第2讲:代数式与代数式的值(教案)

合集下载

七年级数学第2章代数式2.3代数式的值教案

七年级数学第2章代数式2.3代数式的值教案

2.3 代数式的值【知识与技能】1。

让学生领会代数式值的概念。

2.了解求代数式值的解题过程及格式。

3。

初步领悟代数式的值随字母的取值变化而变化的情况。

【过程与方法】通过学习使学生了解求代数式的值在日常生活中的应用.【情感态度】培养学生的探索精神和探索能力.【教学重点】求代数式的值的含义及如何求代数式的值.【教学难点】求代数式的值的含义理解及一些应用.一、情景导入,初步认知通过上节课的学习,我们了解了什么?它的概念是什么?【教学说明】通过复习最近学过的知识,使学生尽快进入学习状态.二、思考探究,获取新知1.动脑筋:今年植树节时,某校组织305位同学参加植树活动,其中有25的同学每人植树a棵,其余同学植树2棵。

你用代数式表示他们共植树的总棵数吗?如果a=3,那么他们共植树多少棵?如果a=4,那么他们共植树又是多少棵?根据题意,他们共植树:2 5×305a+(1-25)×305×2=(122a+366)棵;当a=3时,代数式122a+366=122×3+366=732(棵);当a=4时,代数式122a+366=122×4+366=854(棵);我们将上面问题中的计算结果732和854,称为代数式122a+366当a=3和当a=4时的值。

【归纳结论】如果把代数式里的字母用数代入,那么计算出的结果叫做代数式的值。

注意:(1)代数式的值不是固定不变的值,它是随着代数式中字母取值的变化而变化的.所以,求代数式的值时,要明确“当……时",一定要按照代数式指明的运算进行。

(2)代数式里的字母可以取各种不同的数值,但所取的数值必须使代数式和它表示的实际数量有意义.例如,上述问题中,代数式122a+366中的字母a不能取负数,又如代数式ab中的字母b 不能取零。

2。

思考:结合上述例题,回答下列问题:(1)求代数式的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?【教学说明】引导学生回答:代数式的值是由代数式里字母的取值的确定而确定.3.(1)当x=-3时,求出代数式x 2—3x+5的值;(2)当a=0。

