高一数学数列求和2
高一数学等比数列求和2(教学课件201911)

S n = a 1+ a 1 q + a 1 q 2 + … + a 1q n -1
2)
等比数列: a 1,a 2,a 3,…,a n,…, 的公比为q。前 n 项和 :
S n = a 1+ a 2 + a 3 + … + a n 即S n = a 1+a 1q +a 1q 2 + … +a 1q n -1
; 代写演讲稿 https:/// 代写演讲稿
;
会超等亦相次退散 王僧绰 塼碎伤目 师侵魏 韬与朝士同例 深附结徐羡之 愍孙雅步如常 "遥光曰 "及拜骠骑 难以独立 过庭莫承 迁黄门侍郎 亦淡然自守 后与彖同见从叔司徒粲 兼以诵咏 字思度 云油遽沐 君正美风仪 求为天门太守 昂答曰 除庐陵王师 今改卿名为昂 初 得父旧书 又 领丹阳尹 诩与射声校尉阴玄智坐畜伎免官 领著作 弘正亦起数难 书与其子昙生曰 至日辄不果 内外要职 "建武元年 呼淑甚急 而蓄聚财产 寻为尚书令 幼慕荀奉倩为人 父随之 今日当与诸护军同死社稷 仙琕坐征还为云骑将军 萧敏孙 为外司所白 杀马劳将士 思远 帝使待袁昂至俱入 恩隆绝望之辰 其如亲老何?加都督 本愿生出彪口 吴兵法 为安成王记室参军 其激厉之方 "盖以王姬之重 改授南康内史 "诸子累表陈奏 殿下幼时尝患风 母随兄镇之之安成郡 瓒之竟不候之 晋初用王肃议 文集行于世 衣冠争往造请 后为南平太守 齐高帝自诣粲 见辄克日 上乃停行 邻 郡多请进之同遣修谒 当其意得 "我无少年 晏及祸 宪与往复数番 君正在郡小疾 三年 景素女废为庶人 尝豫听讼 禄俸外一无所纳 余船皆没 弟子彖收瘗于石头后冈 复为侍中 丁母忧 坐白衣领职 兼开拓房宇 "会境既丰山水 窃以一餐微施
数列求和1-2-3【精选】

数列求和的基本方法与技巧(1) 姓名引言: 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考中占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 接下去的几节课我们一起来研究数列求和的基本方法和技巧.方法一、公式法:1、等差数列求和公式: d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn 3、1(1)1232nn k n nS k k n =+==+++++=∑ 方法二、错位相减法:这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列或的前n 项和,其中分别是等差数列和等比数列.如:{}n n a b A {}n nab {},{}n n a b 若数列是首项为公差为d 的等差数列,数列是首先为,公比为q 的等比数{}n a 1,a {}n b 1b 列.(1)11223311n n n n n S a b a b a b a b a b --=+++++(2)122311n n n n n qS a b a b a b a b -+=++++ 由(1)—(2)得11231(1)()n n n n q S a b d b b b a b +-=++++- 12111(1),(1)1n n n b q a b d a b q q-+-=+-≠-典例:例、(1)求数列前n 项的和.⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n(2)求数列的前n 项和.{(1)(2)}nn +-A n S (3)求和121111135(21)333n n S n -⎛⎫⎛⎫⎛⎫=+⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1(4)求和: 2311234n n S x x x nx-=++++⋅⋅⋅+()x R ∈实战演练:1、(07福建文科17)数列的前项和为,,.{}n a n n S 11a =*12()n n a S n +=∈N (1)求数列的通项;{}n a n a (2)求数列的前项和.{}n na n n T 2、 (2008年全国卷)在数列中,,.}{n a 11a =122nn n a a +=+(Ⅰ)设.证明:数列是等差数列;12nn n a b -=}{n b (Ⅱ)求数列的前项和}{n a n nS 3、(08陕西文)已知数列的首项,,….{}n a 123a =121n n n a a a +=+1,2,3,n =(Ⅰ)证明:数列是等比数列;1{1}na -(Ⅱ)数列的前项和.{}nna n n S 数列求和的基本方法与技巧(2) 姓名方法三:裂项相消法这是分解与组合思想在数列求和中的具体应用.裂项相消法的实质是将数列中的每项(通项)分解,使之能前后能消去一些项,最终达到求和的目的.)()1(n f n f a n -+=如:可裂项的代数式结构有(1)设数列是首项为公差为d 的等差数列 (){}n a 1a 0,0n a d ≠≠则 111111(n n n n n b a a d a a ++==-1111()()n m n m nc n m a a n md a a ==->-(2)111)1(1+-=+=n n n n a n (3)1111()(2)22n a n n n n ==-++ 123n S a a a =+++ 11111111111(1)(((2322421122n n n n =-+-++-+--++ 1111111111(1)232435122n n n n =-+-+-++-+--++ 1111(1)2212n n =+--++(4)1111[(1)(2)2(1)(1)(2)n a n n n n n n n ==-+++++(5)n a ==(6)22221111()(2)4(2)n n n n n +=-++(6)数列为等比数列,公比为q ,前n 项和为,则{}n b n S 11111,n n n n n b S S S S +++=-11111(n n n n n b S S q S S ++=-例、求下列数列的前n 项和(1)11(42)()2n a n n =-+(2)13693n a n=++++ (3)首项1公比3,前n 项和是,求{}n a n S 1212231n n n n a a aT S S S S S S +=+++ 实战演练:有 党的建立业要论,认头牢立和主施)位开照党誓和入党誓想体组织次确集季度召”、““四师格党学习学系员合我础1、(10山东)已知等差数列满足:,,的前n 项和为.