3个C.4个D.5个8.下图所表示的不等式组的解集为()A.x>3B.-2<x<3C.x>-2D.-2>x>39.若方程3(+1)+1=(3-)-5的解是负数,则的取值范围是()A.>-1.25B.<-1.25C.>1.25D.<1.2510.某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A.5千米B.7千米C.8千米D.15千米11.不等式组的解为_____________.二、填空题1.已知三角形的两边为3和4,则第三边a的取值范围是________.2.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为___________.3.若,则x的取值范围是____________.4.当x<a<0时,x2与ax的大小关系是_______________.5.若点P(1﹣m,m)在第二象限,则(m﹣1)x>1﹣m的解集为.6.已知x=3是方程—2=x—1的解,那么不等式(2—)x<的解集是______.7.若不等式组的解集是x>3,则m的取值范围是________.8.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔.9.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打折.三、解答题1.解不等式:x>x+12.解不等式组,并把它的解集表示在数轴上:3.x为何值时,代数式的值是非负数?4.已知关于x的方程的解为非正数,求m的取值范围.5.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?6.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机进货量的一半.电视机与洗衣机的进价和售价如下表:类别电视机洗衣机计划购进电视机和洗衣机共 100 台,商店最多可筹集资金161 800 元.(1)请你帮助商店算一算有多少种进货方案(不考虑除进价之外的其他费用);(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得的利润最多?并求出最大的利润(利润=售价-进价).7.某商场购进枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果运回,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)如何安排甲、乙两种货车可一次性地运到?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果商场应选择哪种方案,使运输费最少?最少运费是多少?全国初一初中数学单元试卷答案及解析一、选择题1.不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1【答案】B【解析】根据不等式的解法,解不等式x+3>2,可得x>-1,解不等式1-2x≤-3,解得x≤2,即可得不等式组的解集为-1<x≤2.故选:B点睛:此题主要考查了不等式组的解法,解题的关键是要分别求解两个不等式,然后取交集(两不等式的解集的公共部分)即可.2..不等式的正整数解有().A.1个B.2个C.3个D.4个【答案】C【解析】先求出不等式的解集,在取值范围内可以找到整数解.解:不等式的解集为x<4;正整数解为1,2,3,共3个.故选C.解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A.3,4B.4,5C.3,4,5D.不存在【答案】A【解析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x的整数解即可.解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.【考点】一元一次不等式组的整数解.4.如果|x-2|=x-2,那么x的取值范围是().A.x≤2B.x≥2C.x<2D.x>2【答案】B【解析】含绝对值的式子,在去绝对值时要考虑式子的符号.若>等于0,可直接去绝对值;若<0,去绝对值时原式要乘以-1.由此可得x-2≥0,再解此不等式即可.解:∵|x-2|=x-2,∴x-2≥0,即x≥2.故选B.本题考查了绝对值和不等式的性质.含绝对值的式子,在去绝对值时要考虑式子的符号.若>等于0,可直接去绝对值;若<0,去绝对值时原式要乘以-1.5.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的时间大约为()A.1小时~2小时B.2小时~3小时C.3小时~4小时D.2小时~4小时【答案】D【解析】路程一定,速度的范围直接决定所用时间的范围.6.不等式组的解集是().A.x<-1B.x≤2C.x>1D.x≥2【答案】A【解析】本题考查不等式解集由一式移项可得由二式可得,化简可得综上可知不等式组的解集是,因此A项正确。
全国初一初中数学单元试卷带答案解析

全国初一初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列运算正确的是()A.B.C.D.2.计算()2003×1.52002×(-1)2004的结果是( )A.B.C.-D.-3.下列多项式乘法中可以用平方差公式计算的是()A.B.C.D.4.把代数式ax²- 4ax+4a²分解因式,下列结果中正确的是()A a(x-2) ²B a(x+2) ²C a(x-4)²D a(x-2) (x+2)5.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是()。
A、a2+b2=(a+b)(a-b)B、(a+b)2=a2+2ab+b2C、(a-b)2=a2-2ab+b2D、a2-b2=(a-b)2二、填空题1.运用乘法公式计算:(a-b)(a+b)=(-2x-5)(2x-5)=2.计算:3.若a+b=1,a-b=2006,则a²-b²=4.在多项式4x²+1中添加一个单项式,使其成为完全平方式,则添加的单项式为(只写出一个即可)5.小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x³y-2xy²,商式必须是2xy,则小亮报一个除式是。
三、解答题1.计算(1)(2x+y-3)(2x-y+3) (2)2.分解因式(m2+3m)2-8(m2+3m)-20;3.分解因式4a2bc-3a2c2+8abc-6ac2;4.分解因式(y2+3y)-(2y+6)2.5.求值:x²(x-1)-x(x²+x-1),其中x=。
6.分解因式:(1)(a-b)²+4ab (2) 4xy²-4x²y-y³7.利用因式分解简便计算:(1)57×99+44×99-99 (2)8.先化简后求值:,其中x =3,y=1.5。
全国初一初中数学单元试卷带答案解析

全国初一初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列根据语句列出的不等式错误的是( )-A.“x的3倍与1的和是正数”,表示为3x+1>0.B.“m的与n的的差是非负数”,表示为m-n≥0.C.“x与y的和不大于a的”,表示为x+y≤ a.D.“a、b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab.2.给出下列命题:①若a>b,则ac2>bc2;②若ab>c,则b>;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )-A.③④-B.①③-C.①②-D.②④3.解不等式3x-<2x-2中,出现错误的一步是( )-A.6x-3<4x-4-B.6x-4x<-4+3-C.2x<-1-D.x>-4.不等式的解集在数轴上表示出来是( )-5..下列结论:①4a>3a;②4+a>3+a;③4-a>3-a中,正确的是( )-A.①②-B.①③-C.②③-D.①②③6.某足协举办了一次足球比赛,记分规则是:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场共积7分,则甲队可能平了( )-A.2场-B.3场-C.4场-D.5场7.某班学生在颁奖大会上得知该班获得奖励的情况如下表:-已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ) - A.3项- B.4项- C.5项- D.6项8.若│a│>-a,则a的取值范围是( )-A.a>0-B.a≥0C.a<0-D.自然数9.不等式23>7+5x的正整数解的个数是( )-A.1个-B.无数个-C.3个-D.4个10.已知(x+3)2+│3x+y+m│= 0中, y为负数,则m的取值范围是( )A.m>9-B.m<9-C.m>-9-D.m<-9二、填空题1..