四川省成都市2020成都三诊数学(理科)试题及答案

合集下载

2020年四川省成都市高考数学三诊试卷(一)(有答案解析)

2020年四川省成都市高考数学三诊试卷(一)(有答案解析)

2020年四川省成都市高考数学三诊试卷(一)一、选择题(本大题共12小题,共60.0分)1.设全集U={x∈Z|(x+l)(x-3)≤0},集合A={0,1,2},则∁U A=()A. {-1,3}B. {-1,0}C. {0,3}D. {-1,0,3}2.复数i(3-i)的共轭复数是()A. 1+3iB. 1-3iC. -1+3iD. -1-3i3.已知函数f(x)=x3+3x.若f(-a)=2,则f(a)的值为()A. 2B. -2C. 1D. -14.函数f(x)=sin x+cos x的最小正周期是()A. 2πB.C. πD.5.如图,在正方体ABCD﹣A1B l C1D1中,已知E,F,G分别是线段A1C1上的点,且A1E=EF=FG=GC1.则下列直线与平面A1BD平行的是()A. CEB. CFC. CGD. CC16.已知实数x,y满足,则z=2x+y的最大值为()A. 1B. 2C. 3D. 47.若非零实数a,b满足2a=3b,则下列式子一定正确的是()A. b>aB. b<aC. |b|<|a|D. |b|>|a|8.设数列{}的前n项和为S n,则S10=()A. B. C. D.9.执行如图所示的程序框图,则输出的n的值为()A. 1B. 2C. 3D. 410.“幻方’’最早记载于我国公元前500年的春秋时期《大戴礼》中.“n阶幻方(n≥3,n∈N*)”是由前,n2个正整数组成的-个n阶方阵,其各行各列及两条对角线所含的n个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如表所示).则“5阶幻方”的幻和为()816357492A. 75B. 65C. 55D. 4511.已知双曲线C=1(a>0,b>0)的左,右焦点分别为F1,F2,抛物线y2=2px(p>0)与双曲线C有相同的焦点.设P为抛物线与双曲线C的一个交点,cos∠PF1F2=,则双曲线C的离心率为()A. 或B. 或3C. 2或D. 2或312.三棱柱ABC-A1B1C1中,棱AB,AC,AA1两两垂直,AB=AC,且三棱柱的侧面积为+1,若该三棱柱的顶点都在同一个球O的表面上,则球O表面积的最小值为()A. πB.C. 2πD. 4π二、填空题(本大题共4小题,共20.0分)13.某单位有男女职工共600人,现用分层抽样的方法,从所有职工中抽取容量为50的样本,已知从女职工中抽取的人数为15,那么该单位的女职工人数为______14.若cos(+α)=,则cos2α的值等于______.15.已知公差大于零的等差数列{a n}中,a2,a6,a12依次成等比数列,则的值是______16.在平面直角坐标系xOy中,点A(1,0),直线l:y=k(x-1)+2,设点A关于直线l的对称点为B,则•的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.已知△ABC中,角A,B,C所对边的长分别为a,b,c,且a cos B=b+c.(I)求角A的大小;(Ⅱ)记△ABC的外接圆半径为R,求的值.18.某保险公司给年龄在20~70岁的民众提供某种疾病的一年期医疗保险,现从10000名参保人员中随机抽取100名作为样本进行分析,按年龄段[20,30),[30,40),[40,50),[50,60),[60,70]分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如表所示.年龄(单位:[20,30)[30,40)[40,50)[50,60)[60,70]岁)保费(单位:306090120150元)(Ⅰ)求频率分布直方图中实数a的值,并求出该样本年龄的中位数;(Ⅱ)现分别在年龄段[20,30),[30,40),[40,50),[50,60),[60,70]中各选出1人共5人进行回访,若从这5人中随机选出2人,求这2人所交保费之和大于200元的概率.19.如图,在四棱锥P-ABCD中,底面ABCD为菱形,△PAD为正三角形,平面PAD⊥平面ABCD,E,F分别是AD,CD的中点.(Ⅰ)证明:BD⊥平面PEF;(Ⅱ)若M是棱PB上一点,三棱锥M-PAD与三棱锥P-DEF的体积相等,求的值.20.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,且|F1F2|=2.P是椭圆C上任意一点,满足|PF1|+|PF2|=2.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:y=kx+m与椭圆C相交于A,B两点,且|AB|=2,M为线段AB的中点,求|OM|的最大值.21.已知函数f(x)=x lnx-2ax2+x,a∈R.(Ⅰ)若f(x)在(0,+∞)内单调递减,求实数a的取值范围;(Ⅱ)若函数f(x)有两个极值点分别为x1,x2,证明:x1+x2>.22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin (θ+)=.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.23.已知函数f(x)=x2-a|x-1|-1,a∈R.(Ⅰ)当a=4时,求函数f(x)的值域;(Ⅱ)∃x0∈[0,2],f(x0)≥a|x0+1|,求实数a的取值范围.-------- 答案与解析 --------1.答案:A解析:解:全集U={x∈Z|(x+l)(x-3)≤0)={x∈Z|-1≤x≤3)}={-1,0,1,2,3},集合A={0,1,2},则∁U A={-1,3},故选:A.求出集合的等价条件,结合补集的定义进行求解即可.本题主要考查集合的基本运算,结合补集的定义进行求解是解决本题的关键.2.答案:B解析:解:∵i(3-i)=3i-i2=1+3i,∴复数i(3-i)的共轭复数是1-3i.故选:B.直接由复数代数形式的乘法运算化简,则答案可求.本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.答案:B解析:解:∵f(x)是奇函数,且f(-a)=2;∴f(-a)=-f(a)=2;∴f(a)=-2.故选:B.容易看出f(x)是奇函数,从而根据f(-a)=2即可求出f(a)=-2.看出奇函数的定义及判断方法.4.答案:A解析:解:∵f(x)=sin x+cos x=(=,∴T=2π,故选:A.把三角函数式整理变形,变为f(x)=A sin(ωx+φ)的形式,再用周期公式求出周期,变形时先提出,式子中就出现两角和的正弦公式,公式逆用,得到结论.本题关键是逆用公式,抓住公式的结构特征对提高记忆公式起到至关重要的作用,而且抓住了公式的结构特征,有利于在解题时观察分析题设和结论等三角函数式中所具有的相似性的结构特征,联想到相应的公式,从而找到解题的切入点.5.答案:B解析:解:如图,连接AC,使AC交BD与点O,连接A1O,CF,在正方体ABCD-A1B l C1D1中,由于A1F AC,又OC=AC,可得:A1F OC,即四边形A1OCF为平行四边形,可得:A1O∥CF,又A1O⊂平面ABD,CF⊄平面ABD,可得CF∥平面ABD.故选:B.连接AC,使AC交BD与点O,连接A1O,CF,由A1F AC,又OC=AC,可证四边形A1OCF为平行四边形,可得A1O∥CF,利用线面平行的判定定理即可得解.本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题.6.答案:D解析:【分析】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z的几何意义.作出不等式组表示的平面区域,由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越大,z越大,结合图象即可求解z的最大值.【解答】解:作出实数x,y满足表示的平面区域,如图所示:由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越大,z越大,作直线2x+y=0,然后把该直线向可行域平移,当直线经过B时,z最大,由,可得B(2,0),此时z=4.故选:D.7.答案:C解析:解:令2a=3b=t,则t>0,t≠1,∴a=log2t=,b=log3t=,∴|a|-|b|=-=|lg t|•>0,∴|a|>|b|.故选:C.令2a=3b=t,则t>0,t≠1,将指数式化成对数式得a,b后,然后取绝对值作差比较可得.本题考查了不等式的基本性质,属基础题.8.答案:A解析:解:=,所以:,=,=,所以:.故选:A.首先把数列的通项公式进行转换,进一步利用裂项相消法求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.9.答案:B解析:解:根据程序框图:执行循环前:a=0,b=0,n=0,执行第一次循环时:,a=1,b=2,所以:92+82≤40不成立.继续进行循环,…,当a=4,b=8时,62+22=40,所以:n=1,由于a≥5不成立,执行下一次循环,当a=5时,输出结果n=2故选:B.直接利用程序框图的循环结构和条件结构的应用求出结果.本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考察学生的运算能力和转换能力,属于基础题型.10.答案:B解析:解:由1,2,3,4…24,25的和为=325,又由“n阶幻方(n≥3,n∈N*)”的定义可得:“5阶幻方”的幻和为=65,故选:B.先理解“n阶幻方”的定义,再结合等差数列求和公式求解即可.本题考查了对“即时定义”的理解及进行简单的合情推理,属中档题.11.答案:D解析:【分析】设PF1=m,PF2=n,根据cos∠PF1F2=和抛物线性质得出PF2=m,再根据双曲线性质得出m=7a,n=5a,最后根据余弦定理列方程得出a,c间的关系,从而可得出离心率.本题考查了双曲线和抛物线的简单性质,属于中档题.