第4章_线性系统的根轨迹法(《自动控制原理》课件)

合集下载

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理第四章根轨迹课件

自动控制原理第四章根轨迹课件

幅值条件
s z
i 1
Hale Waihona Puke mi s p
j 1
n

j
1 Kg
Kg=0
(s p ) 0
j 1 j
n
根轨迹起始于开环极点
Kg=∞
(s z ) 0
i 1 i
m
根轨迹终止于开环零点
根轨迹分支数 • n阶系统的根轨迹有n条分支
s z
i 1
m
i
s p
j 1

-p3

j4
K1 G( s) H ( s) s( s 4)( s 2 4s 20)
规则1、2、3、4 根轨迹对称于实轴, 有四条根轨迹分支,分别起 始于极点0,-4和-2±j4,终止 于无限远零点。 实轴上0~-4区段为根轨迹. 相角条件 -p3、-p4的连接线为 根轨迹
-p2
s1 z1 ( z1 p1 )(z1 p2 )
s2 z1 ( z1 p1 )( z1 p2 )
7.根轨迹的出射角和入射角(1)

出射角:根轨迹离开复数极点处的切线方向与实轴 正方向的夹角 入射角:而进入开环复数零点处的切线方向与实轴 正方向的夹角
7.根轨迹的出射角和入射角(2)
i 1 i 1
每对共轭复数极点所提供的相角 之和为360°; s1右边所有位于实轴上的每一个极 点或零点所提供的相角为180°;
ⅹ ⅹ
-p3 s2
-p4

-θ -z1


-p2 s1

-p1
σ
s1左边所有位于实轴上的每一个极
点或零点所提供的相角为0°。

自动控制原理简明版第4章根轨迹法课件35页PPT

自动控制原理简明版第4章根轨迹法课件35页PPT

令 dK 1 0
ds
s2 2s2 K1 s2 s24s20
求得 s10.58(舍6去)
s23.414
7
(2)
m
1
n
1
i1 szi j1 spi
因为
P (s ) Q (s ) P (s ) Q (s ) 0

P(s) Q(s) P(s) Q(s)
d
d
[lnP(s)] [ln Q(s)]Βιβλιοθήκη dsIm a倾角。
s1
pa
在根轨迹曲线上取试验点s1,与
复极点-pa的距离为 。 当 0时,可近似地 认为s1在切线上,切线
3 p3
1 z1
1
0 p1
Re
的倾角就等于复极点的
p2
出射角。
2
1 (a 1 9 0 3 ) 1 ( 8 2 k 0 1 )
所以 a 的出射角:
a18 (2 0 k1)1(190 3)
d[G1(s)H1(s)]0 或
ds
d[G(s)H(s)]0 ds
以上分析没有考虑 K1 0 (且为实数)的约束条件,所以只有满 足 K1 0的这些解,才是真正的分离点(或会合点)。
2
例: 设系统
R(s)
K1(s 2) s2 2s 2
C(s)
试求该系统根轨迹在实轴上的会合点。
解:系统的开环传递函数:
9
Im
复杂情况用试探法。
在-2-3之间存在一个分离点。
3
2 1
0 Re
1 1 1 1 s1 s s2 s3
s2.4
1 ? 1 1 1
2 .412 .4 2 .42 2 .43
0.715 1.247

自动控制原理第四章 根轨迹法PPT

自动控制原理第四章 根轨迹法PPT

第二节 绘制根轨迹的基本方法
四、根轨迹的渐近线
趋于无穷远处的根轨迹的渐近线 由下式确定 渐近线与实轴的夹角: +(2k+1)π K= 0,1,2,3 θ= n-m 渐近线与实轴的交点: σ=
pj zi ∑ ∑ i =1 j=1 n-m
n m
第二节 绘制根轨迹的基本方法
例 已知系统的开环传递函数,试确定 系统的根轨迹图。 Kr G(s)H(s)= s(s+1)(s+2) 渐近线与实轴的夹角 : jω 解: 1)开环零、极点: +(2k+1)π O+ O p =-3 p =0 p =-2 + 180 60 = , θ= 1 3 2 3 p2 60 p p3 2 )实轴上的根轨迹段: 渐近线与实轴的交点 : 0 1 -1 -2 p ~ p1~p-1-2 3 -1 = σ= 2 3 n-m= 3 3 4)根轨迹的渐近线: )系统的根轨迹
‫ב‬-
‫ב‬
‫ב‬
‫ב‬
第二节 绘制根轨迹的基本方法
2) <T (1)开环零、极点分布 1 1 p1=0 p2=T z1= (2) 实轴上根轨迹段 p1~p2 z1~-∞ ‫ב‬ ‫ב‬

