诱导公式

合集下载

高一数学诱导公式汇总

高一数学诱导公式汇总

高一数学诱导公式汇总学习数学需要讲究方法和技巧,更要学会对知识点进行归纳整理。

下面是店铺为大家整理的高一数学诱导公式大全,希望对大家有所帮助!高一数学诱导公式总结诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα诱导公式公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα诱导公式公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα诱导公式公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα诱导公式公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα诱导公式公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)。

三角函数诱导公式大全

三角函数诱导公式大全

三角函数诱导公式大全1.正弦函数诱导公式:正弦函数的诱导公式是通过余弦函数定义和平方性质得到的。

sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:sin(-A) = -sinAsin(A ± B) = sinA cosB ± cosA sinBsin2A = 2sinAcosAsin3A = 3sinA - 4sin^3A2.余弦函数诱导公式:余弦函数的诱导公式是通过正弦函数定义和平方性质得到的。

sin^2A + cos^2A = 1根据这个公式,我们可以得到以下诱导公式:cos(-A) = cosAcos(A ± B) = cosA cosB - sinA sinBcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Acos3A = 4cos^3A - 3cosA3.正切函数诱导公式:正切函数的诱导公式是通过正弦函数和余弦函数诱导公式得到的。

tanA = sinA / cosA根据正弦函数和余弦函数诱导公式,我们可以得到以下诱导公式:tan(-A) = -tanAta n(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)tan2A = 2tanA / (1 - tan^2A)tan3A = (3tanA - tan^3A) / (1 - 3tan^2A)4.余切函数诱导公式:余切函数的诱导公式是通过正切函数的诱导公式得到的。

cotA = 1 / tanA根据正切函数的诱导公式,我们可以得到以下诱导公式:cot(-A) = -cotAcot(A ± B) = (cotA cotB ∓ 1) / (cotB ± cotA)cot2A = (1 - tan^2A) / 2tanAcot3A = (3cotA - cot^3A) / (cot^2A - 3)5.正割函数诱导公式:正割函数的诱导公式是通过余弦函数的诱导公式得到的。

诱导公式总结大全

诱导公式总结大全
上下同除以cosA3(a,得:
tan3am(3tan—tan八3(a))/(1-3ta门八2(a))
sin3 om sin(2(+a msin2acos+cos2asina
m2sinacosA2(+)1—2sin八2(a))sina
m2sina—2si门八3(a+sin—2sin八3(a)
=3sina—4si门八3(a)
tan( a+ B)=(tan+tanB)/(1—tana •tanB)
tan( a— B) =(tan—tanB)/(1+tana •tanB)
二倍角的正弦、余弦和正切公式
sin2a2sinacosa
cos2aCOSA2(a—SinA2(a¥2COSA2(a—1a1—2sinA2(a)
tan2a2tana/(1—tan八2(a))
变”是指正弦变余弦,正切变余切。(反之亦然成立)符号看象限”的含
义是:把角a看做锐角,不考虑a角所在象限,看n•(n/2)是第几象限角, 从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦
这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都
是+”第二象限内只有正弦是+”其余全部是第三象限内只有
sin—sin#2cos((r B)/2)•sin((帥/2)
cosa+cosB=2cos((rB)/2)•cos— B)/2) cosa—cosB=—2sin((+B)/2)•sin— B)/2)
三角函数的积化和差公式
sina・cosBsin(+ B +sin(— B)]
cosa・si牛Bsin(+ B —sin(— B)]

诱导公式

诱导公式

诱导公式(1)——360︒ k + α, 180︒ - α, 180︒ + α, 360︒ - α, - α 目的:要求学生掌握上述诱导公式的推导过程,并能运用化简三角式,从而了解、领会把未知问题化归为已知问题的数学思想。

