第二章-渗流数学模型
多相多组分渗流数学模型——by 赵文齐

多相多组分渗流数学模型一、 模型的假设条件1. 油藏中的渗流为等温渗流;2. 油藏中的流体为油、气、水三相;3. 油藏内流体的流动为线性流动,即符合Darcy 定律;4. 油藏流体共分为Nc+1个组分,其中i=1、2、3、…、Nc 为烃、非烃组分,i=Nc+1为水组分;5. 油藏中油、气两相瞬时达到相平衡状态;6. 忽略重力的影响;7. 油水以及气水之间互不相容。
二、 渗流数学模型1、由连续性方程的一般形式()()0div q tρφρν∂++=∂ ,结合多相多组分渗流的特点,得到其连续性方程为:水组分的守衡方程:()()0w w w w w S div q tρφρν∂++=∂ (1) 对于任意烃非烃组分i 的守衡方程:()()0o g i o o i g g i o i g i o i g x S y S div x y x q y q t ρρφρνρν∂⎡⎤+++++=⎣⎦∂ (1,2,3,,i Nc = ) (2)2、系统中i 组分的摩尔总量方程:i i i Lx Vy z += (3)其中, 1L V += (4)3、相平衡方程: o g i i f f = (1,2,3,,i Nc = ) (5)4、组分约束方程:11Ncii x==∑ (6)11Ncii y==∑ (7)11Ncii z==∑ (8)5、毛管力约束方程:cow o w p p p =- (9) cgo g op p p =- (10)6、饱和度约束方程:1o g w S S S ++= (11)注:以上各式中,独立方程个数24Nc +,求解未知量为i x ,i y (1,2,3,,i Nc = ),o p ,o S ,w S ,L ,共24Nc +个,可以封闭求解。
g S 可由(11)求得, w p 和g p 可分别由(9)和(10)求得,i z 可由(3)求得,V 可由(4)求得。
第二章 土的渗透性和渗流问题(3-4节)

式中,kx、kz—分别为x和z方向的渗透系数; h—测管水头。
7
将式(2-29)和(2-30)代入式(2- 28)可得出:
2h 2h kx 2 kz 2 0 x z
(2 - 31)
8
对于各向同性的均质土,kx=kz,则式(2 -31)可表达为:
h h 2 0 2 x z
(2 - 49)
31
对于二元渗流,当流网绘出后,即可方 便地求出流网中任意网格上的渗透力及 其作用方向(图2-24) 。作用于该网格 土体上的单宽总渗透力为:
J jV ( wi) (sl 1)
h w sl w hs l
注意:J作用于流网网格的形心上,方向 与流线平行。 32
ua hua w
(2 - 34)
注意:图中所示a、b两点位于同一根等 势线上,其测管水头虽然相同(位置水 头与压力水头之和,h=z+u/w)即 ha=hb, 但其孔隙水压力却不同,即ua≠ub。
20
3.水力坡降
h 流网中任意网格的平均水力坡降 i , l
l为该网格处流线的平均长度。
11
2.数值解法 有限差分法和有限单元法。 3.实验法 实验法是指采用一定比例的模型来摸拟 真实的渗流场,用实验手段测定渗流场 中的渗流要素。例如电比拟法、电网络 法和沙槽模型法等。
12
4.图解法 图解法是指采用绘制流网的方法求解拉 普拉斯方程的近似解。 该法具有简便、迅速的优点,并能用于 建筑物边界轮廓较复杂的情况。
式中M为流网中的流槽数,数值上等于流 线数减1。 通过坝底的总渗流量
Q qL
式中L为坝基长度。
第二章油气渗流的数学模型

第二章 油气渗流的数学模型
主要内容
§2.1 概述 §2.2 渗流基本微分方程的建立 §2.3 典型数学模型 §2.4 定解条件
§2.1 概
一、建立数学模型的基础
述
油气渗流数学模型的研究方法是把一定地质条件下油气渗 流的力学问题转换为数学问题,然后求解, 流的力学问题转换为数学问题,然后求解,再联系油气田开发 的实际条件应用到生产当中去。 的实际条件应用到生产当中去。 渗流形态和类型不同,所遵循的力学规律有差异, 渗流形态和类型不同,所遵循的力学规律有差异,伴随渗 流过程出现的物理化学现象也不同, 流过程出现的物理化学现象也不同,故有很多类型的渗流数学 模型。 模型。
§2.1 概