若y=2x-3,当x______时,y≥0;当x______时,y<5.2.若x=3是方程-2=x-1的解,则不等式(5-a)x<的解集是_______.3.若不等式组的解集为-1<x<1,则a=_______,b=_______.4.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只环保购物袋至少应付给超市元.5.不等式组的解集为________.6.小明用100元钱去购买笔记本和钢笔共30分,已知每本笔记本2元,•每枝钢笔5元,那么小明最多能买________枝钢笔.7..如果不等式组的解集是x>-1,那么m的值是_______.8.关于x、y的方程组的解满足x>y,则a的取值范围是_________.-三、解答题1.解不等式(组)并把解集在数轴上表示出来(每题4分,共16分) (1)5(x+2)≥1-2(x-1) (2)(3) -3<;-- (4)2.(5分)k取何值时,方程x-3k=5(x-k)+1的解是负数.3.(5分)某种客货车车费起点是2km以内2.8元.往后每增加455m车费增加0.5元.现从A处到B处,共支出车费9.8元;如果从A到B,先步行了300m然后乘车也是9.8元,求AB的中点C到B处需要共付多少车费?4.(5分)(1)A、B、C三人去公园玩跷跷板,从下面的示意图(1)•中你能判断三人的轻重吗?(2)P、Q、R、S四人去公园玩跷跷板,从示意图(2)•中你能判断这四个人的轻重吗?-5.(7分)某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王保应选择哪种方案,使运输费最少?最少运费是多少?6.(8分) 2007年我市筹备30周年庆典,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个种造型需甲种花卉80盆,乙种花卉40盆,搭配一个种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个种造型的成本是800元,搭配一个种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?全国初一初中数学单元试卷答案及解析一、选择题1.下列根据语句列出的不等式错误的是( )-A.“x的3倍与1的和是正数”,表示为3x+1>0.B.“m的与n的的差是非负数”,表示为m-n≥0.C.“x与y的和不大于a的”,表示为x+y≤ a.D.“a、b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab.【答案】D【解析】D错,正确表示为:;2.给出下列命题:①若a>b,则ac2>bc2;②若ab>c,则b>;③若-3a>2a,则a<0;•④若a<b,则a-c<b-c,其中正确命题的序号是( )-A.③④-B.①③-C.①②-D.②④【答案】--A【解析】略3.解不等式3x-<2x-2中,出现错误的一步是( )-A.6x-3<4x-4-B.6x-4x<-4+3-C.2x<-1-D.x>-【答案】D【解析】试题考查知识点:解不等式的步骤思路分析:具体解答过程:3x-<2x-2解:不等式两边同乘以2,得:6x-3<4x-4移项,得:6x-4x<-4+3合并同类项,得:2x<-1系数化为1,得:x<-与题目中所给的四个选项相对比,不难看出,错误的一步是D试题点评:这是关于解不等式的基础练习类题目。
全国初一初中数学单元试卷带答案解析

全国初一初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.在代数式中,整式有()A.3个B.4个C.5个D.6个2.多项式的各项分别是()A.B.C.D.3.下列去括号正确的是()A.B.C.D.4.下列各组中的两个单项式能合并的是()A.4和4x B.C.D.5.一个多项式与-2+1的和是3-2,则这个多项式为()A.-5+3B.-+-1C.-+5-3D.-5-136.已知和是同类项,则式子4m-24的值是()A.20B.-20C.28D.-287.已知则的值是( )A.B.1C.-5D.158.、原产量n吨,增产30%之后的产量应为()A.(1-30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨二、其他1.下面计算正确的是()A.B.C.D.2.单项式的系数和次数分别是()A.-π,5B.-1,6C.-3π,6D.-3,73.已知,,求的值。
三、填空题1.单项式的系数是____________,次数是_______________。
2.多项式的次数是________.最高次项系数是__________,常数项是_________。
3.任写一个与是同类项的单项式:_______________________4.多项式与多项式的差是______________________.5.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买2支铅笔和3块橡皮,则一共需付款__________________元.6.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数1234…n则a=________________(用含n的代数式表示).n7.把多项式x-2+x3-x2重新排列。
按x的升幂排列。
全国初一初中数学单元试卷带答案解析

全国初一初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.在下列各式:①-3;②ab=ba;③x;④2m-1>0;⑤;⑥8(x2+y2)中,代数式的个数是()A.1个B.2个C.3个D.4个2.“x的2倍与y的差的平方的”用代数式表示正确的是()A.(2x2-y)·B.2x-y2C.(2x-)D. (2x-y)23.下列各组单项式中,不是同类项的是()A.12a3y与B.6a2mb与-a2bm C.23与32D.x3y与-xy34.下列化简正确的是()A.(3a-b)-(5c-b)=3a-2b-5cB.(2a-3b+c)-(2c-3b+a)=a+3cC.(a+b)-(3b-5a)=-2b-4aD.2(a-b)-3(a+b)=-a-5b5.若多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m是()A.2B.-2C.4D.-46.有一个两位数,十位数字是a,个位数字是b,若把它们的位置交换,得到新的两位数是()A.ab B.ba C.10b+a D.10a+b7.下列说法错误的是()A.0和π都是单项式B.35xy的次数是2,系数是35C.多项式x3-x2y2+y3是3次多项式.D.多项式4x2-4x-1的常数项为-1.8.若A和B都是二次三项式,则A+B的结果:①一定是四次式;②可能是三次式;③可能是二次式;④可能是一次式;⑤可能是常数.其中正确结论的个数是()A.1B.2C.3D.49.已知x2+2xy=3,y2=2,则代数式2x2+4xy+y2的值是()A.8B.9C.11D.1210.★如图,用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子()第1个“口”第2个“口”第3个“口”第n个“口”A.4n枚B.(4n-4)枚C.(4n+4)枚D.n2枚11.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是()A.4m cm B.4n cm C.2(m+n)cm D.4(m﹣n)cm二、单选题现规定一种运算a※b=ab+a-b,其中a,b为实数,则a※b+(b-a)※b等于()A.a2-b B.b2-b C.b2D.b2-a三、填空题1.若8a2b n+1与-a m b3的和仍然是一个单项式,则=____.2.当x=-4时,代数式-x3-4x2-2与x3+5x2+3x-4的和是____.3.有理数m在数轴上的位置如图,则m+|m-1|=____.4.若(a2-a+4)+A=a2-3a-1,则A=____.5.观察下列单项式:x,-2x2,4x3,-8x4,……根据你发现的规律,第n个单项式为.6.某市出租车收费标准是:起步价是4元,当路程超过2 km时,每增加1 km另外收费0.7元.如果出租车行驶Q km(Q>2),则司机应该收费____元.四、解答题1.计算:(1)(5a+4c+7b)+(5c-3b-6a);(2).2.先化简,再求值:(1)(3a2b-2a2b)-(ab-4a2)+(2ab-a2b),其中a=-2,b=-3;(2)3xy2-2+(3x2y-2xy2),其中x=-4,y=.3.如果A=3x2-xy+y2,B=2x2-3xy-2y2,那么A-[B-(-2B+A)]等于多少?当x=-,y=1时,它的值等于多少?4.