短线匹配法桥梁(英)
短线匹配法预制拼装技术及其工程应用

短线匹配法预制拼装技术及其工程应用摘要:短线匹配法预制拼装桥梁的主要技术关键点在于接缝质量、线形控制以及长期性能等方面,本文结合我国已建成的几座代表性短线匹配法桥梁工程,对短线匹配节段预制拼装技术的关键要点进行介绍。
关键词:短线匹配法;预制拼装技术;应用1短线匹配法预制拼装的技术要点1.1接缝质量控制节段预制法施工的预应力混凝土桥梁,接缝处采用剪力键和导向键进行连接,起到承受部分剪力和相邻节段准确装配的作用。
节段拼装体外预应力混凝土梁有别于整体预应力混凝土梁,接缝处没有普通钢筋连接,由于接缝的存在,造成整体结构力学性能的变化,承受荷载较大时,结构表现出非线性,受力特性与整体钢筋混凝土梁有所区别,接缝的质量控制很关键;同时接缝的开裂会影响体内预应力束真空灌浆的质量效果并带来接缝处预应力钢束的耐久性问题,因此接缝是整个短线预制拼装结构中的薄弱环节,是保证短线法节段预制拼装桥梁整体性和施工质量的重要施工技术。
1.2短线匹配法预制节段箱梁几何线形控制预制节段梁几何线型控制,包括预制过程的线型控制、安装过程的线型控制,通过施工前的方案设计,过程的测量、误差分析、实时调整,目的是保证成桥线型符合设计要求。
1.2.1施工控制理论与方法方面短线匹配法节段预制拼装桥梁必须精确控制相邻梁段预制时期的匹配关系,才可保证最终的拼装线形满足设计要求。
法国的J.M.Muller最早提出了梁段预制时期的施工控制基本思路和方法,如图1所示,简单说就是应设定节段上的控制变量作为桥梁线形的代表值,每个节段上设置6个特征控制点,通过这6个特征点连成3条控制线,以这3条控制线形成的折线控制预制安装过程,达到控制成桥线型的目的。
图1 预制线形控制示意图随着现代控制论在桥梁工程中的应用发展,各种控制方法也出现在了该类型桥梁的线形控制中,其中最为常用的是开环控制及闭环控制。
早期的桥梁施工控制都采用开环控制法,具体是指误差通过人工识别,如发现当前制造线形实测值与理论值出现较大偏差,则会提出调整措施。
短线匹配法节段梁双向测量监控预制施工工法.(DOC)

短线匹配法节段梁双向测量监控预制施工工法前言在建筑工程中,结构施工是一项十分重要的环节,而在结构施工中,预制楼板的使用越来越普遍。
然而,在预制楼板的安装过程中,如何保证施工质量,提高安全性,一直是困扰着施工人员的问题。
短线匹配法节段梁双向测量监控预制施工工法正是一种有效地解决方案。
工法原理短线匹配法短线匹配法是一种测量方法,它主要是通过在母板下方及支模上方分别设立两个短线,然后利用这两个短线进行测量。
在使用过程中,将水准仪放置在测量面的法线处,再分别对两个短线进行测量。
通过比对两次测量结果的差异,就可以确定母板的水平位置。
节段梁节段梁就是在混凝土楼板的现浇龙骨基础上,将一部分的混凝土预制后,再与现浇的混凝土龙骨进行配合,完成楼板的安装。
在使用节段梁进行预制楼板的制作时,需保证节段梁的几何尺寸精度和装配精度。
双向测量双向测量是指在预制楼板安装过程中,需要对楼板的两个方向进行测量。
通过测量,可以判断楼板在两个方向的位置是否正确,以及楼板的变形情况。
监控预制施工在使用预制楼板进行施工时,需要进行监控,以保证施工质量。
监控预制施工包括测量、记录、分析等一系列工作,从而保证预制楼板的施工质量。
工法实施在短线匹配法节段梁双向测量监控预制施工工法中,具体实施流程如下:设立短线在母板下方和支模上方,分别设立两个短线,两个短线需保持一定的距离。
确定基准面在母板表面选取一个基准面,然后在基准面的法线处放置水准仪。
进行测量分别对设立的两个短线进行测量,记录测量结果。
计算误差将两次测量的结果进行比较,计算两次测量的误差。
调整母板根据计算出的误差,对母板进行调整,直到两次测量的误差满足要求。
安装节段梁在母板上安装节段梁,保证节段梁的几何尺寸精度和装配精度。
进行双向测量对安装好的节段梁进行双向测量,检测节段梁的位置和变形情况。
监控预制施工在预制楼板施工过程中,进行实时监控,及时记录施工情况,并进行分析。
工法应用短线匹配法节段梁双向测量监控预制施工工法广泛适用于预制楼板的安装施工中,可以提高施工质量和安全性。
短线法预制节段桥梁施工技术的探究

短线法预制节段桥梁施工技术的探究摘要:在社会与经济发展的大力推动之下,我国桥梁技术发展速度日渐提升,但是与西方发达国家相比,还是存在一定程度的差距。
我国在实际利用桥梁节段施工工艺开展桥梁建设时,国外已经逐步应用短线法预制阶段开展桥梁施工工作,应用范围大面积拓宽,我们需要针对短线法预知节段桥梁施工技术进行不断深化与探究。
促使其充分发挥自身优势与价值,服务于我国桥梁建设工作,最大限度拉近我国与发达国家之间的距离。
关键词:短线法;预制节段;桥梁施工技术目前,世界大范围应用预制节段桥梁施工工艺开展相应的建设工作。
在施工材料以及工期方面,预制节段桥梁施工工艺远远优于整体性桥梁施工工作。
施工过程中呈现出平行流水作业的状态,不仅可有效控制工程造价问题,也可通过缩短施工进度的方式加快施工速度。
经济性以及便捷性较强,同样是预制节段桥梁施工工艺的优势。
相关部门以及工作人员必须提高对该项施工工艺的重视程度,在实际建设中对其进行科学使用。
一、短线法预制梁技术预制节段桥梁施工工艺在桥梁建设中已经普及,并不断地在施工工艺上获得新进展。
相比较于长线法预制梁施工工艺,短线法预制梁技术作为一种新型的桥梁施工工艺已经在经济发达国家广泛应用。
中国对短线法预制梁施工技术有所研究,但是由于起步较晚,因此技术研究还不够成熟。
首先是将匹配模具安装,在模具进行预制梁的浇筑,当一段预制梁浇注施工完成之后,将该节段移动到模具的开口处,并调整好位置,以作为后续浇注施工的匹配节段。
其次,接下来的浇筑工序都是按照已经浇注完成的预制梁工作程序完成的。
在桥梁施工技术中,与长线法预制梁技术相比较,采用短线法预制梁技术更为符合桥梁施工的工艺要求,主要在于目前的桥梁设计构造更为复杂多变,工期紧张,并且在桥梁建设施工中,还要根据实际需要不断地调整节段的线型,采用长线法预制节段桥梁施工工艺很难满足这些技术要求。
长线法预制技术节段虽然操作简单,但是对于没有太大水平波动的桥梁施工较为适合,而且由于采用循序渐进的施工方式而导致进度缓慢,工期比较长。
1 短线匹配法阶段预制拼装体外预应力桥梁关键技术43页PPT

一、背景
短线匹配法节段预制拼装体外预应力桥梁技术特点
节能