3.2 代数式的值 教案 数学人教版七年级上册(2024年)新版教材

3.2 代数式的值 教案  数学人教版七年级上册(2024年)新版教材

3.2代数式的值【教学目标】1.了解代数式的值的定义,能熟练地求代数式的值,理解代数式求值可以为一个转换过程或一个算法.2.在代数式求值过程中,初步感受函数的对应思想.3.会用代数式解决简单的实际问题.【重点难点】重点:会求代数式的值并解释代数式值的实际意义.难点:应用求代数式的值解决实际问题.【教学过程】一、创设情境为了开展体育活动,学校要购置一批排球,每班配备5个,学校另外留20个.(1)学校总共需要购置个排球.(2)如果学校有15个班级,那么需要购置的排球数是;(3)如果学校有20个班级,那么需要购置的排球数是.你是如何计算的?二、探究归纳探究点1:求代数式的值问题1:上述代数式的值是由谁的取值确定的?总结:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.问题2:根据下列x,y的值,你能求出代数式2x+3y的值吗?.(1)x=15,y=12;(2)x=1,y=-12总结:1.代入时,将相应的字母换成已给定的数值,其他的运算符号、原来的数及运算顺序都不能改变.2.当字母取不同数值时,代数式的值一般也不同.3.如果字母的取值是负数或分数,乘方时应加括号.【典例探究】例1:教材P79【例2】【针对性训练】教材P80练习总结:(1)求代数式的值的步骤:第一步:代入,用具体数值代替代数式里的字母;第二步:计算,按照代数式中指明的运算,计算出结果.(2)注意事项:①一个代数式中的同一个字母,只能用同一个数值去代替;②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号;③代入时,不能改变原式中的运算符号及数字;④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的.【拓展探究】问题3:代数式x2+x+3的值为7,则代数式2x2+2x-3的值是多少?你是如何计算的?探究点2:应用代数式的值解决实际问题问题4:填空:(1)路程=×;(2)工作量=×;(3)总价=×;(4)长为a,宽为b的长方形面积=;(5)边长为a的正方形面积=;(6)底为a,高为h的三角形面积=;(7)上底为a,下底为b,高为h的梯形面积=;(8)半径为r的圆的面积=;(9)长为a,宽为b,高为c的长方体的体积=;(10)棱长为a的立方体的体积=.【典例探究】例2:教材P80例3分析:跑道的周长是两段直道和两段弯道的长度的和.根据圆的周长求出弯道的长度.教师示范解答步骤.例3:教材P81例4分析:三角尺的面积=三角形的面积-圆的面积.总结:涉及不规则图形面积问题时,可以通过割补法把不规则图形转化为规则图形的和或者差来进行求解.【针对性训练】教材P81练习三、检测反馈(一)基础训练:1.当a=b=3时,x,y互为倒数,1(a+b)-3xy的值是()2A.0B.3C.-3D.62.当x=1,y=6时,代数式x2+y2的值是.3.当x=1,y=6时,求下列代数式的值:(1)x2+y2;(2)x2-2xy+y2.4.小亮从家出发乘汽车行驶了a千米用了1小时,又步行了0.5千米,又用了0.1小时到达某地.(1)用代数式表示小亮从家到某地的平均速度.(2)当a=80时,求此平均速度.5.如图,一个直角三角形ABC的直角边BC=a,AC=b,三角尺的厚度为h,三角形内部圆的半径为r.(1)用式子表示阴影部分体积V(结果保留π);(2)当a=10,b=6,r=2,h=0.2时,计算V的值.(π取3.14.结果精确到0.1)(二)拓展训练1.已知|A|=5,|B|=3,且AB<0,则A-B的值是()A.2或8B.1或-8C.±2D.±82.当x=1时,ax4+bx2+2=-3;当x=-1时,ax4+bx2-2=()A.3B.-3C.-5D.-73.我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=-3时,代数式(-2★z)-(-4★z)的值为.4.某商城销售某品牌运动鞋和袜子,运动鞋每双定价为300元,袜子每双定价为40元,十一期间商城决定开展促销活动,活动期间向顾客提供两种优惠方案:方案一:买一双运动鞋送一双袜子;方案二:运动鞋和袜子都按定价的九折付款;现某顾客要到该商城购买10双运动鞋,x(x>10)双袜子.(1)若该客户按照方案一购买,需付款元(用含x的代数式表示);若该客户按照方案二购买,需付款元(用含x的代数式表示);(2)若x=30,①通过计算说明按照方案一、方案二购买,哪种方案较为合算?②请你设计一个最优惠的购买方案,使得该客户花费最少,并写出你的购买方案和所需的费用.四、本课小结会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值一般也不同,所以在求代数式的值时,要注意解题步骤:(1)指出字母的取值;(2)抄写代数式;(3)代入;(4)计算.五、布置作业P82T3,5,7六、板书设计七、教学反思1.通过导入“代数式的值”概念时,情境导入,达到了激发学生兴趣的成效,让学生感受到了数学的生活化,营造了轻松的学习气氛.进一步理解代数式和代数式值的概念,为本节应用代数式的值解决实际问题作铺垫.在教学中注意引导学生体验字母取值和代数式值的对应思想.2.本节课一开始就直奔主题,提出如何求代数式的值,并要求学生根据两个不同类型的方法(直接代入法与整体代入法)求值,并求相同字母下代数式的值.通过计算,再次巩固了代数式的求值,突出重点.让学生经历探究、讨论、合作、交流的进程,明确符号所代表的数量关系,发展符号意识,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力.通过对实际问题的解决,学生熟悉到数学来源于生活,应用于生活,在问题解决中运用代数式求值的知识,通过实际背景帮学生明白代数式值的实际意义,调动学生的实践意愿.。