如果关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x的取值无关,求(m+n)(m-n)的值.5.某房间窗户的装饰物如图,它们由两个四分之一圆组成(半径相同).(1)请用代数式表示窗户能射进阳光部分的面积;(2)若a=1,b=,请求出窗户能射进阳光部分的面积的值(取π≈3).6.某市的出租车的起步价为5元(行驶不超过3千米),以后每增加1千米加收1.5元.某人乘出租车行驶x千米(x>3)的路程,所需费用是多少?若A,B两地相距10千米,该人身上仅有15元钱,他想从A地出发去B地,则乘出租车费用够吗?为什么?7.父母带着孩子一家三口去旅游,甲旅行社报价为大人每人a元,小孩为元;乙旅行社的报价均为a元,但三人均可按报价的8折收费,请问哪个旅行社收费高一些,高多少元?8..观察下列图形中的棋子:(1)按照这样的规律摆下去,第4个图形中的棋子个数是多少?(2)用含的代数式表示第个图形的棋子个数;(3)求第20个图形需棋子多少个?全国初一初中数学单元试卷答案及解析一、选择题1.在下列各式:①-3;②ab=ba;③x;④2m-1>0;⑤;⑥8(x2+y2)中,代数式的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】代数式即用运算符号把数或字母连起来的式子,根据这一概念可知①、③、⑤、⑥都是代数式,共4个. 故选D.2.“x的2倍与y的差的平方的”用代数式表示正确的是()A.(2x2-y)·B.2x-y2C.(2x-)D. (2x-y)2【答案】D【解析】x的2倍与y的差为2x−y,x的2倍与y的差的平方的表示为(2x−y)²,故选D.3.下列各组单项式中,不是同类项的是()A.12a3y与B.6a2mb与-a2bm C.23与32D.x3y与-xy3【答案】D【解析】A. 含有相同的字母,相同字母的指数相同,故A不符合题意;B. 含有相同的字母,相同字母的指数相同,故B不符合题意;C. 常数也是同类项,故C不符合题意;D. 相同字母的指数不同不是同类项,故D符合题意;故选:D.点睛:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中两个“相同”:相同字母的指数相同.4.下列化简正确的是()A.(3a-b)-(5c-b)=3a-2b-5cB.(2a-3b+c)-(2c-3b+a)=a+3cC.(a+b)-(3b-5a)=-2b-4aD.2(a-b)-3(a+b)=-a-5b【解析】A. (3a−b)−(5c−b)=3a−b−5c+b=3a−5c,故本选项项错误;B. (2a−3b+c)−(2c−3b+a)=2a−3b+c−2c+3b−a=2a−c,故本选项项错误;C. (a+b)−(3b−5a)=a+b−3b+5a=−2b+6a,故本选项错误;D. 2(a−b)−3(a+b)=2a−2b−3a−3b=−a−5b,故本选项正确。
2024新人教版七年级上册数学《有理数》单元测试卷及答案

第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5− B .0 C .5 D .2−4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .AB B .BOC .OCD .CD5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B . 3.5−C .0.5−D . 2.5+6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数 B .正数 C .0 D .负数或07.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1 B .2 C .3 D .410.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.13.化简:35−= ; 1.5−−= ;(− 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL 175 180 190 18515.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A 、B 在数轴上,若8AB =,且A 、B 两点表示的数互为相反数,则点A 表示的数为 .18.如图,一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是14−,30,现以点C 为折点,将数轴向右对折,若点A 落在射线CB 上且到点B 的距离为6,则C 点表示的数是___________三、解答题(本大题共7小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{_____________________};(2)负数集合:{__________________________};(3)整数集合:{__________________________};(4)分数集合:{__________________________}.(5)负有理数:{__________________________}.20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.21.比较下列各对数的大小:①1−与0.01−; ②2−−与0;③0.3−与13−; ④19 −− 与110−−.22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值+4+7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .第一章有理数单元测试(提升卷)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2024年广东省汕头市潮南区百校联考中考三模数学试题)2024−的相反数是( )A .2024B .2024−C .12024D .12024− 【答案】A【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024−的相反数是2024,故选:A .2.(2024年辽宁省大连市九年级中考二模数学试题)随着商业的发展和技术的进步,手机支付已经成为常见的支付方式,若手机钱包收入100元记作100+元,则15−元表示( )A .支出15元B .收入15元C .支出115元D .收入115元【答案】A【分析】本题考查了运用正数和负数表示两个相反意义的量,正确理解正、负数的意义是解题的关键.收入和支出相反,如果收入为正,那么负为支出,即可解决.【详解】∵收入100元记作100+元,∴15−元表示支出15元,故选:A .3.(2024年广西壮族自治区柳州柳南区九年级教学实验研究质量监测试三模数学试题)2024年2月8日,某地记录到四个时刻的气温(单位:℃)分别为5−,0,5,2−,其中最低的气温是( ) A .5−B .0C .5D .2− 【答案】A【分析】本题考查了有理数大小的比较的实际应用,有理数大小比较法则为:正数大于0,0大于负数,两个负数绝对值大的反而小;由此法则比较出两个负数的大小即可完成. 【详解】解:52−>− ,52∴−<−,即5−最小,故选:A .4.(2024年吉林省长春市中考一模数学试题)如图,数轴上表示数 1.5−的点所在的线段是( )A .ABB .BOC .OCD .CD 【答案】A【分析】本题主要考查了有理数与数轴,根据数轴上点的位置,结合2 1.51−<−<−即可得到答案.【详解】解:由数轴可知,数轴上表示数 1.5−的点所在的线段是AB ,故选:A .5.(2024年湖北省大冶市五月中考模拟数学试题)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A .0.9+B .3.5−C .0.5−D . 2.5+【答案】C【分析】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可. 【详解】解:0.90.9, 3.5 3.5,0.50.5, 2.5 2.5+=−=−=+=,∵0.50.9 2.5 3.5<<<,∴从轻重的角度看,最接近标准的是0.5−,故选:C .6.(黑龙江省哈尔滨市第四十九中学校2023-2024学年六年级下学期期中数学试题(五四制))若a a =−,则a 一定是( )A .负数B .正数C .0D .负数或0 【答案】D【分析】本题考查绝对值,熟练掌握其性质是解题的关键.根据绝对值的性质即可求得答案. 【详解】解:∵a a =−,∴a 是非正数,即负数或0,故选:D7.(2024年黑龙江省大庆市让胡路区中考模拟数学试题)下列各数,与2024相等的是( ) A .(2024)−+ B .4()202+− C .2024−− D .