【解答】解:过P分别向x轴和抛物线的准线作垂线,垂足分别为M,N,不妨设PF1=m,PF2=n,则F1M=PN=PF2=PF1cos∠PF1F2=,∵P为双曲线上的点,则PF1-PF2=2a,即m-=2a,故m=7a,n=5a.又F1F2=2c,在△PF1F2中,由余弦定理可得=,化简可得c2-5ac+6a2=0,即e2-5e+6=0,解得e=2或e=3.故选:D.12.答案:C解析:【分析】由题意画出图形,设AB=AC=x,AA1=y,由三棱柱的侧面积可得.利用分割补形法结合基本不等式求三棱柱外接球半径的最小值,则答案可求.本题考查多面体外接球表面积最值的求法,考查分割补形法,训练了利用基本不等式求最值,是中档题.【解答】解:如图,设AB=AC=x,AA1=y,则三棱柱的侧面积为,得.把三棱柱补形为长方体,则其对角线长为.当且仅当,即x=,y=1时上式取“=”.∴三棱柱外接球半径的最小值为,表面积的最小值为.故选:C.13.答案:180解析:【分析】根据分层抽样的定义建立比例关系即可得到结论.本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.【解答】解:由分层抽样的定义得=,得n=12×15=180,即该单位的女职工人数为180,故答案为180.14.答案:解析:解:∵cos(+α)=-sinα=,∴sinα=-,∴cos2α=1-2sin2α=1-2×(-)2=.故答案为:.由已知利用诱导公式可求sinα的值,根据二倍角的余弦函数公式即可计算得解.本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,属于基础题.15.答案:解析:解:公差大于零的等差数列{a n}中,a2,a6,a12依次成等比数列,可得:,可得(a2+4d)2=a2(a2+10d),可得8d=a2则===.故答案为:.利用等差数列以及等比数列的通项公式,化简求出公差与a2的关系,然后转化求解的值.本题考查数列的应用,等差数列以及等比数列的通项公式的应用,考查计算能力.16.答案:[-1,3]解析:解:根据题意,设B的坐标为(m,n),又由AB关于直线y=k(x-1)+2对称,则有,解可得:,则B的坐标为(1-,),则=(1-,),=(1,0),则•=1-,当k=0时,•=1,当k>0时,•=1-,此时k+≥2=2,-1≤•≤1,当k<0时,•=1-,此时k+=-[(-k)+]≤-2,此时有1<•≤3;综合可得:-1≤•≤3,故答案为:[-1,3].根据题意,设B的坐标为(m,n),分析可得,解可得m、n的值,即可得B的坐标,则有=(1-,),=(1,0),由数量积的计算公式可得•=1-,分类讨论k的值,求出•的取值范围,综合即可得答案.本题考查向量数量积的计算,涉及关于直线对称的点的坐标,关键是求出B的坐标,属于基础题.17.答案:解:(I)由正弦定理得sin A cos B=sin A+sin C又sin C=sin(A+B).∴sin A cos B=sin A+sin A cos B+cos A sin B.即cos A sin B+sin B=0,∴cos A=-,∵0<A<π,∴A=(II)由余弦定理得b2+c2-a2=2bc cos A=-bc.∴==sin2A,∵:A=,∴sin2A=,即=sin2A=.解析:(Ⅰ)由正弦定理以及两角和差的正弦公式进行化简即可(Ⅱ)利用余弦定理以及正弦定理进行转化求解即可本题主要考查解三角形的应用,利用正弦定理余弦定理以及两角和差的三角公式进行转化是解决本题的关键.18.答案:解:(Ⅰ)∵(0.007+0.018+a+0.025+0.020)×10=1,解得a=0.030,设该样本年龄的中位数为x0,则40<x0<50,∴(x0-40)×0.030+0.018+0.07=0.5,解得.(Ⅱ)回访的这5人分别记为a20,a60,a90,a120,a150,从5人中任选2人的基本事件有:(a20,a60),(a20,a90),(a20,a120),(a20,a150),(a60,a90),(a60,a120),(a60,a150),(a90,a120),(a90,a150),(a120,a150),共10种,事件“两人保费之和大于200元”包含的基本事件有:(a60,a150),(a90,a120),(a90,a150),(a120,a150),共4种,∴这2人所交保费之和大于200元的概率p=.解析:(Ⅰ)利用频率分布直方图的性质能求出a的值和该样本年龄的中位数.(Ⅱ)回访的这5人分别记为a20,a60,a90,a120,a150,从5人中任选2人,利用列举法能求出这2人所交保费之和大于200元的概率.本题考查频率、中位数、概率的求法,考查频率分布直方图、古典概型、列举法等基础知识,考查运算求解能力,是基础题.19.答案:(本题满分为12分)解:(Ⅰ)证明:连接AC,∵PA=PD,且E是AD的中点,∴PE⊥AD,…1分又∵面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PE⊥平面ABCD,…2分∵BD⊂平面ABCD,∴BD⊥PE,…3分又四边形ABCD为菱形,且E,F为棱的中点,∴EF∥AC,BD⊥AC,∴BD⊥EF,…4分又BD⊥PE,PE∩EF=E,∴BD⊥平面PEF;…6分(Ⅱ)如图,连接MA,MD,设=λ,则=,∴V M-PAD=V B-PAD=V P-ABD,…8分又V P-DEF=V P-ACD=V P-ABD,…10分∵V M-PAD=V P-DEF,∴=,解得:λ=,即=.…12分解析:(Ⅰ)连接AC,可得PE⊥AD,利用面面垂直的性质可证PE⊥平面ABCD,利用线面垂直的性质可证BD⊥PE,由EF∥AC,BD⊥AC,可证BD⊥EF,BD⊥PE,PE∩EF=E,利用线面垂直的判定定理即可证明BD⊥平面PEF;(Ⅱ)连接MA,MD,设=λ,则=,利用V M-PAD=V P-DEF,可得=,进而解得λ的值,即可得解的值.本题主要考查了面面垂直的性质,线面垂直的性质,线面垂直的判定以及三棱锥体积的求法,考查了推理论证能力和空间想象能力,属于中档题.20.答案:解:(Ⅰ)由椭圆定义可知2a=2∴a=,由|F1F2|=2可得c=1∴b2=a2-c2=1椭圆方程为(Ⅱ)设A(x1,y1),B(x2,y2)联立可得(2k2+1)x2+4kmx+2m2-2=0∴x1+x2=,x1x2=,=16k2-8m2+8>0∴M(),OM2=,|AB|==2化简可得,,∴=令4k2+1=t≥1,则OM2===4-2当且仅当t=时取等号∴|OM|=即|OM|的最大值解析:本题主要考查了利用椭圆定义及性质求解椭圆方程及直线与椭圆位置关系的应用,试题具有一定的综合性 .(Ⅰ)由椭圆定义可求a,结合已知可求c,再由b2=a2-c2可求b,即可求解(Ⅱ)设A(x1,y1),B(x2,y2),联立直线与椭圆方程,可求x1+x2,x1x2,进而可求M,OM2,结合已知|AB|=2及弦长公式可得,代入后利用基本不等式可求.21.答案:解:(I)f′(x)=ln x-4ax+2,若f(x)在(0,+∞)内单调递减,则f′(x)≤0恒成立,即4a≥在(0,+∞)上恒成立.令g(x)=,则g′(x)=,∴当0<x<时,g′(x)>0,当x>时,g′(x)<0,∴g(x)在(0,)上单调递增,在(,+∞)上单调递减,∴g(x)的最大值为g()=e,∴4a≥e,即a≥.∴a的取值范围是[,+∞).(II)∵f(x)有两个极值点,∴f′(x)=0在(0,+∞)上有两解,即4a=有两解,由(1)可知0<a<.由ln x1-4ax1+2=0,ln x2-4ax2+2=0,可得ln x1-ln x2=4a(x1-x2),不妨设0<x1<x2,要证明x1+x2>,只需证明<,即证明>ln x1-ln x2,只需证明>ln,令h(x)=-ln x(0<x<1),则h′(x)=<0,故h(x)在(0,1)上单调递减,∴h(x)>h(1)=0,即>ln x在(0,1)上恒成立,∴不等式>ln恒成立,综上,x1+x2>.解析:本题考查了函数单调性的判断,函数最值的计算,考查导数与函数单调性的关系,属于中档题.(I)令f′(x)≤0恒成立,分离参数得出4a≥,利用函数单调性求出函数g(x)=的最大值即可得出a的范围;(II)令=x,根据分析法构造关于x的不等式,再利用函数单调性证明不等式恒成立即可.22.答案:解:(Ⅰ)由,得(x-2)2+y2=4,由ρsin(θ+)=,得ρsinθ+ρcosθ=1,∴直线l的直角坐标方程为x +y=1.(Ⅱ)设直线l的参数方程为(t为参数),代入(x-2)2+y2=1得t2+3+1=0,设A,B对应的参数为t1,t2,∴t1+t2=-3<0,t1t2=1>0,t1<0,t2<0,∴|MA|+|MB|=|t1|+|t2|=|t1+t2|=3解析:(Ⅰ)由,得(x-2)2+y2=4,由ρsin(θ+)=,得ρsinθ+ρcosθ=1,∴直线l的直角坐标方程为x +y=1(Ⅱ)根据参数的几何意义可得.本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(Ⅰ)当a=4时,f(x)=x2-4|x-1|-1=,当x≥1时,f(x)=x2-4x+3=(x-2)2-1≥-1,即此时f(x)≥-1,当x<1时,f(x)=x2+4x-5=(x+2)2-9≥-9,即此时f(x)≥-9,综上f(x)≥-9,即函数f(x)的值域为[-9,+∞).(Ⅱ)由f(x)≥a|x+1|等价为x2-a|x-1|-1≥a|x+1|,即a(|x+1|+|x-1|)≤x2-1,即a≤在区间[0,2]内有解,当0≤x≤1时,a≤==,当0≤x≤1时,-≤≤0.此时a≤0,当1<x≤2时,a≤===(x-),当1<x≤2时,0<(x-)≤,此时a≤,综上a≤,即实数a的取值范围是(-∞,].解析:(Ⅰ)当a=4时,结合绝对值的应用,将函数转化为二次函数,利用二次函数的最值性质进行求解.(Ⅱ)(Ⅱ)∃x0∈[0,2],f(x0)≥a|x0+1|,等价为a≤在区间[0,2]内有解,利用不等式的性质求出的最大值即可.本题主要考查函数与方程的应用,结合绝对值的应用将函数转化为二次函数,结合二次函数的性质是解决本题的关键.。