《代数式的值》教案设计

《代数式的值》教案设计

《代数式的值》教案设计第一章:代数式的基础知识1.1 代数式的定义介绍代数式的概念,理解代数式是由数字、变量以及运算符号组成的表达式。

举例说明代数式的不同形式,如整式、分式等。

1.2 代数式的变量解释变量的概念,变量是代表未知数的符号。

介绍变量的命名规则,如何使用字母表示变量。

1.3 代数式的运算复习基本的算术运算规则,包括加法、减法、乘法、除法。

讲解代数式中的运算顺序,掌握整式的乘法和除法法则。

第二章:代数式的值2.1 代数式的求值解释代数式的求值是指将变量替换为具体的数值后计算表达式的结果。

举例说明如何求解代数式的值,如将变量的值代入表达式中进行计算。

2.2 代数式的化简介绍代数式的化简,即简化表达式的形式,减少冗余的项或因子。

讲解如何进行代数式的化简,包括合并同类项、分解因式等方法。

2.3 代数式的值的应用探讨代数式的值在实际问题中的应用,如解决方程和不等式问题。

举例说明如何将实际问题转化为代数式的求值或化简问题。

第三章:代数式的求值方法3.1 代数式的代入法介绍代入法求解代数式的值,即将变量的值直接代入表达式中进行计算。

举例说明代入法的具体步骤和应用。

3.2 代数式的替换法解释替换法求解代数式的值,即将代数式中的变量替换为其他表达式。

讲解如何使用替换法求解复杂的代数式问题。

3.3 代数式的图像法介绍使用图形方法求解代数式的值,通过绘制函数图像来观察变量的取值范围。

举例说明如何利用图像法求解代数式的值。

第四章:代数式的化简方法4.1 合并同类项讲解合并同类项的规则,即将具有相同字母和指数的项进行合并。

举例说明如何合并同类项,简化代数式的表达形式。

4.2 分解因式解释分解因式的概念,即将代数式写成乘积的形式,提取公因数或应用公式。

讲解如何使用分解因式的方法化简代数式,如提取公因数、应用完全平方公式等。

4.3 应用完全平方公式介绍完全平方公式的概念,即(a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 2ab + b^2。

2.2 代数式与代数式的值(第1课时 代数式的概念)(课件)六年级数学上册(沪教版2024)

2.2 代数式与代数式的值(第1课时 代数式的概念)(课件)六年级数学上册(沪教版2024)



,2 x2+1,属于代数式的共有( A
A. 6个
B. 5个
C. 4个
D. 3个
)
课本例题
例1
用代数式表示:
1 比的2倍多3的数;
解:2 + 3
4 ≠ 0 的倒数减去3的差;
1
解: − 3

5
2 与 的积的相反数;
3
1
5 7减去的 的差;
3
3 的立方与2的和;
6 与的和的2倍.
D. 10 b + a
6. 【新视角·结论开放题】请用实例解释下列代数式的意义.
(1)5+(-4);
(2)3 a .
解: (1)5+(-4)表示气温从5 ℃,下降4 ℃后的温度.(答案不唯一)
(2)3 a 表示一辆车以 a km/h的速度行驶3小时的路程.(答案不唯一)
7. 用式子表示下列数量:
(1)5 箱苹果重 m kg,平均每箱重
8.买一个篮球需要 x 元,买一个排球需要 y 元,买一个足球需要 z 元,用式子表
示买 3 个篮球、5 个排球、2 个足球共需要的钱数;
解:买 3 个篮球、5 个排球、2 个足球共需要 (3x 5 y 2 z ) 元.
分层练习-拓展
9. 【新视角规律探究题2024唐山期末】如图,各图形中的三个数之间均具有相
则全班平均每人包多少个饺子?
解:全班平均每人包了
10 + 12
个饺子
+
分层练习-基础
1. [2024承德期末]代数式

2
a-

的正确解释是( D
)
A. a 与 b 的倒数的差的平方
C. a 的平方与 b 的差的倒数

2024年北师大七年级数学上册1 代数式第2课时 代数式求值(课件)