设备可重复使用 耗费人工和材料少
环保
施工场地占用少 对环境影响小
高效
生产线循环作业 架桥机组拼速度快
耐久
混凝土质量可靠、品质好 预应力体系可检查、更换
工程设计标准化 梁段预制工厂化 现场施工装配化
跨江跨海桥梁
城市高架桥
有效解决节段间纵向普通 钢筋不能连续传递的问题
二、设计方法及关键构造
体外预应力疲劳试验
设计的体外预应力系统在美国CTL实验室经200万次疲劳试验结果表 明:锚具及转向器无裂纹、无损伤,钢绞线无断丝,表明了该新型体外 预应力体系的可靠性
转向器的拆除 环氧钢绞线夹片咬痕
美国CTL实验室实验模型
试验后夹片
摩阻系数、孔道偏差系数
管道种类
κ
μ
钢管无粘结
0.004
0.09
钢管穿光面
0.001
0.25
HDPE管穿光面
0.002
0.13
二、设计方法及关键构造 带分丝管的体外预应力转向器及节段纵向钢筋新型结构
分 丝 管 转 向 器
体外预应力体系可单根张拉、换束,避免安装过程中钢绞线损伤
节 段 纵 向 钢 筋 锚固环箍钢筋
环氧钢绞线磨损
二、设计方法及关键构造 节段梁断面结构的发展
苏通桥标准节段截面
构件轻型化
芜湖二桥大悬臂脊骨梁节段截面
南京四桥剪力键布置
受力更明确
港珠澳香港段剪力键布置
桥梁
苏通大桥 上海长江大桥
崇启大桥 南京四桥 芜湖二桥
跨中截面、墩顶截面的 体外预应力用量/总预应力用量
浅谈桥梁工程中短线法预制节段的施工技术

浅谈桥梁工程中短线法预制节段的施工技术摘要:随着时代的进度和工程环境的变化,近年来预制节段拼装工艺在桥梁施工领域逐渐普及,其用于前场拼装的梁段主要在预制场内通过短线法预制而来,节段预制质量的高低将直接影响后期桥梁拼装的质量。
因此,对短线法预制技术在施工中多加重视,是保证后期桥梁拼装工程质量的重要内容。
本文主要从节段桥梁构造分析,对短线法预制施工中的各个流程进行论述,以供参考。
关键词:桥梁工程;短线法;预制节段;线性控制引言预制节段施工技术是指桥梁结构以多个节段分支实施施工的一种方式。
该施工过程主要是将在工厂内制作的预应力构件运输到现场,再施加一定的预应力,然后进行桥梁的开工建设。
该技术最早出现在欧洲的一些国家。
预制节段主要分为横向分段预制和纵向分段预制。
横向分段预制通常包含简支梁、小箱梁以及空心板梁等形式;而纵向分段预制则应用在大跨度桥梁、斜拉桥梁等大型项目建设中。
与传统的整体式技术相比,预制节段施工技术的优势体现在:施工简单、节约材料、对环境影响小、施工周期短。
1 节段桥构造研究关于节段构造、接缝材料、预制节段的长度等因素,必须按照施工现场实际情况定,包含设备安装、运输成本等方面。
1.1 节段构造1.1.1箱体构造单箱单室这一简单的结构形式是预制节段梁中的主要形式,其受力结构非常明确。
在设计中要严格按照结构尺寸标准化、模数化的原则,达到模块化、工厂化预制节段施工的目标。
一般而言,为了对内模板合理进行配置,会将底板、腹板的厚度做成阶梯变化。
而节段接缝处,厚度的变化不能直接设置,要结合受力情况设置,一般受力合理时向厚度大的一侧移动10~15cm。
箱梁底部的水平高低,按照腹板高度与桥面横坡适当进行调整,底板厚度与腹板厚度采用渐变形式作为主要形式。
1.1.2接缝预制节段施工接缝的形式通常分为两种形式:①预制节段间混凝土湿接缝、现浇混凝土接缝、环氧粘结剂接缝;②干接缝。
此外,节段接缝位置要设置混凝土剪力键,达到均匀传递剪力的效果。
短线匹配法节段箱梁预制关键技术

联 :其 中北侧非通 航孔桥桥跨 布置为 4 X( 5 X 6 0 ) = 1 2 0 0 ( m) , 共 4联 ; 南侧非通航孔桥桥跨布置 为5 X( 5 X 6 0 ) = 1 5 0 0 ( m) , 共 5联 ; 全 桥 节 段 箱 梁
一
共 1 7 8 2榀 , 如图 1 所示。
1 2 4管理施工
D OI : 1 0 . 1 6 7 9 9 / j . c n k i . c s d q y f h . 2 0 1 7 . 0 7 . 0 3 6
城 市 道桥 与 防 洪
2 0 1 7 年0 7 月第 0 7 期
短线 匹配 法节段 箱 梁预制 关键 技 术
刘 程 洪
( 广 东省 长大 公路 工程有 限公 司 , 广东 广州 5 1 0 0 0 0)
摘
要: 通过介 绍台州湾 跨海特 大桥节段 箱梁 预制施工 过程 , 对短 线匹 配法节 段箱梁 功效 进行 总结 , 然 后对节 段箱 梁预制 过程
中的关键 技术进 行分析 , 以期为类 似工程 提供参考 。 关键 词 : 节 段预制 ; 钢筋绑扎 ; 线 型控制
应力混凝土连续箱梁( 节段拼装 ) 。标准联长 5跨
加工场集 中加工 ,并分类存放 ,施工 现场按需 取 料 。采用先进的机具设备 ( 全 自动钢筋弯箍机 、 钢 筋弯 曲中心等 ) 能保 证钢筋散件 尺寸精度 , 同种类 大批量 的生产模式能够提高作业工人生产效率 。 节 段箱 梁 钢筋 按 照 “ 在专 用 胎 架 上绑 扎 成 型 采用龙 门吊整体 吊装入模 ” 的工艺进行安装 。 节段箱梁模板周转使用次数多 , 安装精度要求高 , 箱梁成 品外观质量要求高 ,采用此 工艺能大大缩 短钢筋人模到混凝土浇筑之 间的时间 ,减少钢筋 施工对模板 的损伤。另外 , 钢筋绑扎与节段混凝土 浇筑施工流水作业 、 互不干扰 , 真正实现节段预制 “ 工厂化 ” 施工 , 完成从 “ 预制场 ” 到“ 预制厂 ” 的转 变。 在模板端部 按照主筋位置 和间距 焊接无缝钢 管 ,钢筋骨架整体 吊装人模后在钢 管 内插入 圆钢 对钢筋 骨架进行快速精确定位 。入模就位 以后在 钢 筋 骨 架 顶 部 设 置 6条 型钢 挑 梁 ,用 以 固定 钢 筋 骨架【 ” 。 3 . 2 箱 梁 质量 管 理
短线匹配法节段箱梁预制实施方案