2020-2021学年四川省成都市高考数学三诊试卷(理科)及答案解析

2020-2021学年四川省成都市高考数学三诊试卷(理科)及答案解析

四川省成都市高考数学三诊试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A.2 B.4 C.6 D.82.命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是()A.∀x∉(﹣1,+∞),ln(x+1)<x B.∀x0∉(﹣1,+∞),ln(x0+1)<x0C.∀x∈(﹣1,+∞),ln(x+1)≥x D.∃x0∈(﹣1,+∞),ln(x0+1)≥x03.已知复数z=﹣i(其中i为虚数单位),则|z|=()A.3 B.C.2 D.14.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知向量,满足=2,•=﹣3,则在方向上的投影为()A.B. C.D.6.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为()A.24万元B.22万元C.18万元D.16万元7.执行如图所示的程序框图,若依次输入m=,n=0.6﹣2,p=,则输出的结果为()A.B.C.0.6﹣2 D.8.某学校食堂旱餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为()A.144 B.132 C.96 D.489.定义在(1,+∞)上的函数f(x)同时满足:①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;②当x∈(1,3]时,f(x)=3﹣x.记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰好有两个零点,则实数k的取值范围是()A.(2,3)B.[2,3)C.D.10.已知O为坐标原点,双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且(+)=0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2,则以|x1|,|x2|,2为边长的三角形的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰直角三角形二、填空题:(大题共5小题,每小题5分,共25分.11.计算:sin65°cos35°﹣sin25°sin35°= .12.一块边长为8cm的正方形铁板按如图1所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为.13.已知椭圆C:+=1(0<n<16)的两个焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,若|AF2|+|BF2|的最大值为10,则n的值为.14.若直线2ax+by﹣1=0(a>﹣1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则+的最小值为.15.函数f(x)=(a>0,b>0),因其图象类似于汉字“囧”字,被称为“囧函数”,我们把函数f(x)的图象与y轴的交点关于原点的对称点称为函数f(x)的“囧点”,以函数f(x)的“囧点”为圆心,与函数f (x)的图象有公共点的圆,皆称函数f(x)的“囧圆”,则当a=b=1时,有下列命题:①对任意x∈(0,+∞),都有f(x)>成立;∈(,),使f(x0)<tanx0成立;②存在x③函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是;④函数f(x)的所有“囧圆”中,其周长的最小值为2π.其中的正确命题有(写出所有正确命题的序号).三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sin(x+)cos(x+)+.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1+,若a=3,sinB=2sinC,求b的值.17.如图,在三棱台DEF﹣ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面GHF;(2))若BC=CF=AB=1,求二面角A﹣DE﹣F的余弦值.18.某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如表:语言表达能力一般良好优秀人数逻辑思维能力一般 2 2 1良好 4 m 1优秀 1 3 n由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列及其均值.19.已知数列{a n}的前n项和为S n,且3S n+a n﹣3=0,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=,求T n=,求使T n≥成立的n 的最小值.20.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.21.已知函数f(x)=e x,其中e=2.71828…为自然对数的底数.(1)设函数g(x)=(x2+ax﹣2a﹣3)f(x),a∈R.试讨论函数g(x)的单调性;(2)设函数h(x)=f(x)﹣mx2﹣x,m∈R,若对任意,且x1>x2都有x2h(x1)﹣x1h (x2)>x1x2(x2﹣x1)成立,求实数m的取值范围.四川省成都市高考数学三诊试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为()A.2 B.4 C.6 D.8【考点】分层抽样方法.【分析】先求出每个个体被抽到的概率,再用女运动员的人数乘以此概率,即得所求.【解答】解:每个个体被抽到的概率等于=,则样本中女运动员的人数为42×=6.故选:C.2.命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是()A.∀x∉(﹣1,+∞),ln(x+1)<x B.∀x0∉(﹣1,+∞),ln(x0+1)<x0C.∀x∈(﹣1,+∞),ln(x+1)≥x D.∃x0∈(﹣1,+∞),ln(x0+1)≥x0【考点】命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:∵全称命题的否定是特称命题,∴命题“∀x∈(﹣1,+∞),ln(x+1)<x”的否定是:“∃x0∈(﹣1,+∞),ln(x0+1)≥x0”,故选:D.3.已知复数z=﹣i(其中i为虚数单位),则|z|=()A.3 B.C.2 D.1【考点】复数求模.【分析】利用复数代数形式的乘除运算化简,然后代入复数模的公式得答案.【解答】解:∵z=﹣i=,∴|z|=.故选:A.4.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用充分条件和必要条件的定义进行判断.【解答】解:由平面与平面垂直的判定定理知如果m为平面β内的一条直线,且m⊥α,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥α,所以不一定能得到m⊥α,所以“α⊥β”是“m⊥α”的必要不充分条件.故选B.5.已知向量,满足=2,•=﹣3,则在方向上的投影为()A.B. C.D.【考点】平面向量数量积的运算.【分析】根据平面向量数量积的定义与投影的定义,进行计算即可.【解答】解:∵||=2,•(﹣)=﹣3,∴•﹣=•﹣22=﹣3,∴•=1,∴向量在方向上的投影为=.故选:C.6.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品需用4个A配件耗时1h,每生产一件乙产品需用4个B配件耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为()A.24万元B.22万元C.18万元D.16万元【考点】简单线性规划.【分析】根据条件建立不等式组即线性目标函数,利用图象可求该厂的日利润最大值.【解答】解:设甲、乙两种产品分别生产x、y件,工厂获得的利润为z又已知条件可得二元一次不等式组:目标函数为z=3x+4y,由,可得,利用线性规划可得x=6,y=1时,此时该厂的日利润最大为z=3×6+4=22万元,故选:B.7.执行如图所示的程序框图,若依次输入m=,n=0.6﹣2,p=,则输出的结果为()A.B.C.0.6﹣2 D.【考点】程序框图.【分析】模拟执行程序,可得该流程图的作用是求出m、n、p中的最小数,化简比较三个数即可得解.【解答】解:根据题意,该流程图的作用是求出m、n、p中的最小数,并将此最小的数用变量x表示并输出,由于,m==,n=0.6﹣2=,p==,可得,>>,即:n>m>p.故选:A.8.某学校食堂旱餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为()A.144 B.132 C.96 D.48【考点】计数原理的应用.【分析】分类讨论:甲选花卷,则有2人选同一种主食,剩下2人选其余主食;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,有1人选甲选的主食,剩下2人选其余主食,或没有人选甲选的主食,相加后得到结果【解答】解:分类讨论:甲选花卷,则有2人选同一种主食,方法为C42C31=18,剩下2人选其余主食,方法为A22=2,共有方法18×2=36种;甲不选花卷,其余4人中1人选花卷,方法为4种,甲包子或面条,方法为2种,其余3人,若有1人选甲选的主食,剩下2人选其余主食,方法为3A22=6;若没有人选甲选的主食,方法为C32A22=6,共有4×2×(6+6)=96种,故共有36+96=132种,故选:B.9.定义在(1,+∞)上的函数f(x)同时满足:①对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立;②当x∈(1,3]时,f(x)=3﹣x.记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰好有两个零点,则实数k的取值范围是()A.(2,3)B.[2,3)C.D.【考点】函数零点的判定定理.【分析】根据题中的条件得到函数的解析式为:f(x)=3m+1﹣x,x∈(3m,3m+1],在直角坐标系中画出f(x)的图象和直线y=k(x﹣1),根据函数的图象、题意、斜率公式求出实数k的范围.【解答】解:因为对任意的x∈(1,+∞)恒有f(3x)=3f(x)成立,所以f(t)=3f(),取x∈(3m,3m+1],则∈(1,3],因为当x∈(1,3]时,f(x)=3﹣x,所以f()=3﹣,则f(x)=…=3m f()=3m+1﹣x,且y=k(x﹣1)的函数图象是过定点(1,0)的直线,在直角坐标系中画出f(x)的图象和直线y=k(x﹣1):因为函数g(x)=f(x)﹣k(x﹣1),且函数g(x)恰好有两个零点,所以f(x)的图象和直线y=k(x﹣1)恰好由两个交点,由图得,直线y=k(x﹣1)处在两条红线之间,且过(3,6)的直线取不到,因,,所以k的范围是[,3),故选:D.10.已知O为坐标原点,双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且(+)=0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2,则以|x1|,|x2|,2为边长的三角形的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰直角三角形【考点】双曲线的简单性质.【分析】运用向量的加减运算和数量积的性质可得|AF|=|AO|,△AOF为等腰直角三角形,求得渐近线的斜率,进而得到c=a,方程ax2+bx﹣c=0即为x2+x﹣=0,求得两根,求得平方,运用余弦定理,即可判断三角形的形状.【解答】解:由(+)=0,可得(+)•(﹣)=0,即有2﹣2=0,即|AF|=|AO|,△AOF为等腰直角三角形,可得∠AOF=45°,由渐近线方程y=±x,可得=1,c=a,则关于x的方程ax2+bx﹣c=0即为x2+x﹣=0,即有x1x2=﹣,x1+x2=﹣1,即有x12+x22=1+2<4,可得以|x1|,|x2|,2为边长的三角形的形状是钝角三角形.故选:A.二、填空题:(大题共5小题,每小题5分,共25分.11.计算:sin65°cos35°﹣sin25°sin35°= .【考点】两角和与差的正弦函数.【分析】由条件利用诱导公式、两角而和的余弦公式,求得所给式子的值.【解答】解:sin65°cos35°﹣sin25°sin35°=cos25°cos35°﹣sin25°sin35°=cos(25°+35°)=cos60°=,故答案为:.12.一块边长为8cm的正方形铁板按如图1所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O为底面ABCD的中心,则侧棱SC与底面ABCD所成角的余弦值为.【考点】直线与平面所成的角.【分析】连接OC,则∠SCO为侧棱SC与底面ABCD所成角,根据图1可知棱锥底面边长为6,斜高为4,从而棱锥的侧棱长为5.于是cos∠SCO=.【解答】解:由图1可知四棱锥的底面边长为6,斜高为4.∴棱锥的侧棱长为5.连接OC,∵SO⊥平面ABCD,∴∠SCO为侧棱SC与底面ABCD所成的角.∵AB=BC=6,∴OC=AC=3.∴cos∠SCO==.故答案为:.13.已知椭圆C:+=1(0<n<16)的两个焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,若|AF2|+|BF2|的最大值为10,则n的值为12 .