过程:一、诱导公式的含义:任意角的三角函数 0︒到360︒角的三角函数 锐角三角函数二、诱导公式1、公式1:(复习)sin(360︒k +α) = sin α, cos(360︒k +α) = cos α.tan(360︒k+α) = tan α, cot(360︒k +α) = cot α.sec(360︒k +α) = sec α, csc(360︒k +α) = csc α2、对于任一0︒到360︒的角,有四种可能(其中α为不大于90︒的非负角)[[[[⎪⎪⎩⎪⎪⎨⎧β∈βα-β∈βα+β∈βα-β∈βα=β为第四象限角),当为第三象限角),当为第二象限角),当为第一象限角,当 36027036027018018018090180)900 (以下设α为任意角) 3、公式2:设α的终边与单位圆交于点P(x ,y ),则180︒+α终边与单位圆交于点P ’(-x ,-y )∴sin(180︒+α) = -sin α, cos(180︒+α) = -cos α. ︒+α) = tan α, cot(180︒+α) = cot α.︒+α) = -sec α, csc(180︒+α) = -csc α4、公式如图:在单位圆中作出与角的终边,同样可得:-α) = -sin α, cos(-α) = cos α. -α) = -tan α, cot(-α) = -cot α. -α) = sec α, csc(-α) = -csc α5、公式4: sin(180︒-α) = sin[180︒+(-α)] = -sin(-α) = sin α,cos(180︒-α) = cos[180︒+(-α)] = -cos(-α) = -cos α,同理可得: sin(180︒-α) = sin α, cos(180︒-α) = -cos α.tan(180︒-α) = -tan α, cot(180︒-α) = -cot α.sec(180︒-α) = -sec α, csc(180︒-α) = csc α6、公式5: sin(360︒-α) = -sin α, cos(360︒-α) = cos α.tan(360︒-α) = -tan α, cot(360︒-α) = -cot α.sec(360︒-α) = sec α, csc(360︒-α) = -csc αy ) P’(P(诱导公式(2) 90︒ k ± α, 270︒ ± α,目的:能熟练掌握上述诱导公式一至五,并运用求任意角的三角函数值,同时学会另外四套诱导公式,并能应用,进行简单的三角函数式的化简及论证。

高考导数诱导公式

高考导数诱导公式
常用的诱导公式有以下几组:
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z)
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”;上述记忆口诀,一全正,二正弦,三内切,四余弦
sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα
还有一种按照函数类型分象限定正负:
函数类型 第一象限 第二象限 第三象限 第四象限
正弦 ...........+............+............—............—........
余弦 ...........+............—............—............+........
诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为:
对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。

数学诱导公式

数学诱导公式
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
cos(a-b)=cosa*cosb+sina*sinb ②
∴ ① + ② 得:
cos(a+b)+cos(a-b)=2cosa*cosb
∴ cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,若 ① - ② 得:
sina*sinb=-(cos(a+b)-cos(a-b))/2
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα*tanβ)
二倍角的正弦、余弦和正切公式(升幂缩角公式):
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
(以上k∈Z)
同角三角函数的基本关系式:
倒数关系:
tanα *cotα=1 sinα *cscα=1 cosα *secα=1
商的关系:
sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα
sin(3π/2+α)=-cosα sin(3π/2-α)=-cosα

诱导公式总结

诱导公式总结

诱导公式总结引言诱导公式,又称为递推公式,是数学中一种常见的求解问题的方法。

通过不断推导和迭代,诱导公式能够将一个复杂的问题化简为一系列简单的步骤,从而找到问题的解或者规律。

在数学、物理、计算机科学等领域中都具有广泛的应用。

本文将对诱导公式进行总结和归纳,介绍其基本定义、推导过程和应用案例。

基本定义诱导公式是一种基于递归方法的数学公式,通过依次计算前一项的结果,以推导出后一项的表达式。

通常情况下,诱导公式通过定义初始项和递推关系来确定。

假设一个序列的首项为a,递推关系为f(n),那么诱导公式的一般形式可以表示为:a(n)=f(a(n−1))其中,a(n)表示序列的第n项,a(n-1)表示第n项的前一项。