崇启长江公路大桥A2标 50米跨箱梁短线法预制施工技术方案中交第二航务工程局有限公司目录一、编制依据²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²1二、工程概况²²²²²²²²²²²²²²²²²²²²²²²²²²²²²²22.1工程概述 (2)2.2工程主要特点 (3)三、主要施工技术方案²²²²²²²²²²²²²²²²²²²²²²²²²²33.1预制厂布置及主要设备配置 (3)3.1.1预制厂布置 (3)3.1.2主要设备配置 (7)3.2箱梁梁段预制总述 (8)3.2.1短线匹配预制工艺 (8)3.2.2箱梁预制施工测量 (9)3.2.3总体预制顺序 (11)3.2.4预制施工的总体操作程序 (11)3.2.5标准梁段预制程序 (12)3.3预制施工工艺流程 (13)3.4主要施工方法 (13)3.4.1箱梁模板 (13)3.4.2钢筋骨架的绑扎与入模 (19)3.4.3混凝土施工 (21)3.4.4梁段转运和存放 (26)3.4.5梁段出运检查 (267)3.5预制线型控制 (28)3.5.1模板精度控制 (28)3.5.2匹配梁段定位 (28)3.6质量检验标准 (31)四、组织体系²²²²²²²²²²²²²²²²²²²²²²²²²²²²²32五、资源及进度计划²²²²²²²²²²²²²²²²²²²²²²²²²²335.1人力资源计划 (33)崇启长江公路大桥A2标 50米跨箱梁短线法预制施工技术方案中交第二航务工程局有限公司5.2机械设备计划 (34)5.3主要材料计划 (35)5.4原材料检验计划 (36)5.5进度计划 ····················································································错误!未定义书签。
短线匹配预制法模板设计探讨

1节段梁预制概况广州地铁四号线首次在国内大规模采用节段拼装法施工城市轨道桥梁并取得成功。
短线法预制系指每个相同节段的浇筑均在同一个特殊的模板内进行,其一端为一个固定模,而另一端则为一个先浇筑的节段〔1〕。
模板的长度仅为一个节段的长度。
采用此法时,模板是不移动的,而梁段则由浇筑位置移至匹配位置然后运到存放场。
浇筑段的位置是不变的,通过调整已浇好的匹配段的几何位置获得规定的平曲线、竖曲线。
根据短线法预制的特点,模板的适用性、可靠性非常重要。
通过模板设计确保预制中满足各种节段型号、满足线型调整并能对模板随时进行调整预制其它型号节段。
2节段预制生产线的特点(1)不同类型的梁在不同的台座上预制,同跨内同类型的梁在同一个台座内预制完成。
(2)前一段节段梁作为后一节段梁的匹配梁,由前节段预制梁台座横移至下一节段梁预制匹配梁处。
(3)已预制节段梁在横移至模具处时需要将其前后面转向,方能正确地移至模具内匹配生产节段梁,所以需待其达到吊装强度后,用龙门吊机将其先转向,然后吊至横向移梁专用滑道处的移梁台车上,利用横向移梁专用滑道及纵向移梁滑道将已预制节段梁运至匹配处。
3节段梁预制模板总体设计节段梁预制模板主要包括侧模、底模、端模、三维台车、内模、液压系统六个部分,根据以上节段预制生产的特点介绍模板各部分设计总体方案如下:3.1侧模板设计方案3.1.1侧模总体布置侧模总体布置见图1。
短线匹配预制法模板设计探讨朱艺(广州市地下铁道总公司广州510380)摘要:目前桥梁建设中,节段梁在国内逐步广泛使用。
本文以广州市轨道交通四号线高架桥施工为背景,介绍了短线匹配预制法模板设计的一些基本原则,提出了基本思路。
通过有效地控制模板设计这一重要环节,确保预制质量并使生产流水化、简单化。
关键词:节段梁;模板;预制TheFormworkDesignDiscussofShortBebMatchMethodZHUYi(GuangzhouMetroCorporation,Guangzhou510380)Abstract:Now,theSegmentgirdersareusedmoreandmoreextensiveinbridgebuilding.ThisarticleisbythebackdropofelevatedbridgeconstructioninGuangzhourailwaytrafficofline4,introducessomefundamentaloftheformworkdesignofshortbebmatchmethod,putforwardnewthoughts.Insurethequalityofprecastandmaketheproductionconveyorsystemandsimplifybycontrollingtheformworkdesign.Keywords:segmentgirder;formwork;precast侧模设计总体原则:(1)侧模包住底模。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Precast segmental box girder bridges with external prestressing- design and construction -Prof. Dr.-Ing. G. RombachTechnical University, Hamburg-Harburg, GermanySummarySegmental box girder bridges externally post-tensioned are one of the major new developments in bridge engineering in the last years. In contrast to ‘classical’ monolithic constructions a segmental bridge consists of …small“ precast elements stressed together by external tendons (fig. 1). The many advantages of this type of structure like fast and versatile construction, no disruption at ground level, high controlled quality and cost savings have made them the preferred solution for many long elevated highways, especially in South East Asia (see [1], [2]), and bridges. Design and construction of precast segmental hollow box girder bridges will be mentioned in this paper.1 