z1
1 ‫ב‬p2 1 -T p
1 0
(3)系统的根轨迹
p1和p2为根轨迹 的起点 Z1和-∞为根轨迹 的终点
第二节 绘制根轨迹的基本方法
五、根轨迹的分离点和会合点
闭环特征方程的根在 S 平面上的重合 闭环特征方程式: K B ( s)+A(s)=0 r 注意:只有位于根轨迹上的重根才是 点称为根轨迹的分离点或会合点。 重根必须同时满足以下两式 分离点或会合点。 一般将根轨迹 KrB'(s)+A'(s)=0 KrB(s)+ A(s)=0 若不在根轨迹上的分离点或会 离开实轴进入复平面的点称为分离点 即 A'(s) 合点应该舍去。 dB ( s ) dA ( s ) 离开复平面进入实轴的点称为会合点 Kr =K + =0 B'(s) ds ds r 设系统的开环传递函数为 解上式得 Kr B(s) G H((s A (s)B' s)= )=A' A((s s))B(s)

第4章 线性系统的根轨迹法(《自动控制原理》课件)

第4章 线性系统的根轨迹法(《自动控制原理》课件)

如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同

自动控制原理第四章根轨迹法(管理PPT)

自动控制原理第四章根轨迹法(管理PPT)

根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。

天津大学812 自动控制原理课件 第4章 线性系统的根轨迹法

天津大学812  自动控制原理课件 第4章 线性系统的根轨迹法

二、根轨迹方程
根轨迹:当系统某一参数由0变化到无穷大时,闭环系统特征根在s平面上 的轨迹。 由(4-1)可得闭环系统的特征方程为 1 G(s) H (s) 0 由(4-3)式得
(s z )
j
m
K*
(s p )
i i
m
j n
1 1e j ( 2 k 1)
( k 0,1,2,
n m n * i j i i 1 j 1 i 1
例:要求系统闭环主导极点的阻尼比为0.5,试确定系统的根轨迹增益K*、 闭环主导极点和系统开环增益K。
K* G( s) H ( s) , s(s 3)(s 2 2s 2)
ξ =0.5
解:过原点作ξ=0.5的等阻尼线, 等阻尼线与根轨迹分支的交点 即为待求的一个闭环极点 0.41 j 0.71 ,另一共轭闭环极点为 0.41 j 0.71 ; 由根轨迹增益公式,可得2.63,; 由开环传函可得开环增益为 K K * 1 0;.44

j 1
m
z j pi

j 1, j i

n
Pj Pi
Pi 180o
同理可证终止角公式。
例4-3 P148 设系统的开环传递函数为
K * (s 1.5)(s 2 j )(s 2 j ) G( s) s(s 2.5)(s 0.5 j1.5)(s 0.5 1.5 j )
连续变化,则根轨迹连续变化;由于代数方程的根关于 实轴对称,根轨迹也关于实轴对称。
法则3:根轨迹的渐近线:当开环极点数n大于开环零数m时,有n-m条根 轨迹分支沿着与实轴交角为 a 、交点为 a 的一组渐近线趋向无 穷远处,其中:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
1
0
j1 d p j
现计算例子中的分离点d值, 由于:
1 1 1 1 1 1 1 d d 6 d 8 d 0.5 j d 0.5 j d 4 j3 d 4 j3
1 1 1 1 d 1 d 10 d 7 j2 d 7 j2
对上式整理得:
d10 38.5d 9 621.75d8 5430.375d 7 572799.25d 6 72338 d 5
法则2 根轨迹的分支数和对称性:根轨迹的分支数与开环有 限零点个数m和有限极点个数n中的大者相等. 它们是连续的并与 实轴成镜像对称.
法则3 实轴上的根轨迹:实轴上的某一区段,若其右边开环 实数零点个数和实数极点个数之和为奇数,该区段必是条完整的 根轨迹分支或是某条根轨迹分支的一部分.
法则3的应用见下图:
需指出的是, 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量.
例: 某闭环系统的开环传递函数为:
K '(s 1)(s 10)(s 7 j2)(s 7 j2) G0(s) s(s 6)(s 8)(s 0.5 j)(s 0.5 j)(s 4 j3)(s 4 j3)
上式中:
z j p4
z1 p4
z2 p4
z3 p4
z4 p4
j 1
t 1 g
1 0.5
t 1 g
1 9.5
2
t
1 g
1 6.5
t
1 g
3 6.5
1.1071 0.1049 2 0.1526 0.4324
7.7718(弧度)

