2018高三备考专题:牛顿运动定律的应用之传送带模型
2018高三备考专题:牛顿运动定律的应用之传送带模型

【高三一轮教学案】牛顿运动定律应用--传送带模型2 017.10.1一、模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c) 所示。
①②③1.①擦力2.中S3.体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【名师点睛】1. 在确定研究对象并进行受力分析之后,首先判定摩擦力突变(含大小和方向)点,给运动分段。
传送带传送的物体所受的摩擦力,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。
物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻。
v物与v传相同的时刻是运动分段的关键点,也是解题的突破口。
2. 判定运动中的速度变化(即相对运动方向和对地速度变化)的关键是v物与v传的大小与方向,对二者的比较是决定解题方向的关键。
3.在倾斜传送带上需比较mg sin θ与F f的大小与方向,判断F f的突变情况。
4. 考虑传送带长度——判定临界之前是否滑出;物工件与传送带间的动摩擦因数μ=0.6,工件滑上A端时速度v A=10 m/s,设工件到达B端时的速度为v B。
(取g=10 m/s2)(1) 若传送带静止不动,求v B;(2) 若传送带顺时针转动,工件还能到达B端吗?若不能,说明理由;若能,求到达B点的速度v B;来源于网络来源于网络(3) 若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。
【典例2】 如图所示,水平传送带A 、B 两端相距s =3.5 m ,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B .下列说法中正确的是( )A. 若传送带不动,v B = 3 m/sB. 若传送带逆时针匀速转动,v B 一定等于3 m/sC. 若传送带顺时针匀速转动,v B 一定等于3 m/sD.情况,从而确定其是否受到滑动摩擦力作用。
牛顿运动定律的应用之传送带模型

牛顿运动定律的应用之传送带模型1.水平传送带水平传送带又分为两种情况:物体的初速度与传送带速度同向(含物体初速度为0)或反向.在匀速运动的水平传送带上,只要物体和传送带不共速,物体就会在滑动摩擦力的作用下,朝着和传送带共速的方向变速(若v物<v传,则物体加速;若v物>v传,则物体减速),直到共速,滑动摩擦力消失,与传送带一起匀速运动,或由于传送带不是足够长,在匀加速或匀减速过程中始终没达到共速.计算物体与传送带间的相对路程要分两种情况:①若二者同向,则Δs=|s传-s物|;①若二者反向,则Δs=|s传|+|s物|.2.倾斜传送带物体沿倾角为θ的传送带传送时,可以分为两类:物体由底端向上运动,或者由顶端向下运动.解决倾斜传送带问题时要特别注意mg sin θ与μmg cos θ的大小和方向的关系,进一步判断物体所受合力与速度方向的关系,确定物体运动情况.【题型1】如图所示,水平传送带正在以v=4 m/s的速度匀速顺时针转动,质量为m=1 kg 的某物块(可视为质点)与传送带之间的动摩擦因数μ=0.1,将该物块从传送带左端无初速度地轻放在传送带上(g取10 m/s2).(1)如果传送带长度L=4.5 m,求经过多长时间物块将到达传送带的右端;(2)如果传送带长度L=20 m,求经过多长时间物块将到达传送带的右端.【题型2】如图所示,足够长的水平传送带,以初速度v0=6 m/s顺时针转动.现在传送带左侧轻轻放上m=1 kg的小滑块,与此同时,启动传送带制动装置,使得传送带以恒定加速度a=4 m/s2减速直至停止;已知滑块与传送带的动摩擦因数μ=0.2,设最大静摩擦力等于滑动摩擦力.滑块可以看成质点,且不会影响传送带的运动,g=10 m/s2.试求:(1)滑块与传送带共速时,滑块相对传送带的位移;(2)滑块在传送带上运动的总时间t.【题型3】如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.【题型4】如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?【题型5】在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