(2024)−−【答案】D【分析】本题考查绝对值、化简多重符号.负数的绝对值等于它的相反数,化简多重符号时“正正得正,正负得负,负负得正”,由此逐项计算即可.【详解】解:A ,(2024)2024-+=-,与题干不符,不符合题意;B ,(2024)2024+-=-,与题干不符,不符合题意;C ,20242024−−=−,与题干不符,不符合题意;D ,(2024)2024−−=,与题干相符,符合题意.故选D .8.(2024年云南省昆明市中考二模数学试题)九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5−分,那么他得了( )A .95分B .90分C .85分D .75分【答案】D【分析】本题考查了有理数的加法,整数和负数的定义,解题的关键是掌握正数和负数表示具有相反意义的量,以及有理数的加法法则.根据题意列出算式进行计算即可. 【详解】解:()80575+−=(分),故选:D .9.在110,1,3,,0.1,2,24 −−−−−a (a 是任意数)这些数中,负数的个数是( ) A .1B .2C .3D .4【答案】B【分析】本题主要考查了负数的定义,根据负数的定义进行判断即可.【详解】解:只有1−和0.1−是负数.124 −− 中124−是负数,故124 −− 不是负数,a −可以是正数或零或负数, ∴负数的个数是2个.故选:B .10.数轴上点A 表示的数是2−,将点A 沿数轴移动3单位长度得到点B ,则点B 表示的数是( )A .5−B .1C .1−或5D .5−或1【答案】D【分析】本题考查数轴上点移动后数字表示,解题关键是移动规律左减右加.根据数轴上点的移动规律,左减右加计算即可.【详解】解:根据数轴上点的移动规律,左减右加,可得点A 向左移动时:235−−=−,可得点A 向右移动时:231−+=, 综上可得点B 表示的数是5−或1,故选D .二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11. 2−,0,0.2,14,3中正数一共有 个. 【答案】3【分析】本题考查了有理数的分类.正确掌握有理数的分类是解答本题的关键.根据正数的定义解答即可.【详解】解:2−,0,0.2,14,3中正数有:0.2,14,3,一共有3个. 故答案为:3.12.(2024年甘肃省陇南市中考模拟联考数学(三)试题)如果把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“ 秒”.【答案】6−【分析】本题考查正数和负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据正负数表示相反意义的量,点火后记为正,可得点火前用负表示.【详解】解:把火箭发射后10秒记为“10+秒”,那么火箭发射前6秒应记为“6−秒”;故答案为:6−.13.化简:35−= ; 1.5−−= ;(− 【答案】 35 1.5− 2 【分析】本题考查了绝对值:若0a >,则a a =;若0a =,则0a =;若0a <,则a a =−.【详解】解:33||55−=, 1.5 1.5−−=−,()22−−=, 故答案为:35, 1.5−,2. 14.(2024年甘肃省庆阳市中考二模数学试题)某品牌酸奶外包装上标明“净含量:1805mL ±”,现随机抽取四种口味的这种酸奶,它们的净含量如下表所示,其中,净含量不合格的是 口味的酸奶. 种类原味 草莓味 香草味 巧克力味 净含量/mL175 180 190 185【答案】香草味【分析】本题主要考查了正数和负数等知识点,根据正数和负数的实际意义求得合格酸奶的重量范围,据此进行判断即可,理解正数和负数的实际意义是解决此问题的关键. 【详解】由题意可得:合格酸奶净含量的最小值为:()1805175ml −=,合格酸奶净含量的最大值为:()1805185ml +=,∴合格酸奶的重量范围为175ml 185ml ~,则净含量不合格的是香草味,故答案为:香草味.15.(2024年陕西省西安市阎良区中考三模数学试题)如图,点A 是数轴上的点,若点B 在数轴上点A 的左边,且4AB =,则点B 表示的数是 .【答案】3−【分析】本题考查数轴上两点的距离,根据两点之间的距离公式a b −求解即可.【详解】解:由数轴,点A 表示的数为1,又点B 在数轴上点A 的左边,且4AB =,∴点B 表示的数是143−=−, 故答案为:3−.16.(黑龙江省哈尔滨工业大学附中2023-2024学年六年级下学期期中数学试题)已知a 为有理数,则24a −+的最小值为 .【答案】4【分析】本题考查了绝对值的非负性,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.根据绝对值的非负性即可解答.a−≥,【详解】解:∵20∴244a−+≥,∴24a−+的最小值为4,故答案为:4.17.(陕西省西安市第八十九中学2024年中考二模数学试题)如图,点A、B在数轴上,若8AB=,且A、B两点表示的数互为相反数,则点A表示的数为.【答案】4−【分析】此题考查了数轴上两点之间的距离,数轴上的点表示有理数,相反数的概念,÷=,然后根据点A在原点根据题意得到A,B两点到原点的距离相等,然后求出点A到原点的距离为824的左侧求解即可.【详解】解:∵数轴上A,B两点表示的数互为相反数,∴A,B两点到原点的距离相等,∵点A与点B之间的距离为8个单位长度,÷=,∴点A到原点的距离为824∵点A在原点的左侧,∴点A表示的数是4−.故答案为:4−.18.如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是14−,30,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是___________【答案】5/11【分析】本题考查了数轴,先根据两点间的距离公式求出点A落在对应点表示的数,在利用中点求出C点表示的数;能根据点A的位置不同进行分类讨论是解题的关键.【详解】解:设A ′是点A 的对应点,由题意可知点C 是A 和A ′的中点,当点A 在B 的右侧,6BA ′=,A ′表示的数为30636+=, 那么C 表示的数为:()1436211−+÷=;,当点A 在B 的左侧,6BA ′=,A ′表示的数为30624−=,那么C 表示的数为:(1424)25−+÷=, 故答案:5或11.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)19.(贵州省铜仁市江口县第二中学(民族中学)2023-2024学年七年级上学期9月月考数学试题)把下列各数分别填在表示它所在的集合里:5−,34−,0, 3.14−,227,2012,1.99,()6−−,12−− (1)正数集合:{________};(2)负数集合:{________};(3)整数集合:{________};(4)分数集合:{________}.(5)负有理数:{________}.【答案】(1)227,2012,1.99,()6−−, (2)5−,34−, 3.14−, 12−−, (3)5−,0, 2012, ()6−−,12−−, (4)34−, 3.14−,227, 1.99, (5)5−,34−, 3.14−, 12−−,【分析】本题考查的是化简双重符号,化简绝对值,有理数的分类,熟记有理数的分类是解本题的关键; (1)根据正数的定义填写即可;(2)根据负数的定义填写即可;(3)根据整数的定义填写即可;(4)根据分数的定义填写即可;(5)根据负有理数的定义填写即可;【详解】(1)解:∵()66−−=,1212−−=−, ∴正数集合:{227,2012,1.99,()6−−, }; (2)负数集合:{5−,34−, 3.14−, 12−−, }; (3)整数集合:{5−,0, 2012, ()6−−,12−−, };(4)分数集合:{34−, 3.14−,227, 1.99, }; (5)负有理数:{5−,34−, 3.14−, 12−−, }; 20.(安徽省阜阳市第一初级中学2023-2024学年七年级上学期第一次月考数学试题)若320a b −+−=,求a b +的值.【答案】5【分析】本题考查非负数的性质.根据非负数的性质,可得30a −=,20b −=,求出a 、b 的值,据此即可求解. 【详解】解:∵320a b −+−=, ∴30a −=,20b −=, ∴3a =,2b =,∴325a b +=+=.21.比较下列各对数的大小:①1−与0.01−;②2−−与0; ③0.3−与13−; ④19 −−与110−−. 【答案】①10.01−<−;②20−−<;③10.33−>−;④11910 −−>−− 【分析】本题主要考查有理数比较大小,绝对值的性质的运用,掌握有理数比较大小的方法是解题的关键.①两个负数比较大小,绝对值大的反而小,由此即可求解;②先化简绝对值,再根据负数小于零,即可求解;③两个负数比较大小,绝对值大的反而小,由此即可求解;④先化简,再根据负数小于零,即可求解.