IntroductionThe greatest segmental bridges had been build in South East Asia resp. Bangkok. This region of the world suffers under a big lack of sufficient infrastructure e.g. roads. In the big cities like e.g. Bangkok the traffic nearly collapsed. There is a great need to change this bad situation rapidly. A Master Plan had been developed for the Bangkok region which lead to many big train and highway projects (table 1).Table1Projects in BangkokName ofProjectSystem Total length Constr. CostBill. EURHopewell(SRT-CT,BERTS7 train tracks + 4-laneelevated highwaySegmental Constr.60 km 2,4SST 4-lane elevatedhighway13 km 0,08R amindraA trnarongE xpressway6-lane elevatedhighwayI-beams18,7 km 0,32S econdStageE xpresswayS ystem6-lane elevatedhighwaySegmental Constr.39 km 0,85Bang NaExpressway6-lane elevatedhighwaySegmental Constr.54 km + 0,7Fig. 1 Segmental bridge underconstructionSector C+4-lane elevatedhighwaySegmental Constr.appr. 30 km 0,4Table 2 RestraintsConditions Solutionno space at gradetraffic jamsfloodingbad soil condition==> elevated highwayshort construction time ==> precast systemtransportation problemscostflexible system==> segmental hollow box girderTable 3Second Stage Expressway System Part I, Sector Btotal length of bridge: 2 x 10 kmtotal area of bridge deck: 370 000 m2number of spans: 806 (716 segmental ; 90 I beams)number of segments: appr. 9000number of bored piles: 2360number of driven piles: 10400number of ramps: 41at grade roads: 6000 m2office buildings: 8length of electric cables: appr. 54 kmconstruction time: 29 monthstotal cost: appr. 325 Mio EUR2 Structural elements of segmental bridgesSegmental bridges are mainly built as single span structures to avoid coupling of post tensioning cables. Furthermore in single spans the greatest shear force is not located in the same section as the greatest bending moment. Though the joint between the segment is always closed. A typical span is shown in fig. 2.Figure 2 Standard spanA standard span has a length of appr. 45m. It consists of 14 segments. Dry joints are used in this project (no epoxy glue). No continuous reinforcement is provided across the match cast joints between the segments. Due to the external post tensioning (fig. 3) 3 different segments are needed (fig. 4):· Pier segment: heavy end diaphgram required to stiffen the boxsection and for anchorage of p.t. cables· Deviator segment: required to deviate tendons· Standard segment: thin webs (35cm)Figure 3Tendon layoutShear KeysFigure 4 Type of segmentsFigure 5Substructure3 Construction3.1 Making of precast segments:No free space between the segments is allowed. Therefore the segments are poured in line. Two different methods are used to make the segments:- Long