2024年北师大七年级数学上册1 代数式第2课时 代数式求值(课件)
因此,一个15岁的未成年人每天所需的睡眠时间是 9.5 h 。
5. 根据一项科学研究,一个10~50 岁的人每天所需的睡 眠时间t(单位:h)可用公式t=11-1n0计算出来,其中n代表 这个人的年龄。根据这个公式,解答下列问题:
(2) 一个35岁的成年女性每天睡眠时间是7h,她的睡眠时
间够吗? 解:当 n=35 时, t=11-1n0 =11-3150 =7.5 。 因为7<7.5,所以她的睡眠时间不够。
1.代数式6p可以表示什么?
6的p倍
p的6倍
6个p的和
2.求代数式3a2-2ab的值,其中a=6,b=-23 。
解:当a=6,b=-23 时, 3a2-2ab=3×62-2×6×(-23)=116。
3. 华氏温度 f (单位: ℉)与摄氏度c(单位:℃)之间
存在如下的关系:
f=
9 5
c+32。小华对潇潇说:“
(1)设一个人的体重为 w kg,身高为 h m,请
w
用含w,h的代数式表示这个人的BMI。 h2
(2)张老师的身高为 1.75 m,体重是 65 kg,他
的体重是否适中?
你的身体质量
指数是多少?
当w=65,h=1.75时
w h2
65 = 1.752
21.22
张老师体重适中.
对应训练
【课本P79 随堂练习 第1题】
1.填写下表,并观察-8n+5和-n2这两个代数式的值的变化情况。
n
12345678
-8n+5 -3 -11 -19 -27 -35 -43 -51 -59 -n2 -1 -4 -9 -16 -25 -36 -49 -64
(1)随着 n 的值逐渐变大,两个代数式的值如何变化?

3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册

3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册
板书设计要求简洁明了,突出重点,准确精炼,概括性强。同时,为了激发学生的学习兴趣和主动性,可以适当增加艺术性和趣味性。例如,可以使用不同颜色的粉笔标注重点内容,或者通过图形、符号等形象化的方式展示代数式的运算规则。
教学反思与改进
我发现一些学生在代数式求值时,仍然会犯一些基本的错误,比如忘记乘以字母的系数,或者在化简时忽略了一些基本的代数规则。这些问题让我意识到,尽管学生们在课堂上能够跟随我的讲解,但在实际操作时,他们可能并没有完全理解代数式的运算逻辑。
5.解答以下实际问题:
-某商店举行打折活动,原价为150元,打九折后的价格是150 * 90% = 135元。
-小明有30元,他想买一个价值25元的商品,他还剩30 - 25 = 5元。
解答:设打折后的价格为x元,根据题意可得原价的80%等于打折后的价格,即120 * 80% = x。化简得到x = 96。所以打折后的价格是96元。
6.总结与布置作业(5分钟)
同学们,通过本节课的学习,我们掌握了代数式的乘法和除法运算规则,并能够运用这些规则解决实际问题。希望大家能够课后复习本节课的内容,并完成课后作业,巩固所学知识。
3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
课程基本信息
1.课程名称:3.2代数式的值(第二课时)教学设计
2.教学年级和班级:2024-2025学年人教版(2024版)七年级数学上册
3.授课时间:1课时
4.教学时数:45分钟
3.随堂测试:通过对学生的随堂测试情况进行分析,发现大部分学生能够掌握代数式的乘法和除法运算规则,并能够运用这些规则解决实际问题。但仍有部分学生在运算过程中出现错误,需要进一步加强对运算规则的掌握。

(七年级数学教案)代数式的值教案

(七年级数学教案)代数式的值教案

代数式的值教案七年级数学教案一、教材分析1:教材地位《代数式的值》选自华东师大版数学七年级上册第三章第二节,这一节的主要内容是用数值代替代数式中的字母,按照代数式的运算方法计算结果,在前面的学习中,我们已经学习了代数式,这为我们这一节的学习打下了基础,而我们这一节的学习也为我们后面学习整式和方程等做好了准备。