【详解】解:①∵11−=,0.010.01−=,10.01>, ∴10.01−<−;②22−−=−,因为负数小于0,所以20−−<; ③∵0.30.3−=,•110.333−==, 0.30.3•<, ∴10.33−>−; ④分别化简两数,得:1111991010 −−=−−=− ,, ∵正数大于负数, ∴11910 −−>−−. 22.(湖南省衡阳市第三中学2023-2024学年七年级上学期期中数学试题)已知下列各有理数:2.5−,0,3−,()2--.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”号把这些数连接起来.【答案】(1)见解析 (2)()2.5023−<<−−<−【分析】本题考查了在数轴上表示数和有理数大小比较,能准确地在数轴上表示出所给的各个数是解题的关键. (1)在数轴上直接表示出各个数即可;(2)根据(1)中数轴上表示的数,结合数轴右边的数比左边的数大即可比较.【详解】(1)解:33−=,()22−−=, ∴在数轴上标出 2.5−,0,3−,()2−−,如图所示:(2)解:由(1)中数轴可得:()2.5023−<<−−<−.23.(重庆市忠县乌杨初级中学2023-2024学年七年级上学期数学第一学月定时作业试题)某中学九(1)班学生的平均身高是166cm .姓名A B C D E F 身高170 160 175 与平均身高的差值 +4 +7 8− +2(1)上表给出了该班6名同学的身高(单位:cm ),试完成上表;(2)谁最高?谁最矮?(3)最高与最矮的同学身高相差多少?【答案】(1)173,6−,158,168,9+(2)同学F 最高,同学D 最矮;(3)最高与最矮的同学身高相差17cm【分析】本题考查有理数加减法的实际应用、正负数的应用.读懂题意,正确的列出算式,是解题的关键. (1)利用身高减去平均身高进行计算即可;(2)由表格信息可确定最高和最矮的学生;(3)确定最高和最矮的学生,两者的身高作差即可.【详解】(1)解:∵某中学九(1)班学生的平均身高是166cm .∴完善表格如下:姓名 A B C D E F身高170 173 160 158 168 175 与平均身高的差值+4 +7 6− 8− +2 9+(2)同学F 身高175cm ,最高,同学D 身高158cm ,最矮;(3)∵()17515817cm −=, ∴最高与最矮的同学身高相差17cm .24.(黑龙江省大庆市肇源县第五中学2023-2024学年七年级下学期第一次月考数学试题)如图,数轴上有点a b c ,,三点.(1)用“<”将a b c ,,连接起来.(2)b a − 1,1c a −+ 0(填“<”“>”,“=”)(3)求下列各式的最小值: ①13x x −+−的最小值为 ; ②x a x b −+−的最小值为 ;③当x = 时,x a x b x c −+−+−的最小值为 .【答案】(1)c<a<b(2)<,<(3)①2;②b a −③a ,b c −【分析】本题考查了数轴、绝对值的意义、数轴上两点之间的距离、利用数轴判断式子的正负,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据数轴即可得出答案;(2)由数轴可得012c a b <<<<<,从而即可得出答案;(3)①由13x x −+−的意义即可得出最小值;②由x a x b −+−的意义,结合a b <即可得解;③由||x a x b x c −+−+−的意义,结合c<a<b 即可得解.【详解】(1)解:由数轴可得:c<a<b ;(2)解:由数轴可得:012c a b <<<<<,1b a ∴−<,10c a −+<,故答案为:<,<;(3)解:①13x x −+−的意义是数轴上表示数x 的点到表示数1,到表示数3的点的距离之和, 故13x x −+−的最小值为312−=, 故答案为:2; ②x a x b −+−的意义是数轴上表示数x 的点到表示数a ,到表示数b 的点的距离之和, a b < , 故x a x b −+−的最小值为b a −,故答案为:b a −; ③||x a x b x c −+−+−的意义是数轴上表示数x 的点到表示数a ,到表示数b ,到表示数c 的点的距离之和, c a b <<故当x a =时,||x a x b x c −+−+−的值最小,为b c −,故答案为:b c −.。
全国初一初中数学单元试卷带答案解析

全国初一初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各式:①x2≠0;②|x|+1>0;③x+2<-5;④x+y=3;⑤<0,其中是不等式的是( )A.①②③⑤B.①②③④C.①②③④⑤D.②③⑤2.若a>b,则下列不等式中正确的是( )A.a-b<0B.-5a<-5bC.a+8<b-8D.<3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解4.不等式组的整数解有()个.A.1B.2C.3D.45.若代数式a的值不大于a+1的值,则a应满足( )A.a≥-4B.a≤-4C.a>4D.a≤46.小丽同学准备用自己节省的零花钱购买一台学生平板电脑,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1 080元,设x个月后小丽至少有1 080元,则可列计算月数的不等式为( )A.30x+750>1 080B.30x-750≥1 080C.30x-750≤1 080D.30x+750≥1 0807.已知点P(2a-1,1-a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.二、单选题1.不等式3x≤2(x﹣1)的解为()A.x≤﹣1B.x≥﹣1C.x≤﹣2D.x≥﹣22.若不等式组有解,则a的取值范围是( )A.a≤3B.a<3C.a<2D.a≤23.小红读一本500页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读( )A.50页B.60页C.80页D.100页三、填空题1.若关于x的不等式的解集在数轴上表示如下,则其解集为2.如图,请任意选取一幅图,根据图上信息,写出一个关于温度x(℃)的不等式:.3.数轴上实数b的对应点的位置如图所示.比较大小:b+1______0(用“<”或“>”填空).4.已知代数式5-2x的值为非负数,则x的取值范围是_____5.在一次课外知识竞赛中,一共有30道判断题,答对一题得4分,不答或答错一题扣1分.如果在这次竞赛中得分要超过72分,那么至少应答对______道题.6.关于x的不等式3x-a≤0只有两个正整数解,则a的取值范围是_______.四、解答题1.(1)解不等式:5(x-2)+8<6(x-1)+7;(2)解不等式组:并在数轴上表示其解集.2.已知实数a是不等于3的常数,解不等式组并依据a的取值情况写出其解集.3.定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在数轴上表示出来.4.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.5.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?全国初一初中数学单元试卷答案及解析一、选择题1.下列各式:①x2≠0;②|x|+1>0;③x+2<-5;④x+y=3;⑤<0,其中是不等式的是( )A.①②③⑤B.①②③④C.①②③④⑤D.②③⑤【答案】A【解析】试题解析:①②③⑤是不等式,④是等式.故选A.点睛:用不等号连接的式子称为不等式.2.若a>b,则下列不等式中正确的是( )A.a-b<0B.-5a<-5bC.a+8<b-8D.<【答案】B【解析】试题解析:A错误.B正确.C错误.D错误.故选B.点睛:本题考查不等式的3个基本性质.尤其注意不等式的性质3.属于易错点.3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y<11的解集C.不等式3y<11的解集是y=3D.y=2是不等式3y≥6的解【答案】D【解析】试题解析:A. 代入不等式得:不是不等式的解.故A错误.B. 不等式的解集是:故B错误.C.不等式的解集是:故C错误.D. 是不等式的解.故D正确.故选D.4.不等式组的整数解有()个.A.1B.2C.3D.4【答案】D.【解析】不等式组的解集为-2≤x<2,符合条件的整数有-2,-1,0,1共4个,故答案选D.【考点】一元一次不等式组的整数解.5.若代数式a的值不大于a+1的值,则a应满足( )A.a≥-4B.a≤-4C.a>4D.a≤4【答案】A【解析】试题解析:由题意可得:解得:故选A.6.