【K12教育学习资料】[学习]2018-2019学年高中物理 专题11 牛顿运动定律的应用之传送带模
![【K12教育学习资料】[学习]2018-2019学年高中物理 专题11 牛顿运动定律的应用之传送带模](https://img.taocdn.com/s3/m/5429cdcf04a1b0717fd5ddf2.png)
专题11 牛顿运动定律的应用之传送带模型水平传送带问题求解的关键在于对物体所受的摩擦力进行正确的分析判断。
物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
【例1】如图所示,水平长传送带始终以v匀速运动,现将一质量为m的物体轻放于A端,物体与传送带之间的动摩擦因数为μ,AB长为L,L足够长。
问:(1)物体从A到B做什么运动?(2)当物体的速度达到传送带速度v时,物体的位移多大?传送带的位移多大?(3)物体从A到B运动的时间为多少?(4)什么条件下物体从A到B所用时间最短?【答案】(1)先匀加速,后匀速(2)v22μgv2μg(3)Lv+v2μg(4)v≥2μgL【解析】(1)物体先做匀加速直线运动,当速度与传送带速度相同时,做匀速直线运动。
(2)由v=at和a=μg,解得t=vμg(4)当物体从A到B一直做匀加速直线运动时,所用时间最短,所以要求传送带的速度满足v≥2μgL。
倾斜传送带问题求解的关键在于分析清楚物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。
【例2】如图所示,传送带与地面夹角θ=37°,AB长度为16 m,传送带以10 m/s的速率逆时针转动。
在传送带上端A无初速度地放一个质量为0.5 kg的物体,它与传送带之间的动摩擦因数为0.5。
求物体从A运动到B所需时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)【答案】 2 s【解析】 物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F f ,物体受力情况如图甲所示。
物体由静止加速,由牛顿第二定律有mg sin θ+μmg cos θ=ma 1,得a 1=10×(0.6+0.5×0.8) m/s 2=10 m/s 2。
牛顿运动定律的应用传送带模型

图3-2-7 (1)求物体刚开始运动时所受滑动摩擦力的大小与加速度 的大小; (2)求物体做匀加速直线运动的时间; (3)如果提高传送带的运行速率,物体就能被较快地传送 到B处,求物体从A处传送到B处的最短时间和传送带对 应的最小运行速率。
解析:(1)滑动摩擦力Ff=μmg=0.1×4×10 N=4 N, 加速度a=μg=0.1×10 m/s2=1 m/s2。 (2)物体达到与传送带相同速率后不再加速,则 v=at1,t1=va=11 s=1 s。 (3)物体始终匀加速运行时间最短,加速度仍为a=1 m/s2,当物体到 达右端时,有
2.倾斜传送带模型
项目
图示
情景 1
情景 2
滑块可能的运动情况
(1)可能一直加速 (2)可能先加速后匀速
(1)可能一直加速 (2)可能先加速后匀速 (3)可能先以a1加速后以a2加速
项目
情景 3
情景 4
图示
滑块可能的运动情况
(1)可能一直加速 (2)可能先加速后匀速 (3)可能一直匀速 (4)可能先以a1加速后以a2加速 (1)可能一直加速 (2)可能一直匀速 (3)可能先减速后反向加速
vmin2=2aL,vmin= 2aL= 2×1×2 m/s=2 m/s, 所以传送带的最小运行速率为2 m/s。 物体最短运行时间由vmin=atmin, 得tmin=vmain=21 s=2 s。
答案:(1)4 N 1 m/s2 (2)1 s (3)2 s 2 m/s
如图3-2-11所示,传送带保持
(2)传送带逆时针转动时,物体从顶端 A 滑到底端 B 的时间.
解析 (1)传送带顺时针转动,物 体相对传送带向下运动,则物体所 受滑动摩擦力沿斜面向上,相对传 送带向下匀加速运动,据牛顿第二 定律有 mg(sin 37°-μcos 37°)=ma 则 a=gsin 37°-μgcos 37°=2 m/s2, 据 l=12at2 得 t=4 s.