2:教学目标:知识与能力:1、了解代数式的值的概念,会求代数式的值。

2、会利用代数式的值解决简单的实际问题3、培养学生准确地运算能力,并适当地渗透对应的思想、数形结合思想及整体代换的思想。

过程与方法:1、通过传数游戏,增加学生代值计算的意识。

2、通过例题教学,引导学生提出问题,去比较,去分析,去猜想,有意识培养学生的探索精神和探索能力。

3、加强学科间的联系,让学生体验到邻近学科中的应用。

情感态度与价值观:1、通过传数游戏、生活中的实例、邻近学科的应用、阅读材料等激发学生学习数学的兴趣,并主动参与谈论、探索、思考与操作。

2、通过所学知识,让学生初步体验到数学中抽象概括的思维方法和事物的特殊性与一般性可以互相转化的辨证关系,从而形成正确的世界观。

●二:教法、学法分析本节课涉及的知识点不多,知识的切入点比较低,根据课标的要求,代数式的值的概念属于了解内容,所以本节课较多的时间用在代数式求值知识的运用上。

教师以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。

而学生在教师的鼓励引导下小结方法,克服思维定势,并通过小组讨论、组际竞赛等多种方式增强学习的成就感及自信心,从而培养浓厚的学习兴趣。

重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式。

难点:正确地求出代数式的值。

“对应”思想和“整体代换”思想的渗透。

●三、教学过程:●一、试一试传数游戏1、规则:班级同学按4位同学一组进行分组,做一个传数游戏。

3.2第2课时代数式的值(教案)

3.2第2课时代数式的值(教案)
-实际问题中的代数式建模:培养学生从实际问题中抽象出代数式的能力,例如根据“苹果的价格是每千克x元,小明买了2千克苹果和一些香蕉,总共花费了y元”这样的情景,能够列出代数式2x+y。
-运算准确性:要求学生在进行代数式求值时,能够准确无误地进行计算,避免常见的运算错误。
2.教学难点
-代数式的抽象理解:学生可能难以理解代数式中字母所代表的抽象意义,如x、y等不具体指代的数值。教师需要通过具体的例子和图形辅助,帮助学生理解代数式的抽象性。
五、教学反思
今天我们在课堂上探讨了代数式的值,整体来说,我觉得这节课的效果还是不错的。学生们对于代数式求值的方法有了基本的掌握,通过实例和练习,他们能够理解并运用代入法来求解代数式。不过,我也注意到了一些需要改进的地方。
在讲授过程中,我发现有些学生对代数式的抽象理解还有一定难度,尤其是当涉及到复合代数式时,他们可能会感到困惑。这让我意识到,我需要花更多的时间去解释和演示这些概念,或许可以通过更多的图形和实际例子来帮助他们理解。
-代数式的复合运算:在代数式中,可能会出现复合运算,如(2x+3)×(x-1),学生在求值时可能会混淆运算顺序或遗漏步骤,这是教学的难点。
-字典型代入的掌握:字典型代入是代数式求值的一个难点,学生需要理解如何将一个已知的值代入到代数式的特定位置。例如,将x=5代入代数式2x^2-3x+1,求得的值是56代数式求值的方法:本节课的核心内容是使学生掌握代数式的求值方法,包括直接代入、字典型代入和整体代入等。例如,对于代数式2x+3,当给出x的值时,学生需要能够直接计算出代数式的值。
-代数式的符号意识:强调代数式中符号的作用,让学生理解不同的符号代表不同的运算关系,如加、减、乘、除等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲:代数式与代数式的值(教案)
一:代数式
通过上一节的学习,我们已经知道了,在数学中可以使用字母来表示数。

并且由这些表示数的字母结合在一起可以表示一些数量关系。

比如圆的面积可以表示为πr 2,三角形的面积可以表示为ah 2
1
=S ,梯形的面积可以表示为h )b a (21+=
S 等等。

像πr 2、ah 21=S 、h )b a (2
1+=S 的式子,在数学中称为代数式。

代数式:用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。

(注意:单独的一个数或
者一个字母也是代数式,例如0、2、x 、h 等都是代数式。

) 例题1:用代数式表示:
(1)比a 的3倍还多2的数; (2)b 的3倍的相反数;
(3)x 的平方的倒数减去2的差; (4)9减去y 的3倍的差; (5)x 的立方与2的和;
例题2:设甲数是m ,乙数是n ,用代数式表示: (1)甲乙两数的和的5倍;
(2)甲减去乙的差与甲的相反数的积; (3)甲乙两数平方的和; (4)甲乙两数和的立方;
例题3:如图所示,一个长方体的高为h ,底面是一个边长为a 的正方形,用代数式表示这个长方体的体积。