三、建立数学模型的步骤
述
3、确定未知数(因变量)和其他物理量之间的关系 确定未知数(因变量) 确定选用的运动方程 确定所需的状态方程 确定连续性方程 确定伴随渗流过程发生的其他物理化学作用的函 数关系
§2.1 概
三、建立数学模型的步骤
述
4、推导数学模型所需的综合微分方程 用连续性方程作为综合方程,把其他方程代入连续 性方程中,得到描述渗流过程全部物理现象的统一微分 方程或微分方程组。
§2.1 概
述
二、油气渗流数学模型的一般结构
油气渗流基本微分方程体现了在渗流过程中需要研究的流 体力学、物理学和化学问题的总和, 体力学、物理学和化学问题的总和,并且还要描述这些现象的 内在联系。因此,建立基本渗流微分方程要考虑包括以下几方 内在联系。因此, 面的因素: 面的因素: 渗流过程是流体运动的过程,必然受运动方程支配; 渗流过程是流体运动的过程,必然受运动方程支配; 渗流过程又是流体和岩石的状态不断改变的过程, 渗流过程又是流体和岩石的状态不断改变的过程,所以 需要建立流体和岩石的状态方程; 需要建立流体和岩石的状态方程;
渗流力学-第二章

第二章 单相液体稳定渗流
1. 2. 3.
单向渗流:渗流特征;流场、势场 平面径向渗流:油井、水井(注入井) K发生变化时的单向和平面径向渗流
21
两种渗流压降曲线与等压线分布特点
p
pe
pw
22
第二章 单相液体稳定渗流
第三节
本节要点
单相液体刚性球形径向稳定渗流
1. 掌握球形流的渗流特征 2. 掌握流场、势场的分布
第二节
本节要点
1. 掌握渗流特征 :速度、压力分布;产量公式
2. 弄清油井与注入井的差别 3. 掌握渗透率发生变化时的渗流特征
单相刚性稳定平面径向渗流
12
第二章 单相液体稳定渗流
1. 平面径向流地层模型
pe pw
水平、均质、等厚的圆形地层模型,其外边缘处有充足的液源供给, 中心钻有一口生产井,该井钻穿全部油层,即中心有一口水动力学完善 井(生产井),供给边缘半径为Re,井半径为Rw,地层厚度h,供给边 缘上压力pe,井底压力pw,单相液体刚性稳定渗流。已知地层渗透率为 K,流体粘度μ,地层厚度h。 13
单向流的渗流面积:
A Bh
单向流时的产量公式:
Q B h x K B h ( pe pw ) ( pe pw ) R
L
上式表明产量和压力差成线性关系,其中:
R
L
KBh
L
KA
是从供给边缘到排液坑道的渗流阻力。
8
第二章 单相液体稳定渗流
3. 渗透率发生变化时的渗流特征
单向刚性稳定渗流
2.掌握流场、势场的分布特征
3.掌握渗透率发生变化时的渗流特征。
2
第二章 单相液体稳定渗流
地下水渗流基本方程及数学模型总结

常可忽略。
(二)含水层的状态方程
含水层弹性存储的概念: 弹性储存:当地下水水头(水压)降低(或升高)时, 含水层、弱透水层释放(或储存)地下水的性质。 含水层弹性存储的物理意义:
(承压含水层)弹性储存与(潜水)重力储存不同;
第一步:化简方程左端项: 当渗流满足达西定律,且取坐标与各向异性主轴方向一致,有:
H v x K xx x
H v y K yy y
H v z K zz z
( v x ) H H H ( K xx ) [ K xx (K xx )] x x x x x x x
§5 描述地下水运动的数学模型及解算方法
一、各向异性含水层中地下水三维流的基本微 分方程的推导 二、地下水运动微分方程的各种形式 三、地下水运动数学模型的建立及求解
§5 描述地下水运动的数学模型及解算方法
一、各向异性含水层中地下水三维流基本微分方程的推导 为反映含水层地下水运动的普遍规律,研究选定在各向 异性多孔介质中建立地下三维不稳定流动连续性方程。 水均衡的基本思想,对某一研究对象:
描述地下水运动的数学模型及解算方法二地下水运动微分方程的各种形式zzyyxxzzyyxx使潜水面边界处理的简单化直接近似地在微分方程中处理dsdh此时1潜水面比较平缓等水头面呈铅直水流基本水平可忽略渗流速度的垂直分量v2隔水底板水平铅垂剖面上各点的水头都相等各点的水力坡度和渗流速度都相等sin可以近似地用tg代替此即著名的dupuit假设
m d( )
m
1 d d ( )
渗流力学 第二章 数学模型

第二节 运动方程
渗流服从线性规律时,渗流速度为: v K P