z3 p4 z3
z2 p4
-10
-8
-6
z2
sN ( js 1) sN (s pj )
j 1
j 1
式(1)中: zi 是G0(S)的零点, i=1,2,….m pj 是G0(S)的非零极点, j=1,2,….r
s N 表示有N个数值为0的极点, 且N+ r=n, n为系统的 阶数. K叫开环系统的增益, K’叫开环系统的根轨迹增益,
K与K’的本质相同, 仅它们间的值有一系数关系, 即:
平面上相遇又分开的点称为分离点. 一般常见的分离点多位于实
轴上, 但有时也产生于共軛复数对中(即在复平面上).分离点必为
重根点, 分离点d的值可由下式计算:
n
1பைடு நூலகம்
m
1
j1 d p j i1 d zi
由上式算得的分离点d值必须使K’>0, 或者讲必须在根轨迹上.
当开环传递函数没有一个零点时, 分离点d的值由下式计算:
49935.75d 4 584743.625d 3 640674.75d 2 67091.25d 406775 0
用手工解十次代数方程相当麻烦. 但在实轴上的分离点有以下两 个特点:
(1) 实轴上两个相邻的极点或两个相邻的零点之间的区段如 是根轨迹, 则其上必有一个分离点. 这两个相邻的极点或两个相 邻的零点中有一个可以是无限极点或零点.
1. 根轨迹定义 定义: 当系统中某个(或几个)参数从0到+∞连续变化 时, 系 统闭环特征方程的根(即闭环极点)在根平面(S平面)上连续移动而 形成的轨迹. 称为系统的根轨迹.
2. 根轨迹方程 闭环控制系统的一般结构图如下所示:
R(S)
G1(S)
G2(S)
Y(S)
H(S)
其开环传递函数G0 (s) G1(s)G2 (s)H (s) , 开环传递函数是各
(2) 实轴上某区段是根轨迹的话, 如这区段的两个端点一个是 极点, 而另一个是零点, 则此区段上要么没有分离点, 如有, 则不 止一个.
利用以上两个特点可初步判断实轴上那些区段上有分离点, 然后用试探法求近似的分离点值, 求出一个后, 对整理后的方程 可降一阶.
法则6 起始角与终止角:根轨迹离开开环复数极点处的切线
i 1
m
r
i N j (2k 1) k 0,1,2, (5)
i 1
j 1
式(4)叫根轨迹的幅值条件, 式(5)叫根轨迹的相角条件. 在S平面 上凡满足相角条件的点一定是闭环极点, 即是闭环特征方程的根, 凡不满足相角条件的点一定不是闭环极点, 因此相角条件是绘制 根轨迹的充分必要条件. 根轨迹上某一点对应的K’的值可由幅 值条件求出.
第四章 线性系统的根轨迹法
4-1 根轨迹法的基本概念
先通过一个简单的例子, 了解一下根轨迹的本质是什么.
设有二阶代数方程 s2 3s 2 K 0 , 由韦达定理, 可求出其二个根
为: s1,2 1.5 0.25 K , 由于代数方程是二阶的, 求其根很方便
即便如此, 当可变参数K从0连续变化到正无穷大时, 计算这两个
如果用试凑的方法由相角条件来绘制根轨迹, 将会非常不方
便. 人们利用前面介绍的几个式子, 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 叫概略根 轨迹, 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 但对法则 不予推导和证明.
j 1
j
(3)
j 1
式(3)中: s zi 是 (s zi ) 的模; s pj 是 (s pj) 的模;
是(s
i
zi
)
的幅角;
j
是(s
p
j
)
的幅角;