推导过程推导诱导公式的过程步骤如下:1.确定初始项:首先需要确定序列的首项,即a(1)。

2.寻找递推关系:通过观察序列的规律,寻找前一项和后一项之间的关系,得到递推关系f(n)。

3.使用递推关系计算后一项:利用递推关系和前一项,计算出后一项的表达式a(n)。

4.重复步骤3直到得到所求项。

应用案例1. 菲波那契数列菲波那契数列是最经典的诱导公式应用案例之一。

其定义如下:F(n)=F(n−1)+F(n−2)其中,F(n)表示菲波那契数列的第n项,F(n-1)表示第n项的前一项,F(n-2)表示第n项前两项的和。

通过这个递推关系,可以计算出菲波那契数列的任意项。

例如,初始项为F(1)=1,F(2)=1,根据递推关系,可以依次计算出F(3)=2,F(4)=3,F(5)=5,依此类推。

菲波那契数列在自然界中有许多应用,例如兔子繁殖、植物分枝等领域。

2. 幂等运算在计算机科学中,幂等运算是另一个重要的诱导公式应用。

幂等运算定义如下:f(n)=f(n−1)∗a其中,f(n)表示幂等运算的第n项,f(n-1)表示第n项前一项,a是一个常数。

幂等运算常见于计算机网络中,用于传输可靠性和数据一致性的保证。

通过重复应用这个递推关系,可以保证数据的正确性和完整性。

三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)

三角函数的8个诱导公式(汇总)三角函数的8个诱导公式1. 正弦函数的诱导公式sin(-x) = -sin(x)这个公式表明,正弦函数的值在x轴上是关于原点对称的。

也就是说,如果一个角度的正弦值为a,那么它的相反数的正弦值就是-a。

这个公式在解三角形问题时非常有用,为它可以帮助我们计算负角度的正弦值。

2. 余弦函数的诱导公式cos(-x) = cos(x)这个公式表明,余弦函数的值在y轴上是关于原点对称的。

也就是说,如果一个角度的余弦值为a,那么它的相反数的余弦值也是a。

这个公式同样也可以帮助我们计算负角的余弦值。

3. 正切函数的诱导公式tan(-x) = -tan(x)这个公式表明,正切函数的值在原点上是关于y轴对称的。

也就是说,如果一个角的正切值为a,那么它的相反数的正切值就是-a。

这个公式在计算负角的正切值时非常有用。

4. 余切函数的诱导公式cot(-x) = -cot(x)这个公式表明,余切函数的值在原点上是关于x轴对称的。

也就是说,如果一个角的余切值为a,那么它的相反数的余切值就是-a。

这个公式同样也可以帮助我们计算负角的余切值。

5. 正弦函数的平方的诱导公式sin^2(x) + cos^2(x) = 1这个公式是三角函数中最著名的公式之一,它表明正弦函数的平方加上余弦函数的平方等于1。

这个公式在解三角形问题时非常有用,为它可以帮助我们计算三角形中的未知边长。

6. 正切函数的平方的诱导公式tan^2(x) + 1 = sec^2(x)这个公式表明,正切函数的平方加1等于其对应的正割函数的平方。

这个公式在计算三角形中的未知边长时非常有用。

7. 余切函数的平方的诱导公式cot^2(x) + 1 = csc^2(x)这个公式表明,余切函数的平方加1等于其对应的余割函数的平方。

这个公式同样也可以帮助我们计算三角形中的未知边长。

8. 正弦函数和余弦函数的诱导公式sin(x + π/2) = cos(x)cos(x + π/2) = -sin(x)这两个公式表明,正弦函数和余弦函数之间存在一种特殊的关系,即它们的相位差为π/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 三角函数的诱导公式(一)
教学要求:掌握π+α、-α、π-α三组诱导公式,并能熟练运用进行化简与求值. 教学重点:应用诱导公式.
教学难点:理解诱导公式推导.
教学过程:
一、复习准备:
1. 写出2k π+α的诱导公式.
2. 提问:求任意角的三角函数值如何求?
二、讲授新课:
1. 教学诱导公式:
1.当︒<<︒900α即是锐角,是第一象限的角时下列各角与α的关系是什么?
形式
象限 与α的关系 α I
απ- II
απ+ III
α- IV
απ-2 IV
① 讨论:利用诱导公式(一),将任意范围内的角的三角函数值转化到0~2π后,又将如
何将0~2π间的角转化到0~2π呢? 方法:设0°≤α≤90°, (写成β的分段函数)
则90°~180°间角,可写成180°-α;
180°~270°间的角,可写成180°+α;
270°~360°间的角,可写成360°-α.
② 推导π+α的诱导公式:
复习单位圆:----------------------------------------。

.
思考:角α的终边与单位圆交于点P (x , y ),则sin α=-----cos α=------
讨论:α与π+α终边有何关系?设交单位圆于P (x , y )、P ’,则P ’坐标怎样?
计算sin(π+α)=------------、cos(π+α)=-------------、tan(π+α)=------------------,-。

相关文档
最新文档