【考点】椭圆的简单性质.【分析】由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=16﹣|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,把|AB|的最小值,代入|BF2|+|AF2|=16﹣|AB|,由|BF2|+|AF2|的最大值等于10,列式求n的值.【解答】解:由0<n<16可知,焦点在x轴上,由过F1的直线l交椭圆于A,B两点,由椭圆的定义可得|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=16,即有|BF2|+|AF2|=16﹣|AB|.当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,此时|AB|===,即为10=16﹣,解得n=12.故答案为:12.14.若直线2ax+by﹣1=0(a>﹣1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则+的最小值为.【考点】基本不等式.【分析】曲线y=cosπx+1(0<x<1)的对称中心为,可得:a+b=1.(a>﹣1,b>0).再利用“乘1法”与基本不等式的性质即可得出.【解答】解:曲线y=cosπx+1(0<x<1)的对称中心为,∴+b﹣1=0,化为:a+b=1(a>﹣1,b>0).∴+=(a+1+b)=≥=,当且仅当a=2﹣3,b=4﹣2时取等号.故答案为:.15.函数f(x)=(a>0,b>0),因其图象类似于汉字“囧”字,被称为“囧函数”,我们把函数f(x)的图象与y轴的交点关于原点的对称点称为函数f(x)的“囧点”,以函数f(x)的“囧点”为圆心,与函数f (x)的图象有公共点的圆,皆称函数f(x)的“囧圆”,则当a=b=1时,有下列命题:①对任意x∈(0,+∞),都有f(x)>成立;∈(,),使f(x0)<tanx0成立;②存在x③函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是;④函数f(x)的所有“囧圆”中,其周长的最小值为2π.其中的正确命题有②③④(写出所有正确命题的序号).【考点】函数的图象.【分析】利用特殊值法,研究函数的值域,单调性,和零点问题,以及导数的几何意义,利用数形结合的方法进行判断.【解答】解:当a=1,b=1时,函数f(x)=,①当x=时,f()==﹣2,=2,故f(x)>不成立,故①不正确;=时,f()=<0,tan=1,故存在x0∈(,),使f(x0)<tanx0成立,故②正②当x确;③则函数f(x)=与y轴交于(0,﹣1)点,则“囧点”坐标为(0,1),设y=lnx,则y′=,设切点为(x0,lnx0),∴切线的斜率k=,当“囧点”与切点的连线垂直切线时,距离最短,∴•=﹣1,解得x0=1,∴切点坐标为(1,0),故函数f(x)的“囧点”与函数y=lnx图象上的点的最短距离是=,故③正确,④令“囧圆”的标准方程为x2+(y﹣1)2=r2,令“囧圆”与f(x)=图象的左右两支相切,则切点坐标为(,)、(﹣,)、此时r=;令“囧圆”与f(x)=图象的下支相切则切点坐标为(0,﹣1)此时r=2,故函数f(x)的所有“囧圆”中,其周长的最小值为2π,故④正确,综上所述:其中的正确命题有②③④,故答案为:②③④三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sin(x+)cos(x+)+.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A,B,C的对边分别为a,b,c,角A满足f(A)=1+,若a=3,sinB=2sinC,求b的值.【考点】三角函数中的恒等变换应用;余弦定理.【分析】(1)由诱导公式与辅助角公式得到f(x)的解析式,由此得到单调增区间.(2)由f(A)=1+,得A=,由恒等式得到B=,所以得到b.【解答】解:(1)∵f(x)=sin2x+2sin(x+)cos(x+)+.=sin2x+sin(2x+)+.=2sin(2x+)+,由﹣+2kπ≤2x+≤2kπ+,得:﹣+kπ≤x≤kπ+,(k∈Z),∴函数f(x)的单调递增区间是[﹣+kπ,kπ+],(k∈Z).(2)∵f(A)=1+,∴A=,∵sinB=2sinC=2sin(﹣B),∴cosB=0,即B=,∴由正弦定理得:=,∴b=.17.如图,在三棱台DEF﹣ABC中,已知底面ABC是以AB为斜边的直角三角形,FC⊥底面ABC,AB=2DE,G,H分别为AC,BC的中点.(1)求证:平面ABED∥平面GHF;(2))若BC=CF=AB=1,求二面角A﹣DE﹣F的余弦值.【考点】二面角的平面角及求法;平面与平面平行的判定.【分析】(1)推导出四边形BHFE是平行四边形,从而BE∥HF,从而∥平面GHF,BE∥平面GHF,由此能证明平面ABED∥平面GHF.(2)以C为原点,分别以CA,CB,CF所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣DE﹣F的余弦值.【解答】证明:(1)由已知得三棱台DEF﹣ABC中,AB=2DE,∴,∵G,H分别为AC,BC的中点.,∴AB∥GH,EF∥BH,EF=BH,∴四边形BHFE是平行四边形,∴BE∥HF,∵AB⊄平面GHF,HF⊂平面GHF,∴AB∥平面GHF,BE∥平面GHF,又AB∩BE=B,AB,BE⊂平面ABED,∴平面ABED∥平面GHF.解:(2)由已知,底面ABC是以AB为斜边的直角三角形,即AC⊥BC,又FC⊥底面ABC,∴以C为原点,分别以CA,CB,CF所在的直线为x轴,y轴,z轴,建立空间直角坐标系,取AB=2,由BC=CF=,得BC=CF=1,AC=,则A(),C(0,0,0),B(0,1,0),F(0,0,1),E(0,,1),D(,0,1),平面DEF的一个法向量=(0,0,1),设平面ABED的法向量=(x,y,z),,=(﹣,),由,取x=2,得=(2,2),cos<>===,由图形得二面角A﹣DE﹣F的平面角是钝角,∴二面角A﹣DE﹣F的余弦值为﹣.18.某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如表:语言表达能力一般良好优秀人数逻辑思维能力一般 2 2 1良好 4 m 1优秀 1 3 n由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为.(1)从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2)从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X,求随机变量X的分布列及其均值.【考点】离散型随机变量及其分布列;列举法计算基本事件数及事件发生的概率.【分析】(1)语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,由题意得,从而n=2,m=4,由此利用对立事件概率计算公式能求出从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑能力优秀的学生.(Ⅱ)随机变量X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及E(X).【解答】解:(1)用A表示“从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生”,∵语言表达能力优秀或逻辑思维能力优秀的学生共有(6+n)名,∴P(A)=,解得n=2,∴m=4,用B表示“从参加测试的语言表达能力良好的学生中任意抽取2名,其中至少有一名逻辑能力优秀的学生”,∴P(B)=1﹣=.(Ⅱ)随机变量X的可能取值为0,1,2,∵20名学生中,语言表达能力优秀或逻辑思维能力优秀的学生人数共有名,∴P(X=0)==,P(X=1)==,P(X=2)==,∴X的分布列为:X 0 1 2PE(X)==.19.已知数列{a n}的前n项和为S n,且3S n+a n﹣3=0,n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=,求T n=,求使T n≥成立的n 的最小值.【考点】数列的求和;数列递推式.【分析】(1)通过3S n+a n﹣3=0与3S n﹣1+a n﹣1﹣3=0作差,进而可知数列{a n}是首项为、公比为的等比数列,利用公式计算即得结论;(2)通过(1)及3S n+a n﹣3=0计算可知b n=﹣n﹣1,裂项可知=﹣,进而并项相加即得结论.【解答】解:(1)∵3S n+a n﹣3=0,∴当n=1时,3S1+a1﹣3=0,即a1=,又∵当n≥2时,3S n﹣1+a n﹣1﹣3=0,∴3a n+a n﹣a n﹣1=0,即a n=a n﹣1,∴数列{a n}是首项为、公比为的等比数列,故其通项公式a n=•=3•;(2)由(1)可知,1﹣S n+1=a n+1=,∴b n==﹣n﹣1,∵==﹣,∴T n==﹣+﹣+…+﹣=﹣,由T n≥可知,﹣≥,化简得:≤,解得:n≥2016,故满足条件的n的最小值为2016.20.已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C的方程;(2)过点N(1,0)任意作相互垂直的两条直线l1,l2,分别交曲线C于不同的两点A,B和不同的两点D,E.设线段AB,DE的中点分别为P,Q.①求证:直线PQ过定点R,并求出定点R的坐标;②求|PQ|的最小值.【考点】轨迹方程.【分析】(1)利用一动圆经过点M(2,0),且在y轴上截得的弦长为4,建立方程,即可求曲线C的方程;(2)①设A,B两点坐标分别为(x1,y1),(x2,y2),直线l1的方程为y=k(x﹣1)(k≠0),与抛物线方程联立,利用韦达定理可求点P,Q的坐标,进而可确定直线PQ的方程,即可得到结论.②由①|PQ|2=(2k﹣)2+(2k+)2=4[(k2+)2+(k2+)﹣2],换元利用基本不等式求|PQ|的最小值.【解答】解:(1)设圆心C(x,y),则x2+4=(x﹣2)2+y2,化简得y2=4x,∴动圆圆心的轨迹的方程为y2=4x.(2)①设A,B两点坐标分别为(x1,y1),(x2,y2),由题意可设直线l1的方程为y=k(x﹣1)(k≠0),与y2=4x联立得k2x2﹣(2k2+4)x+k2=0.△=(2k2+4)2﹣4k4=16k2+16>0,x1+x2=2+,y1+y2=k(x1+x2﹣2)=.所以点P的坐标为(1+,).由题知,直线l2的斜率为﹣,同理可得点Q的坐标为(1+2k2,﹣2k).当k≠±1时,有1+≠1+2k2,此时直线PQ的斜率k PQ=.所以,直线PQ的方程为y+2k=(x﹣1﹣2k2),整理得yk2+(x﹣3)k﹣y=0,于是,直线PQ恒过定点E(3,0);当k=±1时,直线PQ的方程为x=3,也过点E(3,0).综上所述,直线PQ恒过定点E(3,0).②由①|PQ|2=(2k﹣)2+(2k+)2=4[(k2+)2+(k2+)﹣2],记k2+=t∵k2+≥2,∴t≥2,∴|PQ|2=4[(t+)2﹣],∴t=2,即k=±1时,|PQ|的最小值为4.21.已知函数f(x)=e x,其中e=2.71828…为自然对数的底数.(1)设函数g(x)=(x2+ax﹣2a﹣3)f(x),a∈R.试讨论函数g(x)的单调性;(2)设函数h(x)=f(x)﹣mx2﹣x,m∈R,若对任意,且x1>x2都有x2h(x1)﹣x1h (x2)>x1x2(x2﹣x1)成立,求实数m的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(1)先求函数g(x)的解析式,求导,根据a的取值,分别解关于x的不等式g′(x)>0,g′(x)<0即可;(2)根据已知条件将其转化成,+x1>+x2,且x1>x2,构造辅助函数F(x)=﹣(m﹣1)x﹣1,求导,分离变量求得m≤+1,在x∈[,2]上恒成立,构造辅助函数,求导,利用函数的单调性,求得函数的最小值,即可求得m的取值范围.【解答】解:(1)g(x)=e x(x2+ax﹣2a﹣3),a∈R.∴g′(x)=e x[x2+(a+2)x﹣a﹣3],=a(x﹣1)(x+a+3),当a=﹣4时,g′(x)=a(x﹣1)2≥0,∴g(x)在R上单调递减,当a>﹣4时,由g′(x)>0,解得x<﹣a﹣3或x>1,∴g(x)在(﹣∞,﹣a﹣3),(1,+∞)上单调递增,由g′(x)>0,解得﹣a﹣3<x<1,∴g(x)在(﹣a﹣3,1)上单调递减;当a<﹣4时,由g′(x)>0,解得x<1或x>﹣a﹣3,∴g(x)在(﹣∞,1),(﹣a﹣3,+∞)上单调递增,由g′(x)>0,解得1<x<﹣a﹣3,∴g(x)在(1,﹣a﹣3)上单调递减,综上所述:当a=﹣4时,g(x)在R上单调递减;当a>﹣4时,g(x)在(﹣∞,﹣a﹣3),(1,+∞)上单调递增,在(﹣a﹣3,1)上单调递减;当a<﹣4时,g(x)在(﹣∞,1),(﹣a﹣3,+∞)上单调递增,在(1,﹣a﹣3)上单调递减.(2)h(x)=f(x)﹣mx2﹣x=e x﹣mx2﹣x,,∴x2h(x1)﹣x1h(x2)>x1x2(x2﹣x1),∴﹣>x2﹣x1,不等式﹣>x2﹣x1,等价于+x1>+x2,且x1>x2,记F(x)==﹣(m﹣1)x﹣1,∴F(x)在[,2]上单调递增,F′(x)=﹣(m﹣1)≥0在x∈[,2]上恒成立,m≤+1,在x∈[,2]上恒成立,记P(x)=+1,∴P′(x)=>0,∴P(x)在[,2]上单调递增,P(x)min=P()=1﹣2.∴实数m的取值范围为(﹣∞,1﹣2].。