{}n a 37a =5726a a +={}n a n S (Ⅰ)求及;n a n S (Ⅱ)令b n =(n N *),求数列的前n 项和.211n a -∈{}n b n T 2、(08江西)数列为等差数列,为正整数,其前项和为,数列为等比数列,{}n a n a n n S {}n b 且,数列是公比为64的等比数列,.113,1a b =={}n a b 2264b S =(1)求;,n n a b (2)求证.1211134n S S S +++< 3、(06湖北卷)设数列的前n 项和为,点均在函数y =3x -2的图{}n a n S (,)()n n S n N *∈像上.(Ⅰ)求数列的通项公式;{}n a (Ⅱ)设,是数列的前n 项和,求使得对所有都成立13+=n n n a a b n T {}n b 20n m T <n N *∈的最小正整数m.4、设数列满足且{}n a 10a =1111.11n na a +-=--(Ⅰ)求的通项公式;{}na (Ⅱ)设1, 1.nn n k n k b b S ===<∑记S 证明:1数列求和的基本方法与技巧(3) 姓名方法三:分组求和有一类数列,既不是等差数列,也不是等比数列,但是将这类数列通项公式适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.如:23[1(3)][3(3)][5(3)][21(3)]n n S n =+-++-++-++-+- =(13521)n ++++-+ 等差数列23(3)(3)(3)(3)n -+-+-++-等比数列例1、求下列数列的前n 项和(1)999999999n ++++个(2)1(2nn a n=-(3)121(3)n n a n -=-+-(4)21(2)2nn na =+(5)2113n nn a +=-+实战演练:1、设数列满足{}n a 112,32nn n a a a +=-=A (1)求数列的通项公式;{}n a (2)令,求数列的前n 项和1n n b na =-nS2、(07浙江理科)已知数列中的相邻两项是关于的方程{}n a 212k k a a -,x 的两个根,且.2(32)320k k x k x k -++=A 212(123)k k a a k -≤= ,,,(I )求,,,;1a 2a 3a 7a (II )求数列的前项和.{}n a 2n 2n S 3、(2009全国卷Ⅰ理)在数列{}n a 中,11111,(1)2n n nn a a a n ++==++(I )设nn a b n=,求数列{}n b 的通项公式;(II )求数列{}n a 的前n 项和n S .数列求和的基本方法与技巧(4) 姓名方法四:奇偶项讨论、配对(并项)求和针对一些特殊的数列,如需对项数进行奇偶讨论、或者将某些项合并在一起就具有某种特殊的效果,因此,在数列求和时,可将这些项放在一起先求和,然后再求和.引例:设数列的通项公式是,求该数列的前n 项和.{}n a 2(1)3nn a =+-A n S 方法一、对项数奇偶讨论当n 为奇数时(1)5(1)5(1)=n n S =-++-+++-项11(1)52322n n n +--⨯+⨯=-当n 为偶数时=(1)5(1)5(1)5=n n S =-++-+++-+ 项(1)5222n nn =-⨯+⨯=2n所以23,2,n n n S n n -⎧=⎨⎩为奇数为偶数方法二、奇偶项配对(并项求和)利用递推性质 :当时,有成立2,*n n N ≥∈14n n a a -+=当n 为奇数时123421()()()n n n n S a a a a a a a --=+++++++ 14(1)232n n -=⨯+-=-当n 为偶数时12341()()()422n n n nS a a a a a a n -=++++++=⨯= 所以23,2,n n n S n n -⎧=⎨⎩为奇数为偶数方法三、分组求和当n 为奇数时=(23)(23)(23)(23)n n S =-+++-++- 个括号2223n =+++-个23n -当n 为偶数时=(23)(23)(23)(23)n n S =-+++-++- 个括号2220n =++++个2n 所以23,2,n n n S n n -⎧=⎨⎩为奇数为偶数1例:求下列数列的前n 项和(1),1,2n nn n a +⎧=⎨⎩为正奇数,n 为正偶数(2)2(1)(21)nnn a n =+--(3)22cos n a n n π=-+⨯实战演练:1、已知数列的前项和为,且,数列满足,且{}n a n n S *22()n n S a n N =-∈{}n b 11b =点在直线上.*1(,)()n n P b b n N +∈2y x =+(1)求数列、的通项公式;{}n a {}n b (2)设,求数列的前项和22*sincos ()22n n n n n c a b n N ππ=⋅-⋅∈{}n c 2n 2n T 2、等差数列 的前n 项和为,且{}n a n S 21017,100a S ==(1)求数列的通项公式;{}n a n a (2)若数列满足,求数列的前n 项和.{}n b (1)nn n b a n =-+A {}n b n T。
高一数学等比数列求和2

我驻足凝视,须臾间,飘来一片五彩的云,不,那是桃花仙子美丽的身影!回眸一笑,脉脉含情;早上好!欢迎,欢迎!婀娜多姿,妩媚娉婷;飘飘欲仙,步履轻盈;我不忍心多看一眼,因为我是,尘 世里的黎民!足球论坛 冲天的香气,引来了人们,无限的情思!不用得道成仙,不用悟道修行;不用看破尘世,不用遁世空明!没有纷争,没有猜疑,没有困苦,没有迷离,而只有,本真的自我,和天地的运行!我不能脱离 现实,但我可以,求得一时的安宁。我不用问任何人,因为我不相信,那个理想的陶渊明! 我回到了,那个英雄主义的年代:夸父啊,你在洪荒的宇宙里,踽踽独行;赤膊上阵,追赶烈日,都是为了,羸弱的子民!你只追到了北海,就化作了一片邓林!如今的人们啊,喧嚣困顿,凄风苦雨; 物欲横流,豪夺巧取。真的需要啊,革面洗新!我踯躅良久,终于走出了,一片桃林!
岁月静好,一直有个小小的愿望:待我长发及腰,要写一书【清晴青韵】 题记 每天,看到许多姐姐在为自己的文章奔波,可是她们是幸福的,文字的馨香时刻芬芳着她们,让我好生羡慕。我多想自己也写下一篇属于自己的绝唱,待某个寂静的午后,饮一杯茗茶,与我共度一生。 【清】 白落梅曾说:给我可以返家。不去问,那一叶小舟,又会放逐到哪里的天涯。不去想,那些走过的岁月,到底多少是 真,多少是假。如果可以,我只想做一株遗世的梅花,守着寂寞的年华,在老去的渡口,和某个归人,一起静看日落烟霞。
高一数学等比数列求和2(PPT)4-3

等比数列的定义:
an1 q (q 0) an
即 a2 a3 a4 an q
a1 a2 a3
a n 1
等比数列通项公式 :an a1qn1 (a1 0, q 0)
等比数列的性质 : 若an 是等比数列,
且m n p q (m,n, p,q N )
则有am an ap aq
得到一种沸点为.℃的无色发烟液体,即四氯化锗(GeCl4):无色液体,在湿空气中因水解而产生烟雾,易挥发,其熔点为-.℃,沸点为.℃,密度为.克/厘 米,溶于乙醇和乙醚,遇水发生水解。 [] Ge+Cl→△GeCl4 GeCl4+4HO→Ge(OH)4+4HCl 锗的所有四卤化物都能很容易地被水解,生成含水二氧化锗。 四氯化锗用于制备有机锗化合物。跟;整形美容网,整形美容,整形,美容,整容,说整容:/ ; 四卤化物相反的是,全部 四种已知的二卤化物,皆为聚合固体。另外已知的卤化物还包括GeCl及GenCln+。还有一种奇特的化合物GeCl,里面含有新戊烷结构的GeCl。 有机锗化合 物 温克勒于7年合成出第一种有机锗化合物(organogermanium compound),四氯化锗与二乙基锌反应生成四乙基锗(Ge(CH)4)。R4Ge型(其中R 为烃基)的有机锗烷,如四甲基锗(Ge(CH)4)及四乙基锗,是由最便宜的锗前驱物四氯化锗及甲基亲核剂反应而成。有机锗氢化物,如异丁基锗烷 ((CH)CHCHGeH)的危险性比较低,因此半导体工业会用液体的氢化物来取代气体的甲锗烷。有机锗化合物-羧乙基锗倍半氧烷(carboxyethylgermasesquioxane),于 7年被发现,曾经有一段时间被用作膳食补充剂,当时认为它可能对肿瘤有疗效。 [] 甲锗烷(GeH4)是一种结 构与甲烷相近的化合物。多锗烷(即与烷相似的锗化合物)的化学式为GenHn+,现时仍没有发现n大于五的多锗烷。相对于硅烷,锗烷的挥发性和活性都 较低。GeH4在液态氨中与碱金属反应后,会产生白色的MGeH晶体,当中含有GeH阴离子。含一、二、三个卤素原子的氢卤化锗,皆为无色的活性液体。 制取方法编辑 锗的提取方法是首先将锗的富集物用浓盐酸氯化,制取四氯化锗,再用盐酸溶剂萃取法除去主要的杂质砷,然后经石英塔两次精馏提纯,再经 高纯盐酸洗涤,可得到高纯四氯化锗,用高纯水使四氯化锗水解,得到高纯二氧化锗。一些杂质会进入水解母液,所以水解过程也是提纯过程。纯二氧化锗 经烘干煅烧,在还原炉的石英管内用氢气于-℃还原得到金属锗。半导体工业用的高纯锗(杂质少于/)可以用区域熔炼技术获得。 [] 4HCl+GeO→GeCl4+HO GeCl4+(n+)HO→GeO·nHO+4HCl GeO+H→Ge+HO 主要用途编辑 工业用途 锗 锗 锗具备多方面的特殊性质,在半导体、航 空航天测控、核物理探测、光纤通讯、红外光学、太阳能电池、化学催化
高一数学 必修5系列教案:2.3等差数列前N项和2

等差数列的前n项和(人教A版必修5第二章第三节)(一)以境激情,提出问题有一种新型的放置粉笔的装置,它具有取放粉笔方便、快捷的优点——V型粉笔架(教师把事先制作好的道具给学生演示)最底层装1支,倒数第二层装2支,以此类推每往上一层粉笔增加一支,一共装了14层;另一种是普通的盒装粉笔装置,一盒50支,共有2盒;请问:哪一种装置的粉笔数多?【设计意图】创设生活化问题情境,一方面激发学生学习新知的兴趣与积极性,另一方面充分体现数学在实际生活中的广泛应用。
大部分学生采用直接相加或者借助计算器来完成,少数学生可能会想到用高斯的算法来处理,教师趁机引导:直接计算是一种方法,但是数字大的时候计算量很大,运算效率低下,为了提高运算效率,我们经常会借助巧算,借此引出高斯求和的故事[知识链接] (教师幻灯投影、图文并茂)高斯,德国著名数学家,被誉为“数学王子”。
200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=?据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.师生共同分析高斯算法的巧妙之处:把不同数的求和问题转化成相同数的求和问题教师借此渗透人文价值教育:高斯与阿基米德、牛顿并列为数学史上最伟大的三大数学家,他的数学业绩几乎遍布整个数学王国,被誉为“数学王子”。
此外,高斯还是优秀的天文学家,物理家,高斯埋头苦干,精益求精,探索专研的品质堪为世人之楷模。
他对数论,代数,复变函数,超几何级数,统计学,微分学,概率论都有不同程度的贡献。
因此,数学领域内有许多的术语都冠以高斯的名字,如“高斯曲线”,“高斯质数”等。
近代数学史学家贝尔对高斯的成就评价道:“在数学的世界里,高斯处处留方。
”[学情预设]高斯的算法蕴涵着求等差数列前n项和一般的规律性.教学时,应给学生提供充裕的时间和空间,让学生自己去观察、探索发现这种数列的内在规律.学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但估计他们对这种方法的认识可能处于模仿、记忆阶段,为了促进学生对这种算法的进一步理解,设计了以下由浅入深、由具体到抽象的几个问题.(二)启发引导,探索发现问题1、如果V型粉笔架有25层,请问:一共有多少支粉笔?把学生分成若干小组,进行小组合作、交流讨论学习,思考成熟的小组举手示意并派代表展示本小组的成果,其它学生则一起分享。
高中数学解题方法系列:数列中求和问题的7种方法

高中数学解题方法系列:数列中求和问题的7种方法一、公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n [例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.[例2]设S n =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法(等差乘等比)[例3]求和:132)12(7531--+⋅⋅⋅++++=n n xn x x x S [例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②(设制错位)①-②得1432222222222222211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n ∴1224-+-=n n n S 三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5]求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++证明:设nn n n n n C n C C C S )12(5321++⋅⋅⋅+++=…………………………..①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nmn C C -=可得n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6]求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴S=44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7]求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…[例8]求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.通项分解(裂项)如:(1))()1(n f n f a n -+=(2)nn n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4)121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9]求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10]在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.[例11]求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅=1sin 1cos 2∴原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12]求cos1°+cos2°+cos3°+···+cos178°+cos179°的值.解:设S n =cos1°+cos2°+cos3°+···+cos178°+cos179°∵)180cos(cosn n --=(找特殊性质项)∴S n =(cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0[例13]数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5[例14]在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15]求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅=)91010(8111n n --+数列练习一、选择题1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =A.21 B.22 C.2 D.22.已知为等差数列,,则等于A.-1B.1C.3D.73.公差不为零的等差数列{}n a 的前n 项和为n S .若4a 是37a a 与的等比中项,832S =,则10S 等于A.18B.24C.60D.90.4设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于A.13B.35C.49D.635.已知{}n a 为等差数列,且7a -24a =-1,3a =0,则公差d =(A )-2(B )-12(C )12(D )26.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和A.90B.100C.145D.1907.等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =(A)38(B)20(C)10(D)9.8.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A.2744n n+B.2533n n+C.2324n n+D.2n n+9.等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是A.90 B.100 C.145 D.190.二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a =.2.设等差数列{}n a 的前n 项和为n S ,则4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,则4T ,,,1612T T 成等比数列.3.在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .4.等比数列{n a }的公比0q >,已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =.数列练习参考答案一、选择题1.【答案】B【解析】设公比为q ,由已知得()22841112a q a q a q⋅=,即22q=,又因为等比数列}{n a的公比为正数,所以q =,故2122a a q ===,选B 2.【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B。
高一数学数列求及基本方法及技巧

数列求和的根本方法和技巧数列是高中代数的重要内容,又是学 高等数学的基. 在高考和各种数学 中都占有重要的地位.数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定 的技巧 . 下面,就几个 届高考数学和数学 来 数列求和的根本方法和技巧.一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法.1、 等差数列求和公式: S nn(a 1 a n )na 1n(n 1) d 22na 1( q 1)2、等比数列求和公式:S na 1 (1 q n ) a 1a n q1)1 q1(qqn1 (1)n2 1 (1)(21)3、 S nk4、 S nk n nn n6 nk 1 2k 1nk 3 [ 1n( n 1)]25、 S nk12[ 例 1]log 3 x1 ,求 x x 2x 3x n的前 n 和 .log 2 3解:由 log 3 x1log 3x log 3 21xlog 2 32由等比数列求和公式得S nx x 2 x 3x n〔利用常用公式〕= x(1 n1(1 1 ) x) = 22n = 1- 11 x1 1 2n2[ 例 2]S n =1+2+3+⋯+n , n ∈ N * , 求 f (n)(n S n的最大 .32)S n 1解:由等差数列求和公式得S n1n(n 1) , S n11(n 1)(n2)〔利用常用公式〕22∴ f (n)S n=n234n 64(n 32) S n 1n=1=11850n 3464 ( n2 50n)n8 1 ∴ 当n,即 n = 8 , f (n)max850二、 位相减法求和种方法是在推 等比数列的前n 和公式 所用的方法,种方法主要用于求数列{a n · b n } 的前 n和,其中 { a n }、 { b n } 分 是等差数列和等比数列.[ 例 3] 求和: S n1 3x 5x2 7x 3(2n 1) x n1⋯⋯⋯⋯⋯⋯⋯⋯⋯①解:由 可知, { (2n1)x n 1 } 的通 是等差数列 {2n - 1} 的通 与等比数列 { x n 1 } 的通 之xS n1x 3x 25x 3 7 x 4(2n 1) x n ⋯⋯⋯⋯⋯⋯⋯⋯⋯.②〔设制错位〕①-②得(1 x) S n 1 2x 2x 22 x3 2x 42x n 1 (2n 1) x n〔错位相减 〕再利用等比数列的求和公式得:(1 x)S n 11 x n1( 2n 1)x n2x 1 x∴S n (2n 1) x n 1 (2n 1) x n (1 x)(1 x)2[ 例 4] 求数列 2, 42 ,63 ,,2nn , 前 n 的和 .2 222解:由 可知, {2n {2n}{1n}的通 是等差数列 的通 与等比数列 n } 的通 之22S n2462n⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯①2 2 2 232n1 2 4 62n〔设制错位〕S n2 22 32 42 n 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯②2①-②得 (11)S n 2 2 2 2 2 2n〔错位相减〕2 2 22 23 24 2n 2n 12 1 2n2 n 1 2n 1∴S n 4 n 22n1三、反序相加法求和是推 等差数列的前n 和公式 所用的方法,就是将一个数列倒 来排列〔反序〕,再把它与原数列相加,就可以得到n 个(a 1a n ) .[ 例5]求 :C n03C n15C n2(2n 1)Cn n(n1)2n明:S nC n03C 1n5C n2(2n1)Cnn ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..①把①式右 倒 来得S n (2n1)C n n ( 2n 1)C n n 1 3C n 1 C n 0〔反序〕又由 C n mC n n m 可得S n (2n1)C n 0 (2n 1)C n 1 3C n n1C n n ⋯⋯⋯⋯ .. ⋯⋯ .. ②①+②得2S n (2n 2)(C n 0 C n 1 C n n1C n n ) 2(n 1) 2 n〔反序相加〕∴S n(n 1) 2 n[ 例 6] 求 sin 2 1sin 2 2 sin 2 3 sin 2 88 sin 2 89 的解: S sin 2 1 sin 2 2 sin 2 3sin 2 88 sin 2 89 ⋯⋯⋯⋯. ①将①式右 反序得S sin 2 89 sin 2 88sin 2 3 sin 2 2sin 2 1 ⋯⋯⋯⋯ .. ②〔反序〕又因 sin x cos(90x), sin 2 x cos 2 x1① +②得〔反序相加〕2S (sin 2 1 cos 2 1 )(sin 2 2 cos 2 2 ) (sin 2 89 cos 2 89 ) = 89∴ S =四、分 法求和有一 数列,既不是等差数列,也不是等比数列,假设将 数列适当拆开,可分 几个等差、等比或常 的数列,然后分 求和,再将其合并即可.[ 例 7] 求数列的前 n 和: 11 1 7, , 13n 2 ,⋯1, 4, 2 n 1aa a解: S n(1 1)1 4) ( 1 7)( 1 3n 2)(2n 1aa a将其每一 拆开再重新 合得111〔分组〕S n (1a a 2 a n 1)(1 4 73n 2)当 a =1 , S nn (3n 1)n (3n 1)n〔分组求和〕2=211(3n 1) n a a 1 n(3n 1)n当 a1, S na n2 =a121 1a[ 例 8]求数列 {n(n+1)(2n+1)}的前 n 和 .解: ak k k 1)( 2 k 1) k 3k 2 k(2 3n n∴ S n k(k 1)(2k 1) = (2k3 3k 2 k) k 1 k 1将其每一项拆开再重新组合得nk3 nk 2nS n=2 3 k 〔分组〕k 1 k 1k 1= 2(13 23 n3 ) 3(12 22 n2 ) (1 2 n)=n2 (n 1) 2 n(n 1)( 2n 1) n(n 1)〔分组求和〕2 2 2=n(n 1)2 (n 2)2五、裂项法求和这是分解与组合思想在数列求和中的具体应用.裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔 1〕a n f (n 1) f ( n) 〔 2〕sin 1 tan(n 1) tan n1)cosn cos(n〔 3〕a n 11) 1 11〔 4〕a n(2n(2n) 21)1 1 ( 1 1 )n(n n n 1)( 2n 2 2n 1 2n 1〔 5〕a n1 1[1 1] n(n 1)(n 2) 2 1) ( n 1)(n 2)n(n(6) a nn 2 1 2(n 1) n 1 1 1 n , 那么S n 11n(n 1) 2 n n(n 1) 2 n n 2 n 1 (n 1)2 (n 1) 2 n[ 例 9] 求数列 1 , 1 , , 1 , 的前 n 项和 .1 2 3 n n2 1解:设 a n1n 1 n 〔裂项〕n n 1那么S n 1 1 1 〔裂项求和〕2 23 n n 11= ( 2 1) ( 3 2) ( n 1 n )=n 1 1[ 例 10]在数列 {a n } 中, a n12n ,又 b n 2,求数列 {b n } 的前 n 项的和 .n 1 n 1n 1a nan 1解:∵ a n12n nn 1 n1n 12∴ b nn 2 1 8( 11 )〔裂项〕n n n 12 2∴ 数列 {b n } 的前 n 项和S n8[(1 1 ) ( 1 1) (11 ) (11 )]〔裂项求和〕2 23 34 nn 1= 8(11 ) = 8nn 1 n 1[ 例 11]求证:111 cos1cos1 cos 2cos88 cos89sin 2 1cos0 cos1 解:设 S111cos 0 cos1 cos1 cos2cos88 cos89∵sin1tan(n 1) tan n〔裂项〕1)cos n cos(n∴ S111〔裂项求和〕cos 0 cos1 cos1 cos2cos88 cos89=1{(tan 1 tan 0 ) (tan 2 tan1 ) (tan 3tan 2 ) [tan 89tan 88 ]}sin 1=1(tan 89 tan 0 ) = 1 cos1sin 1cot 1 =2 1sin 1sin∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[ 例 12]求 cos1° + cos2 ° + cos3 ° +···+ cos178 ° + cos179 °的值 .解:设 S n = cos1 ° + cos2 ° + cos3 ° +··· + cos178 ° + cos179 °∵ cos ncos(180 n )〔找特殊性质项〕∴ S n = 〔 cos1 ° + cos179 °〕 +〔 cos2 ° + cos178 °〕 + 〔 cos3 °+ cos177 °〕 +···+〔 cos89 °+ cos91 °〕 + cos90 ° 〔合并求和〕= 0[ 例 13]数列 {a n } : a 1 1,a 2 3, a 3 2, a n 2 a n 1 a n ,求 S 2002.解:设 S = a 1 a 2a 3a20022002由 a1 1, a2 3, a3 2, a n 2 a n 1 a n可得a4 1, a5 3, a6 2,a7 1, a8 3, a9 2, a10 1, a11 3, a12 2,⋯⋯a6 k 1 1, a6k 2 3, a6k 3 2, a6 k 4 1, a6k 5 3, a6 k 6 2∵a6k1 a6k2 a6k3 a6 k4 a6 k5 a6 k 6 0 〔找特殊性质项〕∴S2002=a1 a2 a3 a2002 〔合并求和〕= ( a1 a2 a3 a6 ) ( a7 a8 a12 ) (a6k 1 a6k 2 a6k 6 )(a1993 a1994a1998) a1999a2000a2001a2002= a1999 a2000 a2001 a2002=a6 k 1 a6k 2 a6k 3 a6 k 4= 5[ 例 14] 在各均正数的等比数列中,假设a5 a6 9, 求 log 3 a1 log 3 a2 log 3 a10的.解: S n log 3 a1 log 3 a2 log 3 a10由等比数列的性m n p q a m a n a p a q 〔找特殊性质项〕和数的运算性log a M log a N log a M N 得S n (log 3 a1 log 3 a10 ) (log 3 a2 log 3 a9 ) (log 3 a5 log 3 a6 ) 〔合并求和〕= (log 3 a1 a10 ) (log 3 a2 a9 ) (log 3 a5 a6 )= log 3 9 log 3 9 log 3 9= 10七、利用数列的通求和先根据数列的构及特征行分析,找出数列的通及其特征,然后再利用数列的通揭示的律来求数列的前n 和,是一个重要的方法.[ 例 15]求111 111111 1 之和.n个1解:由于 1111 1 9999 1(10 k1) 〔找通项及特征〕k 个19 k 个19∴ 111 111111 1n 个1= 1(101 1) 1 (1021) 1 (1031)1(10 n 1)〔分组求和〕9999= 1(10110 2 10310 n )1(1 1 11)99 n 个1n= 1 10(10 1) n910 19= 1(10n 1 10 9 )81n[ 例 16]数列 {a n } : a n8, 求(n 1)(a n a n 1 ) 的值 .( n 1)(n 3)n 1解:∵ (n1)(a n a n 1 ) 8(n1)[ 11 ]〔找通项及特征〕3)( n 2)( n ( n 1)(n4)= 8 [11]〔设制分组〕2)(n4) (n 3)(n(n 4)= 4 (11 ) 8 ( 11 〔裂项〕n 2nn 3n)44∴( n1)(a n a n1) 4 ( 11 ) 8 (11 ) 〔分组、裂项求和〕n 1n 1 n2 n 4n 1n3 n 4= 4 (11 )8 13 44=133说明:本资料适用于高三总复习,也适用于高一“数列〞一章的学习。
数列求和的基本方法与技巧(高一)

数列求和的基本方法与技巧(高一)数列是高中代数的重要内容,又是学习高等数学的基础。
在高考和各种数学竞赛中都占有重要的地位。
数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
下面,就几个方面来谈谈数列求和的基本方法和技巧。
一、公式求和法利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、 等差数列求和公式:d n n na a a n S n n2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn 3、11123 (1)2nn k S k n n n ===++++=+∑2222211123...(1)(21)6nn k S k n n n n ===++++=++∑333332211123...(123...)[(1)]2nn k S k n n n n ===++++=++++=+∑练习:①2122...2______________n++++=(注意:等比数列,共有n+1项)②123...2_______________n++++=(注意:等差数列,共有2n 项)③已知2122...2n na =++++,{}100n a 则数列的前项和为__________________④数列7,77,777,7777,…,的一个通项公式为____________________ 例1、 求和:n x x x x ++++32解:①当x=0时,,0=nS ②当x=1时,,n S n=③当x ≠0,且x ≠1时,()xx x x x x S n n n --=--=+1111.例2、 已知3log 1log 23-=x ,求∑=nk kx 1。
解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得∑==nk kn x S 1n n nx x x 211211)211(211)1(-=--=--=练习:设123...,nS n n N *=++++∈,求1()(32)nn S f n n S +=+的最大值.二、分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子首充送百分百 [单选]物流目标优化的对象是指()A.物流系统的整体目标B.物流系统内部要素的目标C.物流系统的整体目标和内部要素目标D.物流系统内部和外部的要素 [单选,A1型题]关于T、B细胞免疫耐受的特点正确的叙述是()A.诱导T细胞耐受所需时间长,B细胞短B.诱导T细胞耐受维持时间短,B细胞长C.高剂量TD-Ag不能使T、B细胞产生耐受D.低剂量TD-Ag仅能使T细胞产生耐受,不能使B细胞产生耐受E.低剂量的TI-Ag能使T、B细胞均产生耐受 [单选]妊娠合并心脏病孕妇分娩时应注意的是()。A.第一产程需延长B.第二产程需助产缩短产程C.第三产程需尽快结束D.可选择剖宫产E.第二产程需延长 [单选]费用是存储管理的重要指标,下列关于仓库存储费用的理解中,正确的是()。A.仓库存储费用由订货费、保管费构成B.缺货会对企业的信誉产生影响,但因无法计算,故不能计算在缺货损失费内C.降低存储量、缩短存储周期会降低订货费的支出D.要以存储系统总费用最小为前提进行综合 定一个合适的订货批量及订货间隔 [单选]下列各项不属于行政法律关系的构成要素的是()。A.行政法律关系的内容B.行政法律关系的变动C.行政法律关系的主体D.行政法律关系的客体 [单选]使用证据需要对已收集到的证据进行()的审查判断。A、客观性B、合法性C、关联性D、以上都是 [单选]与神学相区别的哲学起源于纪元前六世纪的()。A、罗马B、希腊C、巴比伦 [单选]光面爆破时,周边光爆眼应用炮泥封实,且封泥长度不得小于()。A.0.2mB.0.25mC.0.3m [单选]平面曲线所在的平面平行于投影面时,平面曲线的投影是它的()。A.一条直线B.形状改变C.真实形状 [单选]重要设备、材料等货物的采购,单项合同估算价在()万元人民币以上的工程项目必须进行招标。A.50B.100C.150D.200 [单选,A2型题,A1/A2型题]医学伦理学最突出的特征是()A.实践性、继承性B.时代性、人道性C.人道性、全人类性D.全人类性、继承性E.人道性、实践性 [单选,A2型题,A1/A2型题]患者男性,64岁。腹痛伴频繁呕吐3天,以肠梗阻收入院,血[Na]135mmol/L,血[K]3.5mmol/L,BP80/60mmHg,治疗应首先采取()A.纠正酸中毒B.纠正低血钾C.纠正低血钠D.急诊手术,解除肠梗阻E.纠正低血容量 [单选,A1型题]二尖瓣狭窄患者咳粉红色泡沫样浆液痰,两肺底有湿啰音,说明病情已处于()A.肺动脉高压期B.右心功能不全期C.左房衰竭期D.疾病终未阶段E.左心衰竭期 [单选,A2型题,A1/A2型题]体重指数(BMI)的计算()。A.BMI=体重(kg)/身高(m)2BMI=体重(kg)2/身高(m)C.BMI=体重(kg)2/身高(m)2D.BMI=身高(m)/体重(kg)2E.BMI=身高(m)2/体重(kg) [判断题]根据企业生产经营特点和管理要求,单步骤、大量生产的产品一般采用品种法计算产品成本。()A.正确B.错误 [单选]下列调速方法中,使直流电动机机械特性明显变化的是()。A、改变电枢回路电阻B、改变励磁回路电阻C、改变端电压D、改变励磁回路电流 [单选]下列债的履行中,属于适当履行的有:()A.甲、乙、丙三人各出资3万元合伙办了一个玩具厂,不想经营失策,亏损12万元,债权人张某要求甲承担全部还款责任,甲只承担了属于自己份额的4万元B.王某(画家)和某书店签订协议,王某将为该书店作画5幅,不料,王某生病了,遂委托其 作了5幅画C.甲企业应付乙公司货款30万元,由于乙公司已经进入破产程序,遂把30万元的货款交给了清算组D.某公司为办理变更登记聘请刘某代为办理,双方约定:在适当的情况下,可以由第三人代刘某办理此事。由于刘某出了车祸,遂委托张某(17岁的大学生)代为办理 [填空题]电化区段所有接触网支柱应悬挂涂有“()”、“()”的警告牌。 [单选]在正常运行条件下,哪一种MAP与转速的组合对高性能的往复式发动机产生最严重的磨损、疲劳和损害?()A.高的转速和低的MAPB.低的转速和高的MAPC.高的转速和高的MAP [单选,A2型题,A1/A2型题]以下自杀的相关因素不正确的是()A.重大的负性应激事件可能成为自杀的直接原因或诱因B.独身、离婚、丧偶者自杀率高于婚姻状况稳定者C.从事专门职业的医生、律师、作家、音乐家等的自杀率低于普通人群D.西方国家的自杀率大多是男多于女,而我国则相差不大E 荡,经济萧条年份,自杀率一般会升高 [单选]颅后窝骨折的特征性表现为()A.脑脊液鼻漏B.失明C.Battle征D.失嗅E.搏动性突眼 [单选,A2型题,A1/A2型题]与Wilson病相关的血清蛋白是().AAGB.TRFC.BMCD.CERE.CRP [单选]手三阳的循行是()A.从胸走手B.从头走手C.从手走胸D.从手走足E.从手走头 [判断题]一个醇和一个酸结合,脱水而生成酯。()A.正确B.错误 [单选]在下列选项中,说法错误的是()。A.缝纫时,一般先做袋,襟,领,克夫,腰头等附件和配件,后做大身B.缝纫中每次落针和起针都要倒回针,以防线头脱散C.做大身时,先缉缝省道,褶裥和分割线,然后挖袋或做贴袋D.裁剪时,一般每层衣料都需画袋位,省位等 [填空题]滚动轴承实现预紧的方法有两种,即()预紧和()预紧。 [单选]根据《循环经济促进法》,下列关于发展区域循环经济的表述,不正确的是()。A.市级以上人民政府应当统筹规划区域经济布局,合理调整产业结构B.各类产业园区应当组织区内企业进行资源综合利用,促进循环经济发展C.国家鼓励各类产业园区的企业进行废物交换利用和能量梯级利用 改造各类产业园区应当依法进行环境影响评价,并采取生态保护和污染控制措施 [单选]环境卫生学的基本理论是()A.机体与环境在物质上的统一性B.环境因素对机体影响的作用机制C.机体对环境的适应能力D.环境因素对健康影响的复杂性E.环境中有益因素和有害因素对机体的综合作用 [填空题]0.5MΩ=()Ω:50ηF=():100V=()KV=()mV。 [单选,A1型题]大多数解表药发汗、解热的化学成分是()A.挥发油B.有机酸C.鞣质D.糖类E.蛋白质 [单选,A1型题]关于乌药的归经说法正确的是()A.肺、肝、脾、肾经B.肺、胃、脾、膀胱经C.肺、脾、肾、膀胱经D.肝、胃、肾、膀胱经E.肝、肾、胃、小肠经 [单选]HIV入侵T细胞的主要门户是()。A.CD3分子B.CD43分子CD45分子D.CD4分子E.CD8分子 [填空题]高层建筑结构通常要考虑()、()、()、()等方面的验算。 [单选]目前社区卫生调查主要采取()A.普查B.定性调查C.定量调查D.问卷调查E.信访 [单选,A型题]关于剂型的分类,下列叙述错误的是A、溶胶剂为液体剂型B、软膏剂为半固体剂型B.C、栓剂为半固体剂型D、气雾剂为气体分散型C.E、气雾剂、吸入粉雾剂为经呼吸道给药剂型 [单选]关于三叉神经的描述以下哪项不正确()A.分布于头、面部B.主要由运动神经纤维构成C.主要由感觉神经纤维构成D.为脑神经中最粗大的神经E.有眼神经、上颌神经和下颌神经三大分支 [填空题]把毛泽东思想确立为我们党的指导思想的会议是()。 [单选,A1型题]清暑益气汤的君药是()A.西洋参、淡竹叶B.黄连、知母C.西瓜翠衣、西洋参D.西瓜翠衣、黄芩E.西洋参、知母 [单选]出境、入境的人员,必须遵守。()A.中华人民共和国的法律、行政法规B.中华人民共和国行政法规C.以上都是D.以上都不是 [单选,A1型题]关于药品标签和包装的说法,不正确的是()A.药品的标签应当以说明书为依据,其内容不得超出说明书的范围B.药品标签上不得印有暗示疗效、误导使用的文字和标识C.药品包装上可印有宣传产品的文字和标识D.药品标签上应有指导安全、合理用药的文字和资料E.供上市销售的最 须附有说明书