小丽同学准备用自己节省的零花钱购买一台学生平板电脑,她已存有750元,并计划从本月起每月节省30元,直到她至少存有1 080元,设x个月后小丽至少有1 080元,则可列计算月数的不等式为( )A.30x+750>1 080B.30x-750≥1 080C.30x-750≤1 080D.30x+750≥1 080【答案】D【解析】试题解析:由题意可得:故选D.7.已知点P(2a-1,1-a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【答案】C【解析】首先根据点P在第一象限则横纵坐标都是正数即可得到关于a的不等式组求得a的范围,然后可判断根据题意得:解得:0.5<a<1.故选C.二、单选题1.不等式3x≤2(x﹣1)的解为()A.x≤﹣1B.x≥﹣1C.x≤﹣2D.x≥﹣2【答案】C【解析】根据解一元一次不等式的步骤:去括号、移项、合并同类项计算,即可得到答案.解:去括号得,3x≤2x﹣2,移项、合并同类项得,x≤﹣2,故选C.“点睛”主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2.若不等式组有解,则a的取值范围是( )A.a≤3B.a<3C.a<2D.a≤2【答案】B【解析】解不等式组得:因为不等式组有解.所以:a-1<2即:a<3.故选B.【考点】解一元一次不等式组.3.小红读一本500页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读( )A.50页B.60页C.80页D.100页【答案】A【解析】设从第6天起平均每天要读x页,才能按计划读完,则:100+(10-5)x≥500;解得x≥80;所以从第六天起,平均每天至少要读80页才能按计划读完.故选C.点睛:本题考查了一元一次不等式的应用,解答本题的关键是设出未知数,找到不等关系;首先设平均每天要读x 页才能按计划读完,即10天读书页数大于或等于500页,由此可得出不等式:100+(10-5)x≥500,然后解此一元一次不等式,问题即可得解,三、填空题1.若关于x的不等式的解集在数轴上表示如下,则其解集为【答案】-3<x≤5.【解析】试题解析:由图可得,则其解集为-3<x≤5.【考点】在数轴上表示不等式的解集.2.如图,请任意选取一幅图,根据图上信息,写出一个关于温度x(℃)的不等式:.【答案】第一个图:x≥﹣8;第二个他图:x<30或x≤110【解析】第一个图与温度有关话是:最低气温是﹣8℃,那么温度x一定大于或等于﹣8;第二个图与温度有关的话是:30℃以下;不超过110℃.那么温度x应小于30;小于或等于110.解:根据题意,得第一个图:x≥﹣8;第二个他图:x<30或x≤110.3.数轴上实数b的对应点的位置如图所示.比较大小:b+1______0(用“<”或“>”填空).【答案】>【解析】试题解析:由点b在数轴上的位置可知:−2<b<−1,故答案为:>.4.已知代数式5-2x的值为非负数,则x的取值范围是_____【答案】x≤【解析】试题解析:由题意可得:解得:故答案为:5.在一次课外知识竞赛中,一共有30道判断题,答对一题得4分,不答或答错一题扣1分.如果在这次竞赛中得分要超过72分,那么至少应答对______道题.【答案】21【解析】试题解析:设至少应答对x题,则不答或答错的题为30−x,由答对得4分,不答或答错都倒扣1分得分为:4x−(30−x).由这次竞赛中得分要超过72分得:4x−(30−x)>72,5x>102,x>20.4.故至少应答对21道题.故答案为:6.关于x的不等式3x-a≤0只有两个正整数解,则a的取值范围是_______.【答案】6≤a<9【解析】解:原不等式解得x≤,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.四、解答题1.(1)解不等式:5(x-2)+8<6(x-1)+7;(2)解不等式组:并在数轴上表示其解集.【答案】(1) x>-3;(2)不等式组的解集为-1<x≤4,集在数轴上表示见解析.【解析】主要考查解不等式,按照不等式的性质解题即可.试题解析:(1)去括号,得移项,得合并同类项,得系数化为1,得(2)解不等式①,得解不等式②,得∴不等式组的解集为解集在数轴上表示为:2.已知实数a是不等于3的常数,解不等式组并依据a的取值情况写出其解集.【答案】当a>3时,不等式组的解集为x≤3;当a<3时,不等式组的解集为x<a.【解析】解不等式组,再根据a的取值分别求解即可.试题解析:解①得:x≤3,解②得:x < a.∵a是不等于3的常数,∴当a > 3时,不等式组的解集为x≤3;当a < 3时,不等式组的解集为x < a.【考点】1.解一元一次不等式组;2.分类思想的应用.3.定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在数轴上表示出来.【答案】 (1)(-2)⊕3=11;(2) x>-1,解集在数轴表示见解析.【解析】按照定义新运算求解即可;先按照定义新运算得出,再令其小于13,得到一元一次不等式,解不等式求出的取值范围,即可在数轴上表示.试题解析:(1)(-2)⊕3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)解得解集在数轴表示为:4.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【答案】(1)每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个;(2)租用小客车数量的最大值为3.【解析】根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;根据中所求,进而利用总人数为300+30,进而得出不等式求出答案.试题解析:(1)设每辆小客车的乘客座位数是个,每辆大客车的乘客座位数是个,根据题意,得解得答:每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个.(2)设租用辆小客车才能将所有参加活动的师生装载完成,则解得符合条件的的最大整数值为3.答:租用小客车数量的最大值为3.5.学校为了奖励初三优秀毕业生,计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑3 000元,购买1台学习机800元.(1)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过168 000元,则购买平板电脑最多多少台?(2)在(1)的条件下,购买学习机的台数不超过平板电脑台数的1.7倍.请问有哪几种购买方案?哪种方案最省钱?【答案】(1)平板电脑最多购买40台;(2)购买平板电脑38台,学习机62台最省钱.【解析】(1)设购买平板电脑台,则购买学习机台,根据购买的总费用不超过168000列出不等式,求出解集即可.(2)购买学习机的台数不超过购买平板电脑台数的1.7倍列出不等式,出不等式组的解集,即可得出购买方案,进而得出最省钱的方案.试题解析:(1)设购买平板电脑台,则购买学习机台,由题意,得解得答:平板电脑最多购买40台.(2) 设购买平板电脑台,则购买学习机台,根据题意,得解得又∵为正整数且∴=38,39,40,则学习机依次买:62台,61台,60台.因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国初一初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.如图,把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.3.图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格,第2格,第3格,这时小正方体朝上的一面的字是()A.奥B.运C.圣D.火4.如图,用一个平面去截长方体,则截面形状为()A.B.C.D.5.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成?()A.12个B.13个C.14个D.18个6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.二、单选题1.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()2.如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是( )3.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.4.如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状为()5.(2007•安徽)如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的.(把下图中正确的立体图形的序号都填在横线上)三、填空题1.一个正棱锥有六个顶点,所有侧棱长的和为30cm,则每条侧棱的长是______cm.2.如图所示是一个立体图形的展开图,请写出这个立体图形的名称:________.3.展览厅内要用相同的正方体木块搭成一个三视图如下图的展台,则此展台共需这样的正方体块。