L
其微分形式为: v K dP
dL
将上式从均质地层的稳定渗流 推广到非均质地层的不稳定渗流
性压缩系数C、导压系数æ等)和流体的物理参数(如 粘度μ、密度ρ、体积系数B等)
第一节 建立数学模型的原则
2.研究各物理量的条件和状况
过程状况:是等温过程还是非等温过程; 系统状况:是单组分系统还是多组分系统,甚至是凝
析系统; 相态状况:是单相还是多相甚至是混相; 流态状况:是服从线性渗流规律还是服从非线性渗流
液体的状态方程 气体的状态方程 岩石的状态方程
第三节 状态方程
一、液体的状态方程
液体具有压缩性,随着压力降低,体 积膨胀,其特性可用压缩系数来描述:
CL
1 VL
dVL dP
(1)
根据质量守恒原理,在压缩或膨胀时
液体质量M不变,即
M VL (2)
微分上式得:
dVL
M
2
d
(3)
将VL、dVL代入(1)式得:
v K gradP
或写成:
K P
vx
x
vy
K
P y
vz
K
P z
第三节 状态方程
渗流是一个运动过程,而且也是一个状态不断变化的过程, 由于和渗流有关的物质(岩石、液体、气体)都有弹性。因 此,随着状态变化,物质的力学性质会发生变化。所以,描 述由于弹性而引起力学性质随状态而变化的方程式称为“状 态方程”。
发生变化,故孔隙度是随压力而变化的状态函数; ②由于
渗流力学--模型

常见的连续性方程有:
单相流体渗流的连续性方程; 两相渗流连续性方程; 带传质扩散过程的连续性方程
一、单相渗流的连续性方程
• 质量守恒方程的建立方法
– 微分法(无穷小分析法) – 积分法(矢量场分析法)
vvx,vy,vz
z
vx
y
vz
dx v y
dz dy
x
以x方向为例。
= 流入 — 流出 质量变化量
t时刻
t+dt
dt时间内油相 的饱和度变化 量为
So
So
So t
dt
S o dt t
油相
dt时间内单元体内油相的质量变化总量为
So t
odxdyddzt
油相
o x v ox o y v oy o z v o z dxd d t S y to d o dzxd d
建立数学模型的步骤
第二步:研究各物理量的条件和情况
• 过程状况:等温或非等温 • 系统状况:单组分或多组分 • 相态状况:单相 多相或混相 • 流态状况:达西流或非达西流
建立数学模型的步骤
第三步:确定未知量和其他物理量之关系
• 确定选用的运动方程 v K dp dx
• 确定所需要的状态方程
将两种流体分别用下标1和2表示若不计重力则其方程组为驱油动力渗流阻力非线性渗流的数学描述?用不同斜率的直线组合来描述渗流过程?初始段用幂律关系来描述后一段用直线关系描述gradp051过渡流05完全紊流平方区惯性力成为主要作用力dldpdldp气体分子的平均自由程接近通道的大小时界面上的分子都将处于运动状态两相渗流的数学描述gradp第四节油气渗流的基本数学模型概念
油气渗流的数学模型

div[( ogs gs )vo ]dxdydzdt
由于气体分离出来,在单元体内油被气相替代,因此,油相饱 和度也将发生变化,在单元体孔隙内油相质量随时间变化为:
( ogs gs ) So dxdydzdt t
根据质量守恒定律,上面两式应该相等,得到油、气两 相渗流时,油相的连续性方程:
或
( v x ) ( v y ) ( v z ) y z x
散度,M点单位体积 单位时间向包围曲面 ( ) 外流出的流体体积
t
上式可写成: ( ) div ( v ) 0 t 上式即为单相均质可压缩流体在弹性孔隙介质中的质量守 恒方程(连续性方程)
单相渗流的连续性方程 两相渗流的连续性方程
一、单相渗流的连续性方程
在地层中取微小六面体单元,单元体中M点质量速度在各 坐标上分量为ρvx、ρvy、和ρvz。
vx
vy
( vx ) dx x 2 ( vy ) dy
y 2
vz
( vz ) dz z 2
vox voy voz So y z t x
可以写为
So div(vo ) 0 t
对水相来讲,同样可以得出:
S w div(vw ) 0 t
2.油、气两相渗流的连续性方程
在油、气两相渗流时,溶有气体的石油经过单元地层,由于 地下单位体积原油 在压力P下溶有气体 压力降低而分出气体,因此,油的质量发生变化,在 dt时间 中溶解气质量 的地下原油密度 内流入流出的质量差为:
第2章 油气渗流的数学模型
建立数学模型的原则
运动方程 状态方程 质量守恒方程 典型油气渗流数学模型建立 数学模型的初边值条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 P 1 P 1 P 2 dr r dr t
P t 0 Pi
P r r rw r P (t 0) r re 0 r
(rw r re ) 初始条件 q (t 0) 内边界条件 2Kh
外边界条件
渗流微分方程—— § 2.5 定解条件—— § 2.6
整理得:
或:
2 P 2 P 2 P 1 P 2 2 2 x y z t
1 P P t
2
K 称为导压系数,物理意义为单位时间内压力传 Ct
播的地层面积,表明地层压力波传导的速度。 单位为 m 2 / s 或 cm 2 / s 。 单相微可压缩流体在微可压缩地层中按达西定律渗流的
变化较小,看成常数
P
0e
C L ( P P0 )
104 (1 / MPa)
按麦克劳林级数展开,取前两项
1 2 1 3 x e 1 x x x 2! 3!
0 [1 CL ( P P0 )]
§2.2 渗流基本微分方程的建立
2.岩石的状态方程 ( )
§2.2 渗流基本微分方程的建立
一、运动方程
K v gradP
z
vz
或写为:
v
vx
K P vx x K P vy y K P vz z
M
vy o
y
x
§2.2 渗流基本微分方程的建立
二、状态方程
状态方程:描述液体、气体、岩石的状态参数随压力变 化规律的数学方程。
x
方向
dt 时间内,从左侧面流入微元体的质量流量为:
( vx ) dx [ vx ]dydzdt x 2 dt 时间内,从右侧面流出微元体的质量流量为: ( vx ) dx [ vx ]dydzdt x 2 则微元体在 dt 时间内,沿 x 方向流入流出的质量流量差为: ( vx ) dxdydzdt x 同理: ( v y ) dxdydzdt 方向 y
● ●方程右端:
0 [1 CL ( P P0 )]
代入
( ) ( ) t t t
0 C f ( P P0 )
P P {[0 C f ( P P0 )]CL 0 [ 0 CL 0 ( P P0 )]C f } t t
1.液体的状态方程 ( )
1 VL CL VL P
流体质量 M VL
1 dVL CL VL dP
取全微分 整理
dM dVL VL d 0
dVL d VL
1 d CL dP
分离变量积分
1 CL dP d P0 0
●方程左端:
( v x ) K P C L ( P P0 ) [ 0e ( )] x x x P e C L ( P P0 ) e C L ( P P0 ) [ ] K C L ( P P0 ) P x x CL 0 [e ] x x 1 C L ( P P0 ) [ ] 2 K P x CL 流
2 P 1 P 2 x t
2 P 1 P 1 P 2 r r r t 2 P 2 P 1 P 2 r r r t
平面径向流
球面径向流
▲坐标变换
y
r x y
2 2 2
P dP r x dP x dr x r dr
§2.1 概 述
●渗流力学研究主要解决两类基本问题:
★单相渗流问题中,弄清流域内压力和流速的分布及变化;
★在多相渗流过程中和非等温渗流过程中,弄清流域内饱和
度和温度的分布及变化。 因变量: P、 v、 s、 T 自变量: ( x, y, z, t )
§2.1 概 述
●油气渗流数学模型:用数学语言综合表达油气渗流过
●积分法:矢量场方法。
微分法
在地层中取一微小的平行六面体单元如图:
z
dz
( vx ) dx vx x 2
M
M 点质量流速: v 分速度分别为: v x v y vz
M
M
( vx ) dx vx x 2
dy
dx
o
y
x
●同一时间间隔内液体流入质量与流出质量之差
m ( x, y )
2 P d (P / x) r 2 x dr x x d 2 P d ( x / r ) dP x [ ] 2 r dr dr dr r x 2 d 2 P y 2 dP 2 3 2 r dr r dr 同理:
2 P y 2 d 2 P x 2 dP 2 3 2 2 y r dr r dr