2018高中物理牛顿定律应用专题4深度剖析传送带问题学案新人教版必修1

深度剖析传送带问题知识点考纲要求题型分值牛顿第二定律的应用应用牛顿第二定律解决问题传送带模型的分析选择题解答题6~15分二、重难点提示重点:学会使用牛顿第二定律解决传送带问题。
难点:倾斜传送带上物体的运动情况分析。
传送带问题是以真实物理现象为依据的问题,它既能训练学生的科学思维,又能联系科学、生产和生活实际,因而,这种类型问题具有生命力,当然也就是高考命题所关注的问题。
1. 传送带分类:水平、倾斜两种;按转向分类:顺时针、逆时针转两种。
2. 受力和运动分析:受力分析中的摩擦力突变——发生在v物与v带相同的时刻运动分析中的速度变化——相对运动方向和对地速度变化分析关键:①判断v物、v带的大小与方向;②判断mg sinθ与f 的大小与方向。
【要点诠释】水平传送带倾斜传送带首先是要对放在传送带上的物体进行受力分析,分清物体所受摩擦力是阻力还是动力。
先对物体进行受力分析,再判断摩擦力的方向是关键,正确理解题意和挖掘题中隐含条件是解决这类问题的突破口。
其次是对物体进行运动状态分析,即对静态→动态→终态进行分析和判断,对其全过程作出合理分析、推论,进而采用有关物理规律求解。
例题1 如图所示,一平直的传送带以速度v =2m/s 匀速运动,传送带把A 处的工件运送到B 处,A 、B 相距L =10m 。
若从A 处把工件无初速地放到传送带上,经过时间t =6s 能传送到B 处。
现要用最短的时间把工件从A 处传送到B 处,求传送带的运行速度至少多大。
思路分析:由题意可知:t >vL,所以工件在6s 内先匀加速运动,后匀速运动,故有S 1=2vt 1、S 2=vt 2,且t 1+t 2=t 、S 1+S 2=L 联立求解得t 1=2s ;v =a t 1,a =1m/s 2。
若要用最短时间把工件传送到B 处,工件加速度仍为a ,设传送带速度为v ′,工件先加速后匀速,同上,L =21t v '+v ′t 2;又t 1=av ',t 2=t -t 1,联立求解得L =a 22v '+v ′(t -a v ');因此得a v v L t 2'+'=,从式子看出常量=='⨯'a L a v v L 22,时即aL v av v L 22=''=',其t 有最小值,因而s m aL v v /202=='=,通过解答可知工件一直加速到B所用时间最短,故可用ax v v t 2202=-一步解出,00=v ,t v m L x s m a ,10,/12===即为传送带运行最小速度,得s m v t /20=。
牛顿运动定律传送带模型专题

传送带模型专题——送你去远方Type 1:水平传送带问题:物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L =5 m ,并以v 0=2 m/s 的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m/s 2(1)求旅行包经过多长时间到达传送带的右端;(2) 若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?2.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,g=10m/s 2,则: (1)物体由静止沿斜面下滑到斜面末端的速度大小?(2)为使物体不掉下传送带,传送带左右两端AB 间的距离L 至少为多少?(3)物体在传送带上先向左运动后向右运动,最后沿斜面上滑所能达到的最大高度h ′为多少?Type 2:倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.Attention 1:判断摩擦力的方向:当物体速度与传送带速度相等之前,物体受到摩擦力的作用,使得其速度趋向于传送带速度。
Attention 2:判断共速后是否还存在加速度:当物体速度与传送带速度相等时,判断重力沿斜面向下的分力(x G )与最大静摩擦力(m ax 静f )之间的关系,若max 静f G x >,则物体仍有沿斜面向下的加速度;若max 静f G x ≤,则物体相对于传送带静止,与传送带一起做匀速直线运动。
高三物理知识点传送带模型

高三物理知识点传送带模型高三物理知识点:传送带模型传送带模型是物理学中对运动的描述和解释的一种简化模型。
它常被用来说明物体在平稳运动状态下的变化规律和相关的物理概念。
本文将介绍传送带模型的基本原理和应用,以及与高考物理相关的知识点。
一、传送带模型的基本原理传送带模型基于以下假设:1. 假设传送带平稳运行,即传送带的速度保持不变;2. 假设系统在相对运动中处于稳态,即不受到外力的干扰;3. 假设传送带的运动与物体的运动具有良好的耦合性。
在传送带模型中,我们可以将物体视作一个质点,其运动状态由位置、速度和加速度等因素决定。
通过对物体所受的驱动力和阻力进行分析,可以得到物体在传送带上的运动规律。
二、传送带模型的应用1. 平抛运动:传送带模型可以用来解释物体在水平平面上的平抛运动。
在这种情况下,传送带的速度影响了物体的水平速度,而垂直方向的运动受到重力的影响。
根据传送带模型,物体的横向速度与传送带速度相等,而垂直速度受到重力加速度的影响。
这样,我们可以推导出物体在水平平面上的轨迹、飞行时间和最大高度等参数。
2. 斜抛运动:传送带模型也可以应用于物体在斜面上的抛体运动。
在这种情况下,传送带的速度和斜面的倾角会对物体的运动产生影响。
根据传送带模型,物体的速度可以分解为沿斜面和垂直斜面的分量。
这样,我们可以得到物体在斜面上的运动规律,包括滑动距离、飞行时间和最大高度等参数。
三、与高考物理相关的知识点传送带模型是理解和应用以下高考物理知识点的基础:1. 运动规律:通过传送带模型,我们可以更深入地理解运动物体的速度、加速度和运动规律。
包括匀速直线运动、匀加速直线运动等。
2. 平衡力分析:传送带模型可以帮助我们分析物体所受的平衡力和非平衡力。
比如,在平抛运动中,物体的横向速度受到传送带的平衡力,而垂直速度受到重力的非平衡力。
3. 牛顿定律:传送带模型也可以用来解释和应用牛顿定律。
在斜抛运动中,我们可以分析物体受到的斜面作用力和重力作用力,并根据牛顿定律推导运动方程。
专题:传送带模型

二 倾斜传送带模型
1.由顶端向底端运送物体的分析 〖典例〗. 如图,传送带与水平地面倾角θ=37º,从 A 端到 B 端 的距离 L=16m,传送带以 v=10m/s 的速率逆时针转动,在传送 带的上端 A 无初速度地放一个质量为 0.5kg 的小物体,若已知 该物体与传送带之间的动摩擦因数μ=0.5,求小物体从 A 端运
(3)若小煤块以水平初速度V=7m/s向右滑上A端,传送带以
V(04=)4若m/小s逆煤时块针以运水转平,初小速煤度块3V=m离5m开//ss传向送右带滑的上速A端度,?传送带以17m / s
V0=4m/s逆时针运转,小煤块离开传送带的速度?