4.如图是一个几何体的三视图,根据图中提供的数据(单位:㎝)可求得这个几何体的体积为 .5.下面4个图形均由6个相同的小正方形组成,折叠能围成一个正方体的是____________.6.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.7.立方体木块的六个面分别标有数字1、2、3、4、5、6,下图是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.8.如图,是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是.9.一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三条棱,共有_____种走法.四、解答题1.下列三个图形都是由其中一个半圆经过变化而得到的,请分别说出每个图形最简单的变化过程.2.请画出下列几何体的主视图、左视图、俯视图.3.如图所示,是一个由小立方块搭成的几何体的俯视图,小正方体中的数字表示在该位置的小立方块的个数,试画出它的主视图与左视图.4.用白萝卜等材料做一个正方体,并把正方体表面涂上颜色.(1)把正方体的棱二等分,然后沿等分线把正方体切开,得到8个小正方体.观察其中三面被涂色的有a个,如图①,那么a等于;(2)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有a个,各面都没有涂色的b个,如图②,那么a+b= ;(3)把正方体的棱四等分,然后沿等分线把正方体切开,得到64个小正方体.观察其中两面被涂成红色有c个,各面都没有涂色的b个,如图③,那么b+c= .5.用一个平面去截一个几何体,截得的多边形可能有哪几种?请把结果画出来.6.如图(1)、(2)都是几何体的平面展开图,先想一想,再折一折,然后说出图(1)、(2)折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.7.如图,可用一个正方形制作成一副“七巧板”,利用“七巧板”能拼出各种各样的图案,根据“七巧板”的制作过程,请你解答下列问题.⑴“七巧板”的七个图形,可以归纳为三种不同形状的平面图形,即一块正方形,一块_____________和五块____________.⑵请按要求将七巧板的七块图形重新拼接(不重叠,并且图形中间不留缝隙),在下面空白处画出示意图.①拼成一个等腰直角三角形;②拼成一个长与宽不等的长方形;③拼成一个六边形.⑶发挥你的想象力,用七巧板拼成一个图案,在下面空白处画出示意图,并在图案旁边写出简明的解说词.8.仔细观察下面的正四面体、正六面体、正八面体,解决下列问题:⑴填空:①正四面体的顶点数V=,面数F=,棱数E= .②正六面体的顶点数V=,面数F=,棱数E= .③正八面体的顶点数V=,面数F=,棱数E= .⑵若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V、F、E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式:⑶如果一个多面体的棱数为30,顶点数为20,那么它有多少个面?全国初一初中数学单元试卷答案及解析一、选择题1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡【答案】C【解析】根据球的形状与特点即可解答.解:根据日常生活常识可知乒乓球是球体.故选:C.【考点】认识立体图形.2.如图,把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.【答案】B【解析】A选项,是长方形绕虚线旋转一周,得到的几何体,故错误,B是一个圆绕旋转一周,得到几何体,故正确,C是一个直角梯形图绕长底边旋转一周,得到的几何体,故错误,D是半圆绕直径旋转一周,得到的几何体,故错误.故选B.3.图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格,第2格,第3格,这时小正方体朝上的一面的字是()A.奥B.运C.圣D.火【答案】D【解析】由平面图形的折叠结合正方体的表面展开图的特点结合实际操作解题.根据题意及动手操作可知翻到第三格后朝上的是火.故选D.【考点】正方体的表面展开图点评:解答本题的关键是需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动.4.如图,用一个平面去截长方体,则截面形状为()A.B.C.D.【答案】B【解析】根据长方体的形状及截面与底面平行判断即可.解:横截长方体,截面平行于两底,那么截面应该是个长方形.故选B.点评:本题考查了长方体的截面.截面的形状既与被截的几何体有关,还与截面的角度和方向有关.5.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成?()A.12个B.13个C.14个D.18个【答案】B【解析】综合主视图与左视图,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个,第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个,第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个,所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】C【解析】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.由于俯视图为圆形可得为球、圆柱、圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选B.【考点】由三视图判断几何体.二、单选题1.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()【答案】C【解析】本题考查几何体的分类和三视图的概念.几何体可分为柱体,锥体,球体三类,按分类比较即可.长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选C.【考点】简单几何体的三视图.2.如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是( )【答案】B【解析】本题考查的是几何体的展开图亲自动手具体操作,或根据三棱锥的图形特点判断.根据三棱锥的图形特点,可得展开图为B.故选B.3.如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.【答案】B【解析】根据三视图的知识可知圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的主视图以及左视图都为一个矩形,可以堵住方形空洞,故圆柱是最佳选项.故选B.4.如图表示一个由相同小立方块搭成的几何体的从上面看到的形状图俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的从正面看到的形状为()【答案】C.【解析】俯视图中的每个数字是该位置小立方体的个数,根据俯视图中的数字可得主视图有3列,从左到右的列数分别是4,3,2.故答案选C.【考点】几何体的三视图.5.(2007•安徽)如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的.(把下图中正确的立体图形的序号都填在横线上)【答案】①②④.【解析】根据图1的正视图和左视图,可以判断出③是不符合这些条件的.因此原立体图形可能是图2中的①②④.解:如图,主视图以及左视图都相同,故可排除③,因为③与①②④的方向不一样,故选①②④.【考点】由三视图判断几何体.三、填空题1.一个正棱锥有六个顶点,所有侧棱长的和为30cm,则每条侧棱的长是______cm.【答案】6【解析】有6个顶点的棱锥为五棱锥,所以每条侧棱的长为30÷5=6cm,故答案为6 cm.2.如图所示是一个立体图形的展开图,请写出这个立体图形的名称:________.【答案】圆锥【解析】因为圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥.3.展览厅内要用相同的正方体木块搭成一个三视图如下图的展台,则此展台共需这样的正方体块。