四川省成都市2020届高三数学第三次诊断性检测试题理[含答案]

四川省成都市2020届高三数学第三次诊断性检测试题理[含答案]

四川省成都市2020届高三数学第三次诊断性检测试题 理第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,若A ←B ,则实数x 的值为,}{0,,{02,4}A x B A A (A)0或2 (B)0或4 (C)2或4 (D)0或2或42.若复数z 满足zi =2+5i (i 为虚数单位),则z 在复平面上对应的点的坐标为(A)(2,5) (B)(2,-5) (C)(-5,2) (D)(5,-2)3.命题“A ∈R,的否定是x x 2 -x +1≤0 (B)A x∈R ,0(),A x A A R x 2 -x +1>0x -x +1≤0(, (D) A x∈R ,0)C x A A R x 2 -x +1≥0x -x +1>04.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是5.已知函数,则=2(2)f x x x A A =A A 2log 3f (A)2 (B) (C)3 (D)831036.已知实数x,y 满足则z =2x +y 的最大值为10,20,50x x x y A A A A A A A A A A A…(A)4 (B)6 (C)8 (D)107.在等比数列{a n }中,已知,则该数列的公比是19nn n a a A A (A )-3 (B)3 (C )±3 (D)98.已知函数,则“a>-1”是“f (a )>f (-1)”的f (x )=x -3x (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件9.已知F 1,F 2是双曲线的左,右焦点,经过点F 2且与x 轴垂直的直线与双曲线的A A 222210,0x y a b a bA A A A 一条渐近线相交于点A ,且,则该双曲线离心率的取值范围是1264F AF AAA …… (C) (D)()A [513]()B [53][313][73]10.为迎接大运会的到来,学校决定在半径为20m ,圆心角为的扇形空地OPQ 的内部修建一平行四边2π4形观赛场地ABCD ,如图所示则观赛场地的面积最大值为(A )200m 2 ()B 400(2-\R (,2))m(C)m 2 (D)400(\R (,3)-1)400(\R (,2)-1)m11.在三棱锥中在底面ABC 上的投影为AC 的中点D , DP = DC= 1, 有下列结论:P ABC —,,AB BC P A ①三棱锥 P — A B C 的三条侧棱长均相等;②∠PAB 的取值范围是(,)π4π2③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为2π3④若 A B = B C ,E 是线段PC 上一动点,则的最小值为+DE BF 6+22其中正确结论的个数是(A)1 (B)2 (C) 3 (D)412.已知函数,且f (x )在区间上A A sin 10,01, )4f x A x A A A A AA A A A A A A A A A A (588f f A A A A A A A A A A A A A A A 30,4A A A A A A A 的最大值为.若对任意的x 1,x 2∈[0,t ],都有成立,则实数t 的最大值是2A A A A 122f x f x A (A) (B) (C) (D)3π42π3712A π2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上13.已知向量且则实数λ的值为(1,),(2,3),A A A a b ,A a b ▲14.某实验室对小白鼠体内x ,y两项指标进行研究,连续五次实验所测得的这两项指标数据如下表:已知y 与x 具有线性相关关系,利用上表中的五组数据求得回归直线方程为若下一次实验中x =17 ,y bxa =+0,利用该回归直线方程预测得则的值为 117,y A b▲15.设数列{a n }的前n 项和为S n ,若a 1=1.S 5=35,n 则112(211n n n S S S n n n n A A A A A A 且且…+N ,A 的值为12231011111a a a a a a A A A ▲16.已知点F 为抛物线y 2=2px (p >0)的焦点,经过点F 且倾斜角为的直线与抛物线相交于A 02A A A AA A A A A A A,B 两点为坐标原点)的面积为2sin 2α,线段AB 的垂直平分线与x 轴相交于点M ,则|FM|的值为,(OAB O A ▲三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤。

成都七中 2019—2020 学年下期高三三诊模拟考试理科数学试题答案

成都七中 2019—2020 学年下期高三三诊模拟考试理科数学试题答案

得分[80,100] 的频率为 0.015 20 0.3 ;
所以得分[60,80) 的频率为1 (0.1 0.2 0.3) 0.4.
设班级得分的中位数为 x 分,于是 0.1 0.2 x 60 0.4 0.5 ,解得 x 70. 20
所以班级卫生量化打分检查得分的中位数为 70 分.
5分
(2)由(1)知题意“优”、“良”、“使中用”、“差”的频率分别为 0.3, 0.4, 0.2, 0.1. 又班级总数
为 40. 于是“优”、“良”、“中学”、“差”的班级个数分别为12,16,8, 4 .
分层抽样的方法抽取的“优”中、“良”、“中”、“差”的班级个数分别为 由题意可得 X 的所有可能十取八值为1, 2, 3, 4, 5, 6.
y2 x
1
1 2
x02

( x02
1) x 2
x03 x
1 4
x04
1
0.

A( x1 ,
y1), B(x2 ,
y2 ), M (x,
y). 则
x1
x2
x03 , x02 1
(x03 )2
4(x02
1)( 1 4
x04
1)
0.
又 x02 0, 于是 0 x02 2 2 2.
于是 x
x1
1.
法 2: π 与曲线 C 相切于点 M , | OM | 2sin π 1,
3
3
由切割线定理知| OA | | OB || OM |2 1.
3x a b,
x (, a ), 2
23.解:(1)
f (x)
2x a
xb
x
a
b,
x [ a , b], . 2

四川省成都市新都区2020年中考数学三诊试卷(含解析)

四川省成都市新都区2020年中考数学三诊试卷(含解析)