4m/ s
小结:水平传送带模型
项目 情景 1 情景 2
情景 3
解析 (1)设物体速度大于传送带速度时加速度大小为 a1,由牛顿第二定律 得 Mgsinθ+μMgcosθ=Ma1①
设经过时间 t1 物体的速度与传送带速度相同,
t1=v0-v②
a1
通过的位移 x速度时物体的加速度为 a2 M gsin θ-μM gcosθ=M a2④ 物体继续减速,设经 t2 速度到达传送带 B 点
一 水平传送带模型 母题导航
【母题】(多选)如图所示,水平传送带 A、B 两端相距 x=4 m,
以 v0=4 m/s 的速度(始终保持不变)顺时针运转,今将一小煤
块(可视为质点)无初速度地轻放置 A 端,由于煤块与传送带之 间有相对滑动,会在传送带上留下划痕。已知煤块与传送带间
的动摩擦因数μ=0.4,取重力加速度大小 g=10 m/s2,则煤块
图示
滑块可能的运动情况 (1)可能一直加速 (2)可能先加速后匀速
(1)v0>v 时,可能一直减速,也
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高三一轮教学案】牛顿运动定律应用--传送带模型2017.10.1一、模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图 (a)、(b)、(c) 所示。
二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
三、注意事项1. 传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向2.传送带与物体运动的牵制。
牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。
3. 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【名师点睛】1. 在确定研究对象并进行受力分析之后,首先判定摩擦力突变(含大小和方向)点,给运动分段。
传送带传送的物体所受的摩擦力,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。
物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻。
v物与v传相同的时刻是运动分段的关键点,也是解题的突破口。
2. 判定运动中的速度变化(即相对运动方向和对地速度变化)的关键是v物与v传的大小与方向,对二者的比较是决定解题方向的关键。
3.在倾斜传送带上需比较mg sin θ与F f的大小与方向,判断F f的突变情况。
4. 考虑传送带长度——判定临界之前是否滑出;物体与传送带共速以后物体是否一定与传送带保持相对静止。
四、传送带模型问题包括水平传送带问题和倾斜传送带问题1. 水平传送带问题项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0求解的关键在于对物体所受的摩擦力进行正确的分析判断。
判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等。
物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
【典例1】如图所示,水平传送带两端相距x=8 m,工件与传送带间的动摩擦因数μ=0.6,工件滑上A端时速度v A=10 m/s,设工件到达B端时的速度为v B。
(取g=10 m/s2)(1) 若传送带静止不动,求v B;(2) 若传送带顺时针转动,工件还能到达B端吗?若不能,说明理由;若能,求到达B点的速度v B;(3) 若传送带以v=13 m/s逆时针匀速转动,求v B及工件由A到B所用的时间。
【典例2】如图所示,水平传送带A、B两端相距s=3.5 m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B.下列说法中正确的是( )A. 若传送带不动,v B=3 m/sB. 若传送带逆时针匀速转动,v B一定等于3 m/sC. 若传送带顺时针匀速转动,v B一定等于3 m/sD. 若传送带顺时针匀速转动,有可能等于3 m/s2. 倾斜传送带问题:项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。
当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。
【典例3】如图所示,为传送带传输装置示意图的一部分,传送带与水平地面的倾角θ=37°,A、B两端相距5.0 m,质量为M=10 kg的物体以v0=6.0 m/s的速度沿AB方向从A端滑上传送带,物体与传送带间的动摩擦因数处处相同,均为0.5.传送带顺时针运转的速度v=4.0 m/s,(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物体从A点到达B点所需的时间;(2)若传送带顺时针运转的速度可以调节,物体从A点到达B点的最短时间是多少?【典例4】如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v =10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m =0.5 kg的物体。
已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间。
3. 组合类的传送带 【典例5】如图所示,传送带的水平部分ab =2 m ,斜面部分bc =4 m ,bc 与水平面的夹角α=37°.一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示的方向运动,速率v =2 m/s.若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不会脱离传送带。