或:
y
z
( ) t
( ) div ( v ) t
为微可压缩液体在微可压缩地层中满足达西线性渗流定 律的连续性方程。
的物理含义:质量流速为 v 的 点,单位体积 M div ( v )
在单位时间内向包围曲面外流出的流体质量,反映该点源的 强度。 div ( v ) 0 有源场(正、负)
● ● ●由质量守恒定律建立连续性方程
微元体内流体质量
dxdydz
由质量守恒得:
( vx ) ( v y ) ( vz ) ( ) [ ]dxdydzdt dxdydzdt x y z t
简化: ( vx ) ( v y ) ( vz )
x
div ( v ) 0
无源场
不可压缩液体在刚性介质中渗流的连续性方程为:
div (v ) 0
K v gradP
0 eC
L ( PP ) 0
K P vx x K P vy y K P vz z
0 [1 CL ( P P0 )]
油气层渗流力学
第二章 油气渗流的数学模型
§2.1 概 述
●基本概念、基本规律 ——第一章 ●工程问题→物理过程→数学模型 ——第二章
●具体应用
——第三章、第四章、第五章、第六章……
主要内容
§2.1 建立数学模型的基本原则 §2.2 运动方程 §2.3 状态方程 §2.4 连续性方程 §2.5 渗流基本微分方程的建立
渗流基本微分方程。
式中
2 为拉普拉斯算子(算符)。
2 2 2 2 2 2 x y z 2 为哈密尔顿算子(算符)。 i j k x y z
( ) v t ( v ) 0
§2.6 定解条件
主要内容
重点——几种典型渗流数学模型的适用条
件和基本结构
难点—— 渗流基本微分方程的建立
例: 对于封闭弹性不稳定渗流,其数学模型为:
2 P 1 P 1 P 2 dr r dr t
渗流微分方程
P t 0 Pi
P r r
(rw r re ) 初始条件
同理:
( v y ) y
2P 0 2 y K
( vz ) K 2P 0 2 z z
则方程左端为:
( v x ) ( v y ) ( v z ) div ( v ) x y z 2P 2P 2P 0 ( 2 2 2 ) x y z K
1 V f Cf V f P 1 dV p Cf V f dP
Vp
为孔隙体积
V f V p
Pf
P P
P'
Vp V
d Cf dP
积分
开采前
'
开采后
( P0 , 0 ) ( P, )
0 C f ( P P0 )
§2.2 渗流基本微分方程的建立
§2.1 概 述
﹡质量守恒定律是自然界的一般规律,因此基本渗流微分 方程的建立必须以表示物质守恒的连续性方程为基础;
﹡在 渗流过程中,有时伴随发生一些物理化学现象,如能 量传递、弥散、双重孔隙介质中的窜流等,此时还应建立描述 这种特殊现象的特征方程。 运动方程
基本渗流 微分方程
流体和岩石的状态方程 连续性方程 特征方程
z
y
方向
( vz ) dxdydzdt z
dt 时间内,纯流入微元体的流体质量为:
( vx ) ( v y ) ( vz ) [ ]dxdydzdt x y z
● ●微元体封闭表面内的液体质量变化
dt 时间内,微元体中流体质量增加量为:
( ) dxdydzdt t
K v P
不考虑流体及岩石弹性,则: 2P 2P 2P 2 2 0 2 x y z 或:
2 P 0
拉普拉斯 方程
单相不可压缩流体按达西定律稳定渗流的渗流基本微分
方程。
进一步说明的两个问题
不同渗流方式下单相液体渗流基本微分方程的具体形式
稳定渗流
单向流
d P 0 2 dx d 2 P 1 dP 0 2 dr r dr d 2 P 2 dP 0 2 dr r dr
§2.1 概 述
●油气渗流基本微分方程体现了在渗流过程中需要研究的
流体力学、物理学和化学问题的总和,并且还要描述这些现象 的内在联系。因此,建立基本渗流微分方程要考虑包括以下几 方面的因素: ﹡ 渗流过程是流体运动的过程,必然受运动方程支配; ﹡ 渗流过程又是流体和岩石的状态不断改变的过程,所 以需要建立流体和岩石的状态方程;
r x2 y2
r
( r , )
x
d (x / r) d ( r 2 y2 / r) dr dr d ( 1 y2 / r 2 ) dr 2 y 2 r x