四川省成都市新都区2020年中考数学三诊试卷一、选择题(本大题共10个小题,每小题3分,共30分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,井将自己所选答案的字母涂在答题卡上)1.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d2.(3分)钓鱼岛是中国的固有领土,其渔业资源十分丰富,年捕鱼量达16万吨,数据16万用科学记数法表示为()A.1.6×104B.1.6×105C.16×104D.16×1053.(3分)如图所示的几何体的左视图为()A.B.C.D.4.(3分)平面直角坐标中,已知点P(a,3)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是()A.(﹣a,3)B.(a,﹣3)C.(﹣a+2,3)D.(﹣a+4,3)5.(3分)下列计算正确的是()A.2x2•3x3=6x6B.x3÷x3=0C.(2xy)3=6x3y3D.(x3)m÷x2m=x m6.(3分)如图,已知AB=CD,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.MB=ND C.AM=CN D.AM∥CN7.(3分)如图,是某市一周内最高气温的折线统计图,关于这7天的日气温的说法,错误的是()A.最高气温是30℃B.最低气温是20℃C.众数是28℃D.平均数是26℃8.(3分)下列结论正确的是()A.=是分式方程B.方程﹣=1无解C.方程=的根为x=0D.解分式方程时,一定会出现增根9.(3分)如图,在平行四边形ABCD中,AB=4,AD=5,∠B=60°,以点B为圆心,BA为半径作圆,交BC边于点E,连接ED,则图中阴影部分的面积为()A.9﹣B.9﹣C.9D.9﹣10.(3分)关于二次函数y=x2﹣kx+k﹣1,以下结论:①抛物线交x轴有两个不同的交点;②不论k取何值,抛物线总是经过一个定点;③设抛物线交x轴于A、B两点,若AB=1,则k=4;④抛物线的顶点在y=﹣(x﹣1)2图象上;⑤抛物线交y轴于C点,若△ABC是等腰三角形,则k=﹣,0,1.其中正确的序号是()A.①②⑤B.②③④C.①④⑤D.②④二、填空題(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)一个等腰三角形的两条边分别是6厘米和8厘米,那么它的周长是 厘米.12.(4分)把只有颜色不同的2个红球和1个白球装入一个不透明的口袋里搅匀,从中随机地一次摸出2个球,得1个红球1个白球的概率为 .13.(4分)已知线段a 、b 、c ,如果a :b :c =1:2:3,那么“”的值是.14.(4分)如图,在圆内接四边形ABCD 中,∠C =110°,则∠BOD 的度数为( )A .140°B .70°C .80°D .60°三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:﹣22+﹣2cos30°+|1﹣|; (2)化简:(﹣1)÷.16.(6分)已知关于x 的一元二次方程kx 2﹣4x +2=0有两个不相等的实数根,求k 的取值范围.17.(8分)某校随机抽查了部分九年级女生进行1分钟仰卧起坐测试,并将测试的结果绘制成了如图的不完整的统计表和频数分布直方图(注:在频数分布直方图中,每组含左端点,但不含右端点):仰卧起坐次数的范围(次)15~20 20~25 25~30 30~35频数3 10 12 频率(1)30~35的频数是 、25~30的频率是 .并把统计图补充完整;(2)被抽查的所有女同学仰卧起坐次数的中位数是多少?18.(8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量出AB=180m,CD=60m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).19.(10分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象相交于A,B两点,过点A作AD⊥x轴于点D,AO=5,OD:AD=3:4,B点的坐标为(﹣6,n)(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)P是y轴上一点,且△AOP是等腰三角形,请直接写出所有符合条件的P点坐标.20.(10分)如图,AB是⊙O的直径,∠DAB的角平分线AC交⊙O于点C,过点C作CD⊥AD于D,AB的延长线与DC的延长线相交于点P,∠ACB的角平分线CE交AB于点F、交⊙O于E.(1)求证:PC与 ⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=,求线段BE的长.一、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)已知关于x、y的方程组中,x、y满足关系式2x﹣y=5,则代数式a﹣a2的值为.22.(4分)四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM=EF,则正方形ABCD的面积为.23.(4分)阅读下列材料,然后回答问题:已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.直接写出S2020=(用含a的代数式表示);计算:S1+S2+S3+…+S2022=.24.(4分)如图所示,△ABC为等腰直角三角形,∠ACB=90°,点M为AB边的中点,点N为射线AC上一点,连接BN,过点C作CD⊥BN于点D,连接MD,作∠BNE=∠BNA,边EN交射线MD于点E,若AB=20,MD=14,则NE的长为.25.(4分)如图平面直角坐标系中放置Rt△PEF,∠E=90°,EP=EF,△PEF绕点P(﹣1,﹣3)转动,PE、PF 所在直线分别交y轴,x轴正半轴于点B(0,b),A(a,0),作矩形AOBC,双曲线y=(k>0)经过C点,当a,b均为正整数时,k=.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)一家蔬菜公司计划到某绿色蔬菜基地收购A,B两种蔬菜共140吨,预计两种蔬菜销售后获利的情况如表所示:销售品种A种蔬菜B种蔬菜每吨获利(元)1200 1000 其中A种蔬菜的5%、B种蔬菜的3%须运往C市场销售,但C市场的销售总量不超过5.8吨.设销售利润为W元(不计损耗),购进A种蔬菜x吨.(1)求W与x之间的函数关系式;(2)将这140吨蔬菜全部销售完,最多可获得多少利润?27.(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q先以2cm/s的速度沿A→O的路线向点O运动,然后再以2cm/s的速度沿O →D的路线向点D运动,当P、Q到达终点时,整个运动随之结束,设运动时间为t秒.(1)在点P在AB上运动时,判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①直接写出当△PQM是直角三角形时t的取值范围;②是否存在这样的t,使△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.28.(12分)已知:在平面直角坐标系中,抛物线y=ax2﹣2ax+4(a<0)交x轴于点A、B,与y轴交于点C,AB =6.(1)如图1,求抛物线的解析式;(2)如图2,点R为第一象限的抛物线上一点,分别连接RB、RC,设△RBC的面积为s,点R的横坐标为t,求s与t的函数关系式;(3)在(2)的条件下,如图3,点D在x轴的负半轴上,点F在y轴的正半轴上,点E为OB上一点,点P为第一象限内一点,连接PD、EF,PD交OC于点G,DG=EF,PD⊥EF,连接PE,∠PEF=2∠PDE,连接PB、PC,过点R作RT⊥OB于点T,交PC于点S,若点P在BT的垂直平分线上,OB﹣TS=,求点R的坐标.2020年四川省成都市新都区中考数学三诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,井将自己所选答案的字母涂在答题卡上)1.【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.2.【解答】解:16万=160000=1.6×105,故选:B.3.【解答】解:从左面看易得左视图为:.故选:D.4.【解答】解:∵直线m上各点的横坐标都是2,∴直线为:x=2,∵点P(a,3)在第二象限,∴a到2的距离为:2﹣a,∴点P关于直线m对称的点的横坐标是:2﹣a+2=4﹣a,故P点对称的点的坐标是:(﹣a+4,3).故选:D.5.【解答】解:A、2x2•3x3=6x5,原式计算错误,故本选项错误;B、x3÷x3=1,原式计算错误,故本选项错误;C、(2xy)3=8x3y3,原式计算错误,故本选项错误;D、(x3)m÷x2m=x m,原式计算正确,故本选项正确;故选:D.6.【解答】解:A、可根据AAS判定△ABM≌△CDN,故此选项不合题意;B、可根据SAS判定△ABM≌△CDN,故此选项不合题意;C、不能判定△ABM≌△CDN,故此选项不合题意;D、由AM∥CN可得∠A=∠NCD,可根据ASA判定△ABM≌△CDN,故此选项不合题意;故选:C.7.【解答】解:A.由折线统计图知最高气温是周六的气温,为30℃,此选项正确;B.由折线统计图知最低气温是周一的气温,为20℃,此选项正确;C.出现频率最高的是28℃,出现2次,此选项正确;D.平均数是(20+28+28+24+26+30+22)=(℃),此选项错误;故选:D.8.【解答】解:A.原方程中分母不含未知数,不是分式方程,所以A选项不符合题意;B.解方程,得x=﹣2,经检验x=﹣2是原方程的增根,所以原方程无解,所以B选项符合题意;C.解方程,得x=0,经检验x=0是原方程的增根,所以原方程无解,所以C选项不符合题意;D.解分式方程时,不一定会出现增根,只有使分式方程分母的值为0的根是增根,所以D选项不符合题意.故选:B.9.【解答】解:过A作AF⊥BC于F,则∠AFB=90°,∵AB=4,∠B=60°,∴AF=AB×sin∠B=2,∵四边形ABCD是平行四边形,AB=4,AD=5,∴BC=AD=5,∵AB=BE,∴CE=5﹣4=1,∴阴影部分的面积S=S平行四边形ABCD﹣S扇形ABE﹣S△CDE=5×﹣﹣=9﹣π,故选:A.10.【解答】解:令y=x2﹣kx+k﹣1=0,△=k2﹣4k+4=(k﹣2)2≥0,即抛物线交x轴有两个的交点,①错误;当x=1时,y=1﹣k+k﹣1=0,即抛物线总是经过一个定点(1,0),②正确;当k=4时,y=x2﹣4x+3,令y=x2﹣4x+3=0,解得x=3或1,则AB=3﹣1=2,③错误;y=x2﹣kx+k﹣1=0顶点坐标为(,),当x=时,y=﹣(x﹣1)2=﹣,即抛物线的顶点在y=﹣(x﹣1)2图象上,④正确;当k=1时,y=x2﹣x,此时△ABC不是等腰三角形,⑤错误;正确的有②④,故选:D.二、填空題(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:当6厘米为腰时,周长=6+6+8=20(cm),当8厘米为腰时,周长=6+8+8=22(cm),故答案为20或22.12.【解答】解:画树状图如图所示,共有9种情况,两次1个红球1个白球的有4种情况,所以概率为,故答案为:.13.【解答】解:∵a:b:c=1:2:3,∴设a=x,b=2x,c=3x,∴==.故答案为:.14.【解答】解:由圆内接四边形的性质可知,∠A+∠C=180°,∴∠A=180°﹣∠C=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:A.三、解答题(本大题共6小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=﹣4﹣3﹣2×+﹣1=﹣4﹣3﹣﹣1=﹣8;(2)原式==1﹣x.16.【解答】解:根据题意知△=(﹣4)2﹣4×k×2>0,解得:k<2,由k≠0,∴k的取值范围是k<2且k≠0.17.【解答】解:(1)总人数是:3÷=30(人),则次数在30~35次的人数是:30×=5(人),则次数是25~30次的频率是:=;补全统计图如下:故答案为:5,;(2)把这些数从小到大排列,因为共抽取了30名同学,处于中间位置的是第15、16个数的平均数,所以中位数是=27.5(次).18.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=60m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=180m,得到x+60+x=180,解得:x=30,即CH=30m,则该段运河的河宽为30m.19.【解答】解:(1)AO=5,OD:AD=3:4,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y=,故B(﹣6,﹣2),将点A、B的坐标代入一次函数表达式y=kx+b得:,解得:,故一次函数的表达式为:y=x+2;(2)设一次函数交y轴于点M(0,2),△AOB的面积S=×OM×(x A﹣x B)=2×(3+6)=9;(3)设点P(0,m),而点A、O的坐标分别为:(3,4)、(0,0),AP2=9+(m﹣4)2,AO2=25,PO2=m2,当AP=AO时,9+(m﹣4)2=25,解得:m=8或0(舍去0);当AO=PO时,同理可得:m=±5;当AP=PO时,同理可得:m=;综上,P点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,).20.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC是∠DAB的角平分线,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PC与 ⊙O相切;(2)∵CF是∠ACB的角平分线,∴∠ACF=∠BCF,∵∠CAF=∠PCB,∴∠ACF+∠CAF=∠BCF+∠PCB,∴∠PFC=∠PCF,∴PC=PF.(3)∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,tan∠ABC==,∴BC=6,∴AB==10,∴OB=OE=5,∵∠ACE=∠BCE,∴=,∴EO⊥AB,∴BE==5.一、填空题:(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:,②×2﹣①得:7y=10﹣a,解得:y=,把y=代入②得:x=,代入2x﹣y=5得:﹣=5,去分母得:30+4a﹣10a=35,解得:a=﹣,则原式=﹣﹣=﹣.故答案为:﹣.22.【解答】解:设AM=2a,BM=b,则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵正方形EFGH的面积为4,∴b2=4,∵AM=EF,∴2a=b,∴a=b,∴正方形ABCD的面积=4a2+b2=8b2=32,故答案为:32.23.【解答】解:∵S1=,S2=﹣S1﹣1=,S3==,S4=﹣S3﹣1=,S5==﹣a﹣1,S6=﹣S5﹣1=a,S7==,….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.发现规律:每6个结果为一个循环,所以2020÷6=336…4,所以S2020=;因为2022÷6=337,所以S1+S2+S3+…+S2022=337(+++﹣a﹣1+a)=337(﹣1﹣1﹣1)=﹣1011.故答案为:,﹣1011.24.【解答】解:连接CM.∵△ACB是等腰直角三角形且∠ACB=90°,∴AC=BC=AB=20,∠CAB=∠CBA=45°,∵M为AB中点,∴CM=AM=BM=AB=10,∠CMB=90°,∠ACM=∠BCM=45°,∵CD⊥BN于D,∴∠CDB=∠CDN=90°,∴C、M、B、D四点共圆,延长DB至F,使BF=CD,连接MF,则∠MCD=∠MBF,在△MCD和△MBF中:∴△MCD≌△MBF(SAS)∴MD=MF,∠CMD=∠BMF,∴∠DMF=∠CMB=90°,∴CD+BD=DB+BF=DF=MD=28,又∵CD2+BD2=BC2=400,解得:CD=12,BD=16或CD=16,BD=12.∵∠NCD+∠BCD=∠NCD+∠ANB=90°,∴∠ANB=∠BCD=∠BMD,∵∠ANB=∠BNE,∴△BMD∼△END,∴===,∴NE=ND.当CD=12,BD=16时,由射影定理有:ND===9,∴NE=.当CD=16,BD=12时,同理可得ND=,所以NE=.综上所述,NE的长为或.25.【解答】解:如图,将线段PA绕点P逆时针旋转90°得到线段PM.连接AM,点N是AM的中点.∵P(﹣1,﹣3),A(a,0),∴M(﹣4,a﹣2),∵MN=NA,∴N(,),∴直线PN的解析式为:y=x+,∵PA=PM,MN=NA,∴∠NPA=45°,∴点B在射线PN上,∵B(0,b),∴b==﹣2+,∵a,b所示正整数,∴a=3,b=4或a=4,b=1,∴C(3,4)或(4,1),∵点C在y=上,∴k=12或4,故答案为12或4.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)根据题意得:W=1200x+1000(140﹣x)=200x+140000.(2)根据题意得,5%x+3%(140﹣x)≤5.8,解得x≤80.∴0<x≤80.又∵在一次函数W=200 x+140000中,k=200>0,∴W随x的增大而增大,∴当x=80时,W最大=200×80+140000=156000.∴将这140吨蔬菜全部销售完,最多可获得利润156000元.27.【解答】解:(1)由题意AP=4t,AQ=2t.则==,又∵AO=10,AB=20,∴==.∴=,∴△APQ∽△ABO.∴∠AQP=∠AOB=90°,即PQ⊥AC.(2)①由(1)可知,当0<t<5时,如图1中,∠PQM=90°,△PQM是直角三角形,当5<t<10时,如图2中,当BP=PC时,∠PMQ=90°,此时t=7.5,综上所述,当0<t<5或t=7.5时,△PQM是直角三角形②存在这样的t,使△PMN是以PN为一直角边的直角三角形.设l交AC于H.如图1,当点N在AD上时,若PN⊥MN,则∠NMH=30°.∴MH=2NH.得20﹣4t﹣t=2×,解得t=2.如图3,当点N在CD上时,若PM⊥PN,则PM∥CD,∴∠BPM=∠BCD=60°,∠BMP=∠BDC=60°,∵∠PBM=60°,∴△PBM是等边三角形,∵PB=BM,∴4t﹣20=[20﹣2×2(t﹣5)],解得t=.故当t=2或时,存在以PN为一直角边的直角三角形.28.【解答】解:(1)∵抛物线的对称轴为x=1,AB=6,∴A(﹣2,0),B(4,0),将点A代入y=ax2﹣2ax+4,则有0=4a+4a+4,∴a=﹣,∴y=﹣x2+x+4;(2)设R(t,﹣t2+t+4),过点R作x、y轴的垂线,垂足分别为R',R'',则∠RR'O=∠RR''O=∠R'OR''=90°,∴四边形RR'OR''是矩形,∴RR''=OR'=t,OR''=RR'=﹣t2+t+4,∴S△OCR=OC•RR''=×4t=2t,S△ORB=OB•RR'=×4(﹣t2+t+4)=﹣t2+2t+8,∴S△RBC=S△ORB+S△OCR﹣S△OBC=﹣t2+2t+8+2t﹣×4×4=﹣t2+4t;(3)设EF、PD交于点G',连EG,连接OP交GE于点Q,∵PD⊥EF,∴∠FG'G=∠DG'E=90°=∠DOG,∴∠OFE=∠GDO,∵∠DOG=∠FOE=90°,EF=DG,∴△DGO≌△FEO(AAS),∴GO=OE,∵∠OGP=90°+∠OFE,∠OEP=90°﹣∠OFE+∠PEF,又∵∠PEF=2∠OFE,∴∠OEP=90°﹣∠OFE+2∠OFE=90°+∠OFE,∵∠OGE=∠OEG=45°,∴∠PGQ=∠PEQ,∴PG=PE,∴△PGO≌△PEO(SAS),∴OP是EG的垂直平分线,∴OP平分∠COB,过P作KP⊥x轴于K,PW⊥y轴于W,交RT于点H,则PW=PK,∠PWO=∠PKO=∠WOK=90°,∴四边形PWOK是正方形,∴WO=OK,∵OC=OB=4,∴CW=KB,∵P在BT垂直平分线上,∴PT=PB,∴TK=KB=CW,设OT=2a,则TK=KB=CW=2﹣a,HT=OK=PW=2+a,∵OB﹣TS=,∴HS=TS﹣HT=﹣(2+a)=﹣a,∵tan∠HPS==,∴=,∴a=1或a=,当a=1时,R(2,4),当a=时,R(,),综上所述:R点坐标为(2,4)或R(,).。