求物体A 从a 点被传送到c 点所用的时间。
(已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)针对训练一、水平放置运行的传送带1. 如图所示,物体A 从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A 滑至传送带最右端的速度为v 1,需时间t 1,若传送带逆时针转动,A 滑至传送带最右端的速度为v 2,需时间t 2,则( ) A. 1212,v v t t >< B. 1212,v v t t << C. 1212,v v t t >>D. 1212,v v t t ==2. 如图所示,一水平方向足够长的传送带以恒定的速度v 1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v 2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v 2′,则下列说法正确的是:( ) A. 只有v 1= v 2时,才有v 2′= v 1 B. 若v 1 >v 2时, 则v 2′= v 2C. 若v 1 <v 2时, 则v 2′= v 1 D. 不管v 2多大,v 2′= v 2.3. 物块从光滑斜面上的P 点自由滑下通过粗糙的静止水平传送带后落到地面上的Q 点。
若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P 点自由滑下,则( )A. 物块有可能落不到地面B. 物块将仍落在Q 点C. 物块将会落在Q 点的左边D. 物块将会落在Q 点的右边4. 如图所示,质量为m 的物体用细绳拴住放在水平粗糙传送带上,物体到传送带左端的距离为L ,稳定时绳与水平方向的夹角为θ,当传送带分别以v 1、v 2 的速度做逆时针转动时(v 1<v 2),绳中的拉力分别为F 1、F 2;若剪断细绳,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是( )A. F 1<F 2B. F 1=F 2C. t 1一定大于t 2D. t 1可能等于t 25. 水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A 、B 始终保持v =1m/s 的恒定速率运行;一质量为m =4kg 的行李无初速地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离l =2m ,g 取10m /s 2。
(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小; (2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处。
求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率。
6. 如图甲所示,水平传送带的长度L =5m ,皮带轮的半径R =0.1m ,皮带轮以角速度ω顺时针匀速转动。
现有一小物体(视为质点)以水平速度v 0从A 点滑上传送带,越过B 点后做平抛运动,其水平位移为S 。
保持物体的初速度v 0不变,多次改变皮带轮的角速度ω,依次测量水平位移S ,得到如图乙所示的S —ω图像。
回答下列问题:(1)当010ω<<rad /s 时,物体在A 、B 之间做什么运动? (2)B 端距地面的高度h 为多大? (3)物块的初速度v 0多大?二、倾斜放置运行的传送带7. 如图所示,足够长的传送带与水平面夹角为θ,以速度v 0逆时针匀速转动。
在传送带的上端轻轻放置一个质量为m 的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是( )8. 如图所示为某工厂的货物传送装置,倾斜运输带AB ( 与水平面成α=37°角 ) 与一斜面BC (与水平面成θ=30°角) 平滑连接,B 点到C 点的距离为L =0.6 m ,运输带运行速度恒为v 0=5 m/s ,A 点到B 点的距离为x =4.5 m ,现将一质量为m =0.4 kg 的小物体轻轻放于A 点,物体恰好能到达最高点C 点,已知物体与斜面间的动摩擦因数μ1= 36,求:( g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,空气阻力不计)(1) 小物体运动到B 点时的速度v 的大小; (2) 小物体与运输带间的动摩擦因数μ;(3) 小物体从A 点运动到C 点所经历的时间t .图甲v 0图乙ω/rad/sS /m 313010三、组合类的传送带9. 如图所示为一货物传送货物的传送带abc . 传送带的ab 部分与水平面夹角α=37°,bc 部分与水平面夹角β=53°,ab 部分长度为4.7m ,bc 部分长度为3.5m. 一个质量为m =1kg 的小物体A (可视为质点)与传送带的动摩擦因数μ=0.8. 传送带沿顺时针方向以速率v =1m/s 匀速转动. 若把物体A 轻放到a 处,它将被传送带送到c 处,此过程中物体A 不会脱离传送带.(sin37°=0.6,sin53°=0.8,g =10m/s 2)求:物体A 从a 处被传送到b 处所用的时间;10. 右图为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A ,B 两端相距3m ,另一台倾斜,传送带与地面的倾角,C, D 两端相距4. 45 m ,B, C 相距很近。