例题4:用代数式表示:
(1)比a 的2倍还少3的数; (2)a 与b 的差的平方; (3)x 的2倍与y 的的差; (4)m 与n 的平方差; 例题5:小明妈妈买了国库券a 元,年利率为p%,则一年到期利息是多少?本利和是多少?
例题6:铅笔的单价是a 元,钢笔的单价是b 元,小明买了x 支铅笔和y 支钢笔,问总共应付多少元?
例题7:某商场进行换季打折销售,上衣按原价a 元的3折销售,长裤按原价b 元的对折销售,小明的妈妈买了3套打折服装,共要付多少元?
二:代数式的值
例题:当a 分别取下列值时,求代数式
2
)
1a (a 3+的值。

(1)a=2; (2)a=3-; (3)a=2
1;
通过上面的例题,我们可以看出当代数式中的字母取不同的值时,整个代数式的值也是不同的。

像这样用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。

例题1:当x=2-,y=2
1
-
时,求下列各代数式的值。

(1)22y 4xy 6x 3+-; (2)|x y 6|+;
例题2:如图所示是一个长、宽分别是a 米、b 米的长方形绿化地,中间圆形区域计划做成花坛,它的半径是r 米,其余部分种植绿草。

(1)需种植绿草的面积是多少平方米?
(2)当a=10,b=4,r= 时,求需种植绿草的面积。

(π取3.14,精确到0.01平方米)
例题3:当x 分别取下列值时,求代数式1x 2x 2
-+的值。

(1)x=3; (2)x=2
1
例题4:当a=
2
1
,b=3-时,求下列各代数式的值。

(1)2a+b (2)2
2
b a 4-; (3)2
2
b ab 2a +-;
例题5:如图所示,一个田径场由两个半圆和一个正方形组成。

(1)用a 表示该田径场的面积;
(2)当a=80米时,求这个田径场的面积。

(π取3.14,精确到0.01平方米)
随堂训练
一:填空题
1、“a 的一半加上b 的2倍的和”用代数式表示为____________;
2、“x 的倒数减去y 的差”用代数式表示为____________;
3、“a 、b 两数和的平方”用代数式表示为________________;
4、“a 、b 两数的平方和”用代数式表示为_________________;
5、“x 减去b 的2倍的差”用代数式表示为_________________;
6、“x 减去b 的差的2倍”用代数式表示为_________________; 二:选择题
1、“a 、b 两数的倒数和”用代数式表示为:
A.
b 1a 1+ B. b 1a + C. b a 1+ D. b a 1+ 2、“a 与b 的倒数的和”用代数式表示为:
A.
b 1a 1+ B. b 1a + C. b a 1+ D. b
a 1+ 三:解答题
1、根据下列条件,求代数式3
a 9
a 2+-的值。

(1)a=3 (2)a=3
1
(3)a=6-
2、当x=2,y=2
1
-
时,求下列各代数式的值。

(1)2)y x (- (2)xy
y
x -
(3)y 2xy x 2-- (4)2
2y x -
3、已知A、B两地相距m千米,甲乙两车同时从A、B两地出发,相向而行,如果甲乙两车的行驶速度分别为每小时a千米和每小时2b千米,那么多少小时后两车在途中相遇?此时,甲乙两车各行驶了多少千米?
4、某班有男生20人和女生x人,在一次数学测验中,男生平均分为86分,女生平均分为85分,求全班的数学平均分是多少?
5、如图所示,用一张长为12厘米,宽为10厘米的硬纸片,将它的四角各剪去一个边长为x厘米的正方形(阴影部分),然后做成一个无盖的长方体纸盒,求这个纸盒的表面积是多少?
6、如图所示的阴影部分是由边长为a的正方形挖去圆心角为90°,半径为a的扇形形成的图形。

(1)用含a的代数式表示阴影部分的面积;
(2)当a=4时,求阴影部分的面积;。

相关文档
最新文档