line match casting method- Short line match casting methodThe short line match method is more flexible and needs less construction space.Figure 6:Short line match casting3.2 Assembling of SegmentsFigure 7:Assembling of segmentsFigure 8:Overslung Truss4 Advantages and Disadvantages of Segmental BridgesTable 4 Advantages and Disadvantages of Segmental Bridges Disadvantages· safety (e.g. in case of fire)· extra cost (more prestressing required, single spans, truss)· high construction loading (overslung truss)· new construction method – technology(e.g. geometry control of segments, design) Advantages· short construction time(segments are prefabricated while the substructure is being built) · no interruption of traffic· precast ‘mass’ production- cost efficient- good, controlled quality- shapes· weather independent construction (dry joints)· small light segments· hollow box section· reduced dead load· cost (reduced reinforcement)· recyclingTable 5: Advantages and disadvantages of external prestressing Disadvantages· additional mild reinforcement required (Ds p)· additional Cost for ducts, anchorage, etc.· only straight tendon layout· diffusion of post-tensioning forcesAdvantages· replacement of tendons possible· inspection of tendons possible· easier Installation of longitudinal tendons· good corrosion protection of p.t. cables· less dead load (thin webs)· pouring is facilitated (no p.t. ducts)· less friction (no wobble losses)· prestress forces can be modified after construction (spare ducts)· greater permissible p.t. stresses5 Design5.1 Longitudinal DesignGeneral RequirementsThe design of a segmental bridge has to be done for the serviceability and the ultimate limit state with the following distinctions to monolithic structures:Serviceability Limit State- Full prestressing – min. compressive stress 1 MPa- Shear transfer in the jointsUltimate Limit State- Opening of the joints has to be considered- Load transfer in the jointsUnder service condition the concrete compression in the dry joints has to be greater than 1,0 – 1,4 MPa. Therefore the whole structure is under compression during normal loading. As there is no tension within the concrete, forces and moments can be calculated based on a linear elastic behaviour of the structure. In addition to monolithic bridges, all joints have to be designed for shear loads (ULS). The shear force is carried by shear keys and by friction between the joint surfaces.Under ultimate loads the joints between the segments will open. The resulting decrease of the structural stiffness has to be considered in the design. This can be done by analytical (moment-curvature relationship) or numerical methods (finite element methods).Critical sections· midth of span greatest bending moment· first joint after support greatest shear force but prestress force not uniformly distributed in cross-section· diaphragms high concentrated loads due to anchorage of tendons· deviators high concentrated loads due to tendons.Numerical investigationsThe load – deformation characteristic of a segmental construction is different from a monolithic one due to the dry unreinforced joints between the precast elements. Examinations of the behaviour of a segmental bridge and the forces in the joints finite element calculations had been conducted taking into account the non-linear behaviour due to the opening of the dry joints under tension. In contrast to known numerical investigations, the fine indentation of the joints had been modelled which is of great importance regarding torsion effects (fig. 9).Figure 9 Finite element mesh of a segmentA real existing single span segmental bridge with external post-tensioning, a standard span of the elevated highway ‘Second Stage Expressway System’ in Bangkok [2] had been modelled (fig 2, 3, 9). This structure is used as data from a full-scale test [5] is available to verify the results of the complex numerical simulations. The opening of the dry joints is modelled by interface elements.Figure 10: Finite element model of standard spanFigure 11: Finite element model – stresses and open jointsFig. 12 shows the calculated moment-deflection curve which is typical for a single span segmental bridge with dry joints. At the beginning of loading the whole structure is under compression due to the high post-tension normal forces. Thus the structure behave like a monolithic one. The deflection increases linear with the load. At a midspan moment of M » 37 MNm due to live load the first joint near midspan starts to open rapidly resulting in a great decrease of stiffness. The lever arm of the inner forces keeps nearly constant. Thus the moment deflection curve is again nearly linear. The structure fails due to crushing of the concrete in the top slab. Nevertheless a ductile behaviour of the segmental bridge can be seen.0204060bending moment in midspan due to live load [MNm]0,100,200,300,40d e f l e c t i o n i n m i d s p a n d u e t o l i v e l o a d s [m ]46,938Stresses in mid-span before failureFigure 12 Comparison between full-scale test and numerical resultsOnly 3 of 13 joints are open under failure load. Thus a great part of the bridge keeps under full compression.Further shown in figure 12 are the results from a full-scale test carried out in Bangkok. A good agreement between the numerical results and the test data can be seen. This demonstrates that the finite element model is capable to model the real behaviour of a segