初二数学教学设计

合集下载

初中数学教案设计(共12篇)

初中数学教案设计(共12篇)

初中数学教案设计〔共12篇〕篇1:初中数学教案设计一、教学目的:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联络。

4、掌握直线的平移法那么简单应用。

5、能应用本章的根底知识纯熟地解决数学问题。

二、教学重、难点:重点:初步构建比拟系统的函数知识体系。

难点:对直线的平移法那么的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,假设y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联络:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

根底训练:1、写出一个图象经过点(1,— 3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。

3、假如P(2,k)在直线y=2x+2上,那么点P到x轴的间隔是:4、正比例函数 y =(3k—1)x,,假设y随x的增大而增大,那么k是:5、过点(0,2)且与直线y=3x平行的直线是:6、假设正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,那么m的取值范围是:7、假设y—2与x—2成正比例,当x=—2时,y=4,那么x= 时,y = —4。

8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,那么b的值为。

9、圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。

(1)求线段AB的长。

八年级数学优质课一等奖教学设计3篇

八年级数学优质课一等奖教学设计3篇

第1篇教学设计作为一位杰出的老师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。

那要怎么写好教案呢?下面是小编帮大家整理的菱形人教版数学八年级上册教案,仅供参考,希望能够帮助到大家。

一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系;2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积;3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;二、重点、难点1、教学重点:菱形的性质1、2;2、教学难点:菱形的性质及菱形知识的综合应用;三、例题的意图分析本节课安排了两个例题,例1是一道补充题,是为了巩固菱形的性质;例2是教材P108中的例2,这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题、此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识;四、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念;《18、2、2菱形》课时练习含答案;5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是( )A、矩形B、菱形C、正方形D、梯形答案:B知识点:等边三角形的性质;菱形的判定解析:解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形、根据题意得,拼成的四边形四边相等,则是菱形、故选B、分析:此题主要考查了等边三角形的性质,菱形的定义、6、用两个边长为a的等边三角形纸片拼成的四边形是( )A、等腰梯形B、正方形C、矩形D、菱形答案:D知识点:等边三角形的性质;菱形的`判定解析:解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形、由题意可得:得到的四边形的四条边相等,即是菱形、故选D、分析:本题利用了菱形的概念:四边相等的四边形是菱形、《菱形的性质与判定》练习题一选择题:1、下列四边形中不一定为菱形的是( )A、对角线相等的平行四边形B、每条对角线平分一组对角的四边形C、对角线互相垂直的平行四边形D、用两个全等的等边三角形拼成的四边形2、下列说法中正确的是( )A、四边相等的四边形是菱形B、一组对边相等,另一组对边平行的四边形是菱形C、对角线互相垂直的四边形是菱形D、对角线互相平分的四边形是菱形3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )A、菱形B、对角线互相垂直的四边形C、矩形D、对角线相等的四边形第2篇教学设计1、教材分析(1)知识结构(2)重点、难点分析本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.本节内容的.难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.2、教法建议本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:(1)参与探索发现,领略知识形成过程学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.(2)采用“类比”的学习方法,获取逆定理线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.(3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.第3篇教学设计一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

八年级数学上册《面积与代数恒等式》教案、教学设计

八年级数学上册《面积与代数恒等式》教案、教学设计
二、学情分析
八年级的学生在数学学习上已具备一定的知识基础和思维能力,他们对平面几何图形有一定的了解,掌握了基本的面积计算方法。但在代数恒等式的理解和运用上,可能还存在一定的困难。因此,在本章节的教学中,需要针对学生的实际情况,采取以下措施:
1.对于基础较好的学生,可以引导他们通过自主探究、拓展练习等方式,提高他们在面积计算和代数恒等式运用上的能力。
1.请学生完成课后练习题,包括不同类型的图形面积计算和代数恒等式的应用题,旨在让学生通过实际操作,加深对课堂所学知识的掌握。
2.设计一道综合性的实际问题,要求学生运用本节课所学的面积计算方法和代数恒等式解决问题。例如,计算一个不规则图形的面积,其中包含多个三角形、四边形和圆的组合,让学生学会将复杂的图形分解为简单的部分,并运用代数恒等式进行计算。
(三)情感态度与价值观
1.培养学生热爱数学,树立正确的数学观念,认识到数学在生活中的重要作用。
2.激发学生的学习兴趣,鼓励他们勇于探索、积极思考,培养他们的创新意识和合作精神。
3.培养学生严谨、认真的学习态度,让他们在解决问题的过程中,体会数学的精确性和严谨性。
4.引导学生关注社会、关注生活,将数学知识应用于实际,增强他们的社会责任感和使命感。
4.鼓励学生认真完成作业,培养他们良好的学习习惯和责任感,提高作业的完成质量。
6.融合信息技术,提高教学效果:运用多媒体、网络资源等现代信息技术,为学生提供丰富的学习资源,提高教学效果。
7.注重过程评价,激发学习动力:关注学生在学习过程中的表现,给予积极的评价和鼓励,激发他们的学习动力。
8.拓展延伸,提高思维品质:通过拓展练习、研究性学习等,培养学生的高阶思维,提高他们的思维品质。
2.对于基础一般的学生,要注重巩固他们对面积计算方法的理解,同时通过实例讲解和变式训练,帮助他们掌握代数恒等式的应用。

八年级数学下册《无理数》教案、教学设计

八年级数学下册《无理数》教案、教学设计
作业布置要求:
1.作业量适中,难度适中,保证学生在规定时间内能完成。
2.鼓励学生在完成作业过程中,积极思考、主动探究,提高自主学习能力。
3.教师在批改作业时,要及时给予评价和反馈,指出学生的优点和不足,帮助学生找到提高的方向。
4.关注学生的个体差异,对学习有困难的学生给予个别辅导,确保每个学生都能在作业中收获知识和成长。
四、教学内容与过程
(一)导入新课
1.教学内容:通过数学故事、历史背景等方式,引出无理数的概念,激发学生对无理数的兴趣。
教学过程:
(1)讲述古希腊数学家毕达哥拉斯及其学派发现无理数的故事,让学生了解无理数在数学发展史上的重要地位。
(2)提出问题:有理数可以表示为分数形式,那么是否存在无法表示为分数的数?这样的数有什么特点?
(3)引导学生思考,为新课的学习做好铺垫。
(二)讲授新知
1.教学内容:无理数的概念、性质、表示方法以及与有理数的区别和联系。
教学过程:
(1)从数轴上的点入手,让学生观察、思考、总结无理数的特征。
(2)讲解无理数的定义,阐述无理数与有理数的区别和联系。
(3)介绍无理数的表示方法,如无限不循环小数和根号表示法。
3.设计丰富的教学活动,让学生在实际操作中体验无理数,培养学生动手操作和解决问题的能力。
4.采用问题驱动法,激发学生的探究欲望,引导学生主动探索无理数的奥秘,培养学生的自主学习能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们对数学学习充满信心和动力。
2.让学生了解我国在数学领域的重要成就,增强学生的民族自豪感,激发学生为国家和民族的发展贡献力量。
7.关注学生心理,营造良好氛围:在教学过程中,关注学生的心理变化,适时给予鼓励和指导,营造轻松、愉快的学习氛围。

初中数学初二数学下册《三角形的中位线》教案、教学设计

初中数学初二数学下册《三角形的中位线》教案、教学设计
-请小组讨论:如何利用三角形的中位线来证明一个四边形是平行四边形?
-请分析并解释:为什么三角形的中位线可以将三角形分成两个面积相等的小三角形?
4.拓展与创新题:提供一些难度较高的题目,供学有余力的学生挑战,激发他们的学习兴趣和创新能力。例如:
-如果一个三角形的两条中位线相等,那么这个三角形是什么类型的三角形?
-通过课堂问答、作业批改、小组评价等多种方式,全面了解学生的学习情况,为下一步教学提供依据。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生的生活经验和已有知识,创设一个与学生日常生活紧密相关的情境。例如,我会提出这样一个问题:“同学们,你们在体育课上是否玩过接力赛?在接力赛中,为什么运动员总是沿着一条直线跑,而不是曲线?”通过这个问题,引导学生思考直线的性质和作用。然后我会进一步提问:“如果我们在三角形中找到一些特殊的线段,这些线段是否也会具有一些特殊的性质呢?”这样的导入方式能够激发学生的好奇心,为接下来的新课学习做好铺垫。
-请尝试用不同的方法证明三角形中位线的性质。
5.反思与总结题:要求学生撰写学习反思,总结自己在学习三角形中位线过程中的收获和困惑,以及对未来学习的规划。
2.结合实际例题,通过直观演示和逐步引导,让学生体会中位线在实际问题中的应用。
-教师将选择与生活实际相关的问题,引导学生运用中位线进行解决。
-学生通过解决具体问题,领会数学知识在实际生活中的应用,培养学以致用的能力。
3.利用变式练习和拓展训练,提高学生解决问题的灵活性和创新性。
-教师将设计不同难度的练习题,以及具有挑战性的拓展题目,帮助学生巩固知识。
(三)学生小组讨论
在学生小组讨论的环节,我会将学生分成若干小组,每组学生需要共同探讨以下问题:1.如何使用尺规作图作出三角形的中位线?2.三角形的中位线有哪些性质?3.如何运用中位线的性质解决实际问题?我会鼓励学生在小组内积极发表自己的观点,倾听他人的意见,共同完成讨论任务。在这个过程中,我会巡回指导,关注每个小组的讨论进度,适时给予提示和建议。

八年级数学上册《正比例函数》教案、教学设计

八年级数学上册《正比例函数》教案、教学设计
2.利用多媒体课件,直观展示正比例函数的图像特点。通过动态演示,帮助学生理解正比例函数的图像是一条通过原点的直线,并引导学生探究其性质。
3.设计具有梯度的问题,引导学生逐步深入理解正比例函数。从简单的判断题、选择题到综合应用题,让学生在解决问题的过程中,掌握正比例函数的知识。
4.创设小组合作交流的机会,让学生在讨论中互相启发,共同进步。教师适时给予指导,帮助学生突破难点。
-目的:培养学生团队协作、共同解决问题的能力,提高学生的沟通表达能力。
5.课后反思:要求学生撰写ቤተ መጻሕፍቲ ባይዱ后反思,总结自己在学习正比例函数过程中的收获和不足。
-反思内容:可以包括对本节课知识点的理解、解题方法的掌握、学习过程中的困惑等。
6.家长参与:鼓励家长参与学生的作业过程,了解学生的学习情况,为学生提供必要的帮助和支持。
-提问:“那么,我们如何用数学公式来表示这种关系呢?”
(二)讲授新知
1.正比例函数的定义:教师给出正比例函数的定义,并解释相关概念。
-解释:“正比例函数是指一个函数,当自变量x的值增大或减小时,其对应的函数值y也按照相同的比例增大或减小。”
2.正比例函数的表达式:引导学生根据定义推导正比例函数的表达式y=kx(k≠0)。
-提示:在解决提高题时,鼓励学生运用图像分析、逻辑推理等方法,提高问题解决能力。
3.创新实践:设计具有挑战性的创新题目,要求学生结合生活实际,运用正比例函数模型解决实际问题。
-要求:学生需将问题解决过程和结果以书面形式呈现,注重解题思路和方法的创新。
4.小组合作:布置小组合作作业,让学生在组内共同探讨、解决一个综合性的正比例函数问题。
-提问:“根据正比例函数的定义,我们可以得出什么样的数学表达式?”

初二人教版数学教学设计(精选12篇)

初二人教版数学教学设计(精选12篇)

初二人教版数学教学设计〔精选12篇〕篇1:初二人教版数学教学工作总结本学期来,我担任八年级二班的数学老师,在教学期间认真备课、上课、听课、评课,及时修改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,不断进步自己的业务程度,充实自己的头脑,严格要求学生,尊重学生,使学生学有所得,不断进步,并顺利完成教育教学任务。

一、坚持认真备课备课中我不仅备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序及时间安排都作了详细的记录,认真写好教案。

每一课都做到“有备而来”,每堂课都在课前做好充分的准备,并制作各种利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学反思。

二、努力增强我的上课技能进步教学质量,使讲解明晰化,条理化,准确化,情感化,生动化,做到线索明晰,层次清楚,言简意赅,深化浅出。

在课堂上特别注意调动学生的积极性,加强师生交流,充分表达学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习才能,让各个层次的学生都得到进步。

如今学生普遍反映喜欢上数学课,就连以前极讨厌数学的学生都乐于上课了。

三、与同事交流,虚心请教其他老师在教学上,有疑必问。

在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克制自己的缺乏,并常常邀请其他老师来听课,征求他们的意见,改良工作。

四、完善修改作业布置作业做到精读精练。

有针对性,有层次性。

为了做到这点,我常常上网、书店等地去搜集资料,对各种辅助资料进展挑选,力求每一次练习都起到最大的效果。

同时对学生的作业修改及时、认真,分析^p 并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进展透切的评讲,并针对有关情况及时改良教学方法,做到有的放矢。

八年级数学上册《勾股定理的应用》教案、教学设计

八年级数学上册《勾股定理的应用》教案、教学设计
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入,对数学问题的分析和解决能力也将得到提升。然而,由于学生的认知水平和思维能力存在差异,部分学生可能在理解勾股定理的本质和灵活运用方面存在困难。因此,在教学过程中,教师应关注以下几点:
-详细讲解勾股定理的推导过程。
2.教学方法:
-采用直观演示法,让学生对勾股定理有更深刻的理解;
-结合实际例子,解释勾股定理在生活中的应用;
-通过讲解和推导,使学生掌握勾股定理的原理。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,每组讨论以下问题:
a.勾股定理的推导方法有哪些?
b.勾股定理在生活中的应用实例;
-教师进行点评,总结学生在课堂上的表现;
-鼓励学生提出问题,激发他们进一步探索勾股定理的兴趣。
五、作业布置
为了巩固本节课所学内容,培养学生的独立思考能力和解决问题的能力,特布置以下作业:
1.基础巩固题:
-根据课堂练习,完成课后习题第1-10题,要求学生独立完成,家长签字确认;
-通过勾股定理计算以下直角三角形的斜边长度:3,4,5;5,12,13;8,15,17等,并简要说明计算过程。
5.培养学生热爱科学、追求真理的价值观,树立正确的人生观和价值观。
在具体的教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们主动参与课堂活动,提高教学效果。同时,注重课后辅导,帮助学生巩固所学知识,提高数学素养。总之,本章节教学设计旨在使学生在掌握勾股定理的基础上,提高数学应用能力,培养良好的情感态度和价值观。
3.精讲精练,巩固提高:
-对勾股定理进行详细讲解,强调关键点,帮助学生建立清晰的知识结构;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学教学设计
19.1.1平行四边形的性质
[教学目标]
1、知识目标:
使学生初步掌握什么是平行四边形的概念及其性质并用其来解决实际问题
2、能力目标:
通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生的
自学能力和缜密的逻辑思维能力。

3、情感目标:
培养学生理论联系实际的科学态度和掌握事物间普遍存在联系的哲学
观,以及善于发现、积极思考、合作学习、勇于创新的学习态度。

[教学重点、难点]
(1)重点:平行四边形的概念和性质
(2)难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法(即为什么要添加对角线呢?)
(3)难点突破关键:转化的数学思想方法的运用
即如何将平行四边形转化为三角形的数学思想方法的运用。

相关文档
最新文档