2020年四川省成都市高考数学三诊试卷1 (含答案解析)

2020年四川省成都市高考数学三诊试卷1 (含答案解析)

2020年四川省成都市高考数学三诊试卷1一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={x|1≤x ≤3},B ={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A. [3,+∞)B. (3,+∞)C. [−∞,3]D. [−∞,3)2. 已知复数z =1+ai i(i 为虚数单位)在复平面上对应的点位于第四象限,则实数a 的取值范围为( )A. (0,+∞)B. (−∞,1)C. (1,+∞)D. (−∞,0)3. 命题“|x|≥0(x ∈R)”的否定是( )A. “∀x ∈R ,使|x|<0”B. “∃x ∈R ,使|x|<0”C. “∃x ∉R ,使|x|<0”D. “∃x ∈R ,使|x|≤0”4. 一个几何体的正视图与侧视图相同,均为下图所示,则其俯视图可能是( )A.B.C.D.5. 已知函数f (x)={3x ,x ≤1,−x,x >1,若f (x)=2,则x 等于( )A. log 32B. −2C. log 32或−2D. 26. 已知实数x ,y 满足不等式组{x −2y +1≥ 0x ≤ 3x +y −1≥0,则z =x −y +3的取值范围是( ) A. [83,8)B. [83,8]C. [4,8]D. [43,4]7. 在如图所示的锐角三角形空地中,有一内接矩形花园(阴影部分),其一边长为x(单位:m).将一颗豆子随机地扔到该空地内,用A 表示事件:“豆子落在矩形花园内”,则P(A)的最大值为( )A. 14 B. 512 C. 12 D. 348. 已知数列{a n }是等比数列,a 3=1,a 5=4,则公比q 等于( )A. 2B. −2C. ±12D. ±29.已知x∈R,则“x<1”是“x2<1”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件10.已知双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线经过点(3,√3),则双曲线的离心率为()A. 2√33B. 2 C. 2√33或2 D. √3或211.如图,直三棱柱ABC−A1B1C1中,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心为O,点E是侧棱BB1上的一个动点.有下列判断:①直线AC与直线C1E是异面直线;②A1E一定不垂直AC1;③三棱锥E−AA1O的体积为定值;④AE+EC1的最小值为2√2.其中正确的个数是()A. 1B. 2C. 3D. 412.函数f(x)=2sin(ωx+π3)(ω>0)的图象在[0,1]上恰有两个最大值点,则ω的取值范围为()A. [2π,4π]B. [2π,9π2) C. [13π6,25π6) D. [2π,25π6)二、填空题(本大题共4小题,共20.0分)13.已知向量a⃗=(2,4),b⃗ =(1,1),若向量b⃗ ⊥(a⃗+λb⃗ ),则实数λ的值是________.−1.65,则实数m的值为________.x1234y0.5m 4.87.515.数列{a n}满足a1+2a2+⋯…+na n=4−n+22n−1(n∈N∗),则数列{a n}的前n项和T n=______.16.直线l过抛物线C:y2=2px(p>0)的焦点F且与C相交于A,B两点,且AB的中点M的坐标为(3,2),则抛物线C的方程为______ .三、解答题(本大题共7小题,共82.0分)17.1,A2,A3,…,A12的12名篮球运动员在某次篮球比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8A9A10A11A12得分510121682127156221829得分区间频数频率[0,10)31 4[10,20)[20,30)合计12 1.00内的运动员中随机抽取2人,求这2人得分之和大于25的概率.18.在△ABC中,内角A,B,C的对边分别是a,b,c,已知a2−b2=bc,2sinB−sinC=0,求角A的大小.19.如图,在几何体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF=2,EF//AB,M为BC中点.(1)求证:FM//平面BDE;(2)求几何体ABCDEF的体积.20.已知函数g(x)=(x+1)lnx+1(Ⅰ)求g(x)的单调区间;(Ⅱ)设f(x)=xlnx−1e x 的最小值为M,证明:M∈(−1−2e2,−1e)21. 已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的焦距为2√3,且C 与y 轴交于A(0,−1),B(0,1)两点.(1)求椭圆C 的标准方程;(2)设P 点是椭圆C 上的一个动点且在y 轴的右侧,直线PA ,PB 与直线x =3交于M ,N 两点.若以MN 为直径的圆与x 轴交于E ,F 两点,求P 点横坐标的取值范围.22. 在平面直角坐标系xOy 中,曲线C 的参数方程是{x =1+2cosθy =2sinθ,以原点为极点,x 轴的正半轴为极轴建立极坐标系,若直线ι的极坐标方程是ρsin(θ+π4)=√2a ,直线ι与曲线C 相交于A ,B 两点,若AB =2√3,求实数a 的值.23. 已知函数f(x)=√x 2−4x +4−|x −1|.(1)解不等式f(x)>12;(2)若正数a ,b ,c ,满足a +2b +4c =f(12)+2,求√1a+2b+4c的最小值.-------- 答案与解析 --------1.答案:B解析:解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.根据集合的包含关系判断即可.本题考查了集合的包含关系,考查不等式问题,是一道基础题.2.答案:A解析:【分析】本题考查复数的基本运算和复数的几何意义,属于基础题.【解答】解:由z=a−i,又∵复数z在复平面内对应的点位于第四象限,有a>0.∴实数a的取值范围为(0,+∞)故选A.3.答案:B解析:解:全称命题的否定为特称命题,命题“|x|≥0(x∈R)”否定为“∃x∈R,使|x|<0”.故选:B.利用全称命题特称命题的否定是特称命题,写出结果即可.本题考查命题的否定,注意量词的变化,基本知识的考查.4.答案:B解析:【分析】本题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.直接从几何体的正视图和侧视图判断几何体的形状,从而可知俯视图的可能情况.【解答】解:一个几何体的正视图和侧视图都是等腰三角形加上一个正方形,其对应的几何体的上部分可能是正四棱锥,下部分有可能是圆柱,则其俯视图可能是:.故选:B.5.答案:A解析:【分析】本题主要考查的是分段函数求函数值的问题,属于基础题.直接利用分段函数解析式进行求值即可.【解答】解:当x ≤1时,3x =2,∴x =log 32; 当x >1时,−x =2,∴x =−2(舍去).∴x =log 32.故选A . 6.答案:B解析:解:作出不等式组对应的平面区域如图:联立{x =3x +y −1=0解得A(3,−2).联立{x −2y +1=0x +y −1=0解得B(13,23),z =x −y +3,平移经过A 时取得最大值:8;经过B 时取得最小值:83, 则z =x −y +3的取值范围是:[83,8]故选:B .作出不等式组对应的平面区域,平移目标函数,推出最优解,得到最值即可.本题主要考查线性规划的应用,作出平面区域,利用z 的几何意义,是解决本题的关键. 7.答案:C解析:解:三角形的面积S 1=12×40×40=800, 矩形花园的另一边长为h ,则40−ℎ40=x 40,∴ℎ=40−x ,∴矩形花园的面积S 2=ℎx =(40−x)x =−x 2+40x , ∴P(A)=S 2S 1=−x 2+40x 800,∵0<x <40,∴当x =20时,P(A)取得最大值400800=12.故选C .利用相似求出矩形的另一边,根据几何概型得出P(A)关于x 的解析式,根据二次函数的性质得出P(A)的最大值.本题考查了几何概型的概率计算,二次函数的性质,属于基础题. 8.答案:D解析:【解答】解:∵a 3=1,a 5=4, ∴q 2=a5a 3=4,∴q =±2, 故选:D【分析】利用等比数列的通项公式及其性质即可得出.本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于基础题.9.答案:B解析:【分析】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.x2<1,解得−1<x<1.即可判断出关系.【解答】解:x2<1,解得−1<x<1.∴“x<1”是“x2<1”的必要不充分条件.故选:B.10.答案:A解析:【分析】求出双曲线的渐近线方程,推出ab关系,然后求解离心率.本题考查双曲线的简单性质的应用,考查计算能力.【解答】解:双曲线x2a2−y2b2=1(a>0,b>0)的一条渐近线经过点(3,√3),可得3a =√3b,即b2a2=13,可得c2−a2a2=13,解得e=2√33.故选:A.11.答案:C解析:解:如图,∵直线AC经过平面BCC1B1内的点C,而直线C1E在平面BCC1B1内不过C,∴直线AC与直线C1E是异面直线,故①正确;当E与B重合时,AB1⊥A1B,而C1B1⊥A1B,∴A1B⊥平面AB1C1,则A1E垂直AC1,故②错误;由题意知,直三棱柱ABC−A1B1C1的外接球的球心为O是AC1与A1C的交点,则△AA1O的面积为定值,由BB1//平面AA1C1C,∴E到平面AA1O的距离为定值,∴三棱锥E−AA1O的体积为定值,故③正确;设BE=x,则B1E=2−x,∴AE+EC1=√1+x2+√1+(2−x)2.由其几何意义,即平面内动点(x,1)与两定点(0,0),(2,0)距离和的最小值知,其最小值为2√2,故④正确.∴正确命题的个数是3个.故选:C.。