【答案】10【解析】分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:综合主视图,俯视图,左视图,底层有3+1+2=6个正方体,第二层有2个正方体,第三层有2个正方体,所以搭成这个几何体所用的小立方块的个数是6+2+2=10个.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.4.如图是一个几何体的三视图,根据图中提供的数据(单位:㎝)可求得这个几何体的体积为 .【答案】【解析】根据几何体的三视图的特征结合长方体的体积公式即可求得结果.由图可得这个几何体的体积【考点】几何体的三视图,长方体的体积公式点评:本题属于基础应用题,只需学生熟练掌握几何体的三视图,即可完成.5.下面4个图形均由6个相同的小正方形组成,折叠能围成一个正方体的是____________.【答案】①②【解析】由展开图可知: ①②能围成正方体,符合题意, ③④围成几何体时,有两个面重合,故不能围成正方体,不符合题意,故答案为: ①②.6.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.【答案】91【解析】根据题意可知:图(1)中有个小正方体,图(2)中有个小正方体,图(3)中有个小正方体,以此类推第七个叠放的图形中,小正方体木块总数应是91个,故答案为91个.7.立方体木块的六个面分别标有数字1、2、3、4、5、6,下图是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.【答案】.【解析】的周围是,所以的对面是;同理的周围是,所以的对面是;的对面数字和是.【考点】正方体相对面.8.如图,是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是.【答案】【解析】根据棱柱的体积公式:底面积×高,进行计算.解:∵直三棱柱的底面是直角边都为1的直角三角形,高为1,∴这个直三棱柱的体积=×1×1×1=.故答案为:.9.一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三条棱,共有_____种走法.【答案】6【解析】如图所示:走法有:(1)A-C-D-B,(2)A-C-H-B,(3)A-E-F-B,(4)A-E-D-B,(5)A-G-F-B,(6)A-G-H-B,共有6种走法,故答案为6.四、解答题1.下列三个图形都是由其中一个半圆经过变化而得到的,请分别说出每个图形最简单的变化过程.【答案】图(1)是先沿AB翻转,再沿AB平移;图(2)是以MN为轴翻转;图(3)是绕O点旋转180°.【解析】试题分析:(1)图(1)中两个图形沿AB翻转后的方向没有改变,是平移得到的,图(2)中各对应点重合,那么是翻折得到的,图(3)中两个图形的方向改变,那么是旋转得到的,O点位置没有变,是旋转中心,旋转中心和两个对应点在一条直线上,那么旋转角度是180°.解:图(1)是先沿AB翻转,再沿AB平移;图(2)是以MN为轴翻转;图(3)是绕O点旋转180°.2.请画出下列几何体的主视图、左视图、俯视图.【答案】作图见解析.【解析】试题分析:三视图分别从正面,左面,上面看得到的图形,看到的棱用实线表示,实际存在,没有被其他棱挡住,又看不到的棱用虚线表示,主视图是一个长方形的上方的中间有一个等腰三角形的缺口,左视图是一个长方形,有一个棱实际存在,从左面看又看不到,用虚线表示,俯视图是4个左右相邻的长方形,其中中间的2个长方形的面积较小.3.如图所示,是一个由小立方块搭成的几何体的俯视图,小正方体中的数字表示在该位置的小立方块的个数,试画出它的主视图与左视图.【答案】作图见解析..【解析】试题分析:由已知条件可知:主视图有2列,每列小正方形数目分别为3,4,左视图有2列,每列小正方形数目分别为4,1,据此可画出图形.解:主视图与左视图如图所示:主视图左视图4.用白萝卜等材料做一个正方体,并把正方体表面涂上颜色.(1)把正方体的棱二等分,然后沿等分线把正方体切开,得到8个小正方体.观察其中三面被涂色的有a个,如图①,那么a等于;(2)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有a个,各面都没有涂色的b个,如图②,那么a+b= ;(3)把正方体的棱四等分,然后沿等分线把正方体切开,得到64个小正方体.观察其中两面被涂成红色有c个,各面都没有涂色的b个,如图③,那么b+c= .【答案】(1)8;(2)9;(3)32.【解析】试题分析:根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没有涂色,依此可得到(1)棱二等分时的所得小正方体表面涂色情况,(2)棱三等分时的所得小正方体表面涂色情况,(3)棱四等分时的所得小正方体表面涂色情况.试题解析:(1)三面被涂色的有8个,故a=8,(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9,(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32,故答案为:8,9,32.5.用一个平面去截一个几何体,截得的多边形可能有哪几种?请把结果画出来.【答案】作图见解析.【解析】试题分析:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,因此用一个面去截一正方体,截面可能为三角形,四边形(梯形,矩形,正方形),五边形,六边形共四种情况.解:截面的形状可能是三角形、四边形、五边形、六边形,如图所示.三角形四边形五边形六边形6.如图(1)、(2)都是几何体的平面展开图,先想一想,再折一折,然后说出图(1)、(2)折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.【答案】图(1)折叠后是长方体,底面是正方形,侧面是长方形,有12条棱,4条侧棱,8个顶点;图(2)折叠后是六棱柱,底面是六边形,侧面是长方形,有18条棱,6条侧棱,12个顶点.【解析】试题分析:本题考查展开图折叠成几何体,解决本题的关键是理解棱柱的构造特点,图(1)折叠后是长方体,底面是正方形,侧面是长方形,有12条棱,4条侧棱,8个顶点,图(2)折叠后是六棱柱,底面是六边形,侧面是长方形,有18条棱,6条侧棱,12个顶点.解:由几何体的平面展开图折叠成棱柱,必须先对平面图形观察分析,再做一做,折一折,把展开图折叠成几何体,其他问题都迎刃而解.图(1)折叠后是长方体,底面是正方形,侧面是长方形,有12条棱,4条侧棱,8个顶点.图(2)折叠后是六棱柱,底面是六边形,侧面是长方形,有18条棱,6条侧棱,12个顶点.7.如图,可用一个正方形制作成一副“七巧板”,利用“七巧板”能拼出各种各样的图案,根据“七巧板”的制作过程,请你解答下列问题.⑴“七巧板”的七个图形,可以归纳为三种不同形状的平面图形,即一块正方形,一块_____________和五块____________.⑵请按要求将七巧板的七块图形重新拼接(不重叠,并且图形中间不留缝隙),在下面空白处画出示意图.①拼成一个等腰直角三角形;②拼成一个长与宽不等的长方形;③拼成一个六边形.⑶发挥你的想象力,用七巧板拼成一个图案,在下面空白处画出示意图,并在图案旁边写出简明的解说词.【答案】⑴平行四边形、等腰直角三角形;⑵作图见解析; ⑶作图见解析.【解析】试题分析:(1)解答此题要熟悉七巧板的结构,五个等腰直角三角形,有两对全等三角形,一个正方形,一个平行四边形,根据这些图形的性质便可解答,(2)开放型,答案不唯一,利用七巧板巧妙地设计等腰直角三角形,长与宽不等的长方形,六边形,设计完后,注意检验是否符合题意,如:(3)结合七巧板构造作图,如:舞动青春.解:⑴平行四边形、等腰直角三角形;⑵比如:⑶略(合理即可).8.仔细观察下面的正四面体、正六面体、正八面体,解决下列问题:⑴填空:①正四面体的顶点数V=,面数F=,棱数E= .②正六面体的顶点数V=,面数F=,棱数E= .③正八面体的顶点数V=,面数F=,棱数E= .⑵若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V、F、E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式:⑶如果一个多面体的棱数为30,顶点数为20,那么它有多少个面?【答案】⑴①4,4,6;②8,6,12;③6,8,12;⑵V+F-E=2;⑶它有12个面.【解析】试题分析:(1)观察图形,结合多面体的顶点,面,棱的定义进行填空即可,(2)根据(1)中,多面体的顶点数,面数,棱数,总结规律可得V,F,E之间的数量关系,(3)根据(2)中,顶点数,面数,和棱数之间的关系式代入求解即可.解:⑴①4,4,6;②8,6,12;③6,8,12;⑵V+F-E=2⑶解:设面数为F,则20+F-30=2解得F=12答:它有12个面.。