s
的幅角;
k 0,1,2 , n N r
式(3)叫根轨迹方程, 此方程又可分为下面两个方程:
r
s pj
K '
j 1
m
(4)
s zi
p6 z3
-10
-8
-6
z2
p3
p2
z4
p7

3
2
p4 1
-1
0
σ
z1 p5 p1
法则4 根轨迹的渐近线:当开环有限极点个数n大于开环有
限零点个数m时,有n-m条根轨迹分支沿着与实轴交点为 a ,与实 轴正方向的夹角为 a 的一组渐近线趋向无穷远处的零点,
n
m
pj zi
且:
a
j 1
i
nm
a
p3
p2
z4
p6
z4 p4
3
p4 2
-1
1
0 z1 p4σ
z1
p1
p5
p7
同理可得: 7
p j p4
p1 p4
p2 p4
p3 p4
p5 p4
p6 p4
p7 p4
j 1
p3
p2
z4
p7

3
2
p4 1
-1
0 2/3 σ
z1
p1
p5
对于法则4, 当m>n时, 有m-n条根轨迹从无穷远处的极点沿
一组渐近线进入有限零点, 这一组渐近线的 a 和a 由下式计算:
m
n
zi pj
a
i
j 1
mn
a
(2k 1)
mn
k 0,1,2, ,m n 1
法则5 根轨迹的分离点:两条或两条以上的根轨迹分支在S
的根轨迹关于实轴成镜向对称.
实际控制系统往往是高阶的, 即其闭环特征方程是S的高阶 代数方程. 当系统中某环节的某个参数发生变化, 或为改善系统 的控制性能而改变系统中某环节的某个参数时, 系统的闭环极点 也即闭环特征方程的根也发生相应的变化. 而闭环系统的控制性 能与闭环极点在极点平面上的位置有密切的联系. 这就需要事先 从理论上分析闭环极点随某个参数变化时在极点平面上的变化趋 势从而得出某个参数的变化对系统性能的影响程度, 作出理论上 的指导. 而上例的方法正好可引入到对控制系统的分析和设计上 来.

-2 -1.5 -1
σ 0
当K=0.25时, 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根, 且其实部均为-1.5 , 而
虚部的绝对值随K的增大而增大, 两根的变化jω轨迹如下图所示:
-2 -1.5 -1

由例可见, 代数方程的根随方程中某一个参数的变化而在根
平面上的轨迹可用图形表示出来. 由于上例中代数方程简单, 是
个环节传递函数的乘积形式. 由于系统中各个环节一般为典型环
节, 而典型环节的传递函数一般不超过二阶, 其分子和分母的S
多项式极易因式分解, 从而开环传递函数的零极点也容易获得.
因此, 闭环系统的开环传递函数可表为:
m
m
K (Tis 1) K '(s zi )
G0 (s)
i 1 r
i 1 r
(1)
(2k 1)
nm
k 0,1,2, ,n m 1
n
m
上式中, pj 为开环极点值之和, zi 为开环零点值之和.
j 1
i 1
上例中, n-m=7-4=3, 有三条渐近线,它们的 a 和a 计算如下:
7
p j 0 6 8 0.5 j 0.5 j 4 j3 4 j3 23
上例中:
n 7,m 4; z1 1, z2 10, z3 7 j2, z4 7 j2
p1 0, p2 6, p3 8, p4 0.5 j, p5 0.5 j, p6 4 j3, p7 4 j3
将上述开环零点和极点尽可能准确标在S复平面上, 习惯上用叉 号标记开环极点, 用小圆圈标记开环零点, 如下图:
z j
pi 表示以下标序号为j的开环零点
z
为始点指向
j
pi
相关文档
最新文档