四川省成都市2019-2020学年高考三诊数学试题含解析

四川省成都市2019-2020学年高考三诊数学试题含解析

四川省成都市2019-2020学年高考三诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线2222:1(0)x y E a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上的一点,且212||PF PF =.若直线2PF 与双曲线E 的渐近线交于点M ,且M 为2PF 的中点,则双曲线E 的渐近线方程为( )A .13y x =± B .12y x =± C .2y x =± D .3y x =±【答案】C【解析】【分析】 由双曲线定义得24PF a =,12PF a =,OM 是12PF F △的中位线,可得OM a =,在2OMF △中,利用余弦定理即可建立,a c 关系,从而得到渐近线的斜率.【详解】根据题意,点P 一定在左支上. 由212PF PF =及212PF PF a -=,得12PF a =,24PF a =,再结合M 为2PF 的中点,得122PF MF a ==,又因为OM 是12PF F △的中位线,又OM a =,且1//OM PF ,从而直线1PF 与双曲线的左支只有一个交点.在2OMF △中22224cos 2a c a MOF ac+-∠=.——① 由2tan b MOF a ∠=,得2cos a MOF c∠=. ——② 由①②,解得225c a=,即2b a =,则渐近线方程为2y x =±. 故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.2.直线0(0)ax by ab ++=>与圆221x y +=的位置关系是( )A .相交B .相切C .相离D .相交或相切 【答案】D【解析】由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆221x y +=的圆心为()0,0O ,半径1r =,∵圆心到直线的距离为d =222a b ab +≥Q ,1d ∴≤,故选:D .【点睛】本题主要考查直线与圆的位置关系,属于基础题.3.若数列{}n a 为等差数列,且满足5383a a a ++=,n S 为数列{}n a 的前n 项和,则11S =( ) A .27B .33C .39D .44【答案】B【解析】【分析】利用等差数列性质,若m n p q ++=,则m n p q a a a a ++= 求出63a =,再利用等差数列前n 项和公式得111116+)11(11332a a S a === 【详解】解:因为 5383a a a ++=,由等差数列性质,若m n p q ++=,则m n p q a a a a ++=得,63a ∴=.n S 为数列{}n a 的前n 项和,则111116+)11(11332a a S a ===. 故选:B .【点睛】本题考查等差数列性质与等差数列前n 项和.(1)如果{}n a 为等差数列,若m n p q ++=,则m n p q a a a a ++= ()*m n p q N ∈,,,.(2)要注意等差数列前n 项和公式的灵活应用,如21(21)n n S n a -=-.4.复数5i 12i +的虚部是 ( ) A .iB .i -C .1D .1-【答案】C因为()()()512510*********i i i i i i i i -+===+++- ,所以5i 12i+的虚部是1 ,故选C. 5.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x =A .1个B .2个C .3个D .4个【答案】B【解析】【分析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【详解】满足(1)(2)的函数是偶函数且值域关于原点对称,①不满足(2);②不满足(1);③不满足(2);④⑤均满足(1)(2).故选:B.【点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题. 6.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是,A B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为( )A .22122x y -= B .2213y x -= C .2213x y -= D .22144x y -= 【答案】A【解析】【分析】 点P 的坐标为()2,m ()0m >,()tan tan APB APF BPF ∠=∠-∠,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点P 的坐标为()2,m ()0m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值, 因为2tan a APF m +∠=,2tan a BPF m-∠=, 所以()2222tan tan 221a a a a m m APB APF BPF a a b b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当2b m m=()0m >,即当m b =时,等号成立, 此时APB ∠最大,此时APB 的外接圆面积取最小值,点P 的坐标为()2,b ,代入22221x y a b-=可得a =b == 所以双曲线的方程为22122x y -=. 故选:A【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.7.复数12i i--的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】【详解】 试题分析:由题意可得:131255i i i -=--. 共轭复数为3155i +,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系8.复数12i 2i +=-( ). A .iB .1i +C .i -D .1i -【答案】A【解析】 试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化. 9.已知函数()ln f x x =,()()23g x m x n =++,若对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1e C .21e D 【答案】C【解析】【分析】 对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,因为ln (23)x m x n ≤++,对()0,x ∈+∞恒成立,可得230m +>,令ln (23)y x m x n =-+-,可得1(23)y m x'=-+,结合已知,即可求得答案. 【详解】 Q 对任意的()0,x ∈+∞总有()()f x g x ≤恒成立∴ln (23)x m x n ≤++,对()0,x ∈+∞恒成立,∴230m +>令ln (23)y x m x n =-+-, 可得1(23)y m x'=-+ 令0y '=,得123x m =+ 当123x m >+,0y '< 当1023x m <<+0y '> ∴123x m =+,max 1ln 1023y n m =--≤+,123n m e --+≥ 故1(23)(,)n n m n f m n e++≥= Q 11(,)n n f m n e+-'= 令110n n e +-=,得 1n = ∴当1n >时,(,)0f m n '<当1n <,(,)0f m n '>∴当1n =时,max 21(,)f m n e =故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.10.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e x f x x =+,则32(2)a f =-,2(log 9)b f =,c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >> 【答案】C【解析】【分析】 根据函数的奇偶性得3322(2)(2)a f f =-=3222,log 9的大小,根据函数的单调性可得选项. 【详解】 依题意得3322(2)(2)a f f =-=,322223log 8log 9<==<=<Q , 当0x ≥时,()e x f x x =+,因为1e >,所以x y e =在R 上单调递增,又y x =在R 上单调递增,所以()f x 在[0,)+∞上单调递增,322(log 9)(2)f f f ∴>>,即b a c >>,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.11.已知点(3,0),(0,3)A B -,若点P 在曲线y =PAB △面积的最小值为( )A .6B .3C .92D .92+【答案】B【解析】【分析】求得直线AB 的方程,画出曲线表示的下半圆,结合图象可得P 位于(1,0)-,结合点到直线的距离公式和两点的距离公式,以及三角形的面积公式,可得所求最小值.【详解】解:曲线y =O 为圆心,1为半径的下半圆(包括两个端点),如图,直线AB 的方程为30x y -+=,可得||32AB =,由圆与直线的位置关系知P 在(1,0)-时,P 到直线AB 距离最短,即为22=, 则PAB △的面积的最小值为132232⨯⨯=. 故选:B.【点睛】本题考查三角形面积最值,解题关键是掌握直线与圆的位置关系,确定半圆上的点到直线距离的最小值,这由数形结合思想易得.12.在平面直角坐标系xOy 中,已知角θ的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线2y x =上,则3sin 22πθ⎛⎫+=⎪⎝⎭( ) A .45 B .45- C .35 D .35- 【答案】C【解析】【分析】利用诱导公式以及二倍角公式,将3sin 22πθ⎛⎫+ ⎪⎝⎭化简为关于tan θ的形式,结合终边所在的直线可知tan θ的值,从而可求3sin 22πθ⎛⎫+⎪⎝⎭的值. 【详解】 因为222222223sin cos tan 1sin 2cos 2sin cos 2sin cos tan 1πθθθθθθθθθθ--⎛⎫+=-=-== ⎪++⎝⎭,且tan 2θ=, 所以3413sin 22415πθ-⎛⎫+== ⎪+⎝⎭. 故选:C.【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解22sin cos m n θθ+值的两种方法:(1)分别求解出sin ,cos θθ的值,再求出结果;(2)将22sin cos m n θθ+变形为222222sin cos tan sin cos tan 1m n m n θθθθθθ++=++,利用tan θ的值求出结果. 二、填空题:本题共4小题,每小题5分,共20分。

四川省成都市2020届高三数学第三次诊断性检测试题理 含答案

四川省成都市2020届高三数学第三次诊断性检测试题理 含答案

四川省成都市2020届高三第三次诊断性检测数学试题 理第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,}{0,,{02,4}A x B ==,若A ←B ,则实数x 的值为 (A)0或2 (B)0或4 (C)2或4 (D)0或2或42.若复数z 满足zi =2+5i (i 为虚数单位),则z 在复平面上对应的点的坐标为 (A)(2,5) (B)(2,-5) (C)(-5,2) (D)(5,-2) 3.命题“∃x 0∈R ,x 02-x 0+1≤0的否定是0(),A x ∃∈R x 02-x 0+1>0 (B)∀x ∈R ,x 2-x +1≤0(0)C x ∃∈R ,x 02-x 0+1≥0 (D) ∀x ∈R ,x 2-x +1>04.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是5.已知函数2(2)f x x x --=,则()2log 3f = (A)2 (B)83 (C)3 (D)1036.已知实数x,y 满足10,20,50x x x y -≥⎧⎪-≥⎨⎪+-⎩…则z =2x +y 的最大值为(A)4 (B)6 (C)8 (D)107.在等比数列{a n }中,已知19nn n a a +=,则该数列的公比是(A )-3 (B)3 (C )±3 (D)98.已知函数f (x )=x 3-3x ,则“a>-1”是“f (a )>f (-1)”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件9.已知F 1,F 2是双曲线()222210,0x y a b a b-=>>的左,右焦点,经过点F 2且与x 轴垂直的直线与双曲线的一条渐近线相交于点A ,且1264F AF ππ∠剟,则该双曲线离心率的取值范围是()A [5,13] ()B [5,3] (C) [3,13] (D)[7,3]10.为迎接大运会的到来,学校决定在半径为202m ,圆心角为π4的扇形空地OPQ 的内部修建一平行四边形观赛场地ABCD ,如图所示则观赛场地的面积最大值为 (A )200m 2 ()B 400(2-2)m 2 (C)400(3-1)m 2 (D)400(2-1)m 211.在三棱锥P ABC —中,,AB BC P ⊥在底面ABC 上的投影为AC 的中点D , DP = DC= 1, 有下列结论: ①三棱锥 P — A B C 的三条侧棱长均相等; ②∠P AB 的取值范围是(π4,π2)③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为2π3④若 A B = B C ,E 是线段PC 上一动点,则+DE BF 的最小值为6+22其中正确结论的个数是(A)1 (B)2 (C) 3 (D)4 12.已知函数()sin 10,01, )4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭(588f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且f (x )在区间30,4π⎛⎫⎪⎝⎭上的最大值为2.若对任意的x 1,x 2∈[0,t ],都有()()122f x f x ≥成立,则实数t 的最大值是(A)3π4 (B)2π3 (C)712π (D)π2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上 13.已知向量(1,),(2,3),λ==a b 且,⊥a b 则实数λ的值为 ▲14.某实验室对小白鼠体内x ,y 两项指标进行研究,连续五次实验所测得的这两项指标数据如下表:已知y 与x 具有线性相关关系,利用上表中的五组数据求得回归直线方程为$$,y bx a $=+若下一次实验中x =170,利用该回归直线方程预测得$117,y =则b$的值为 ▲ 15.设数列{a n }的前n 项和为S n ,若a 1=1.S 5=35,112(211n n n S S S n n n n -+=+-+且且…n +N ,∈则12231011111a a a a a a +++L 的值为 ▲ 16.已知点F 为抛物线y 2=2px (p >0)的焦点,经过点F 且倾斜角为02παα⎛⎫<<⎪⎝⎭的直线与抛物线相交于A ,B 两点,(OAB O ∆为坐标原点)的面积为2sin 2α,线段AB 的垂直平分线与x 轴相交于点M ,则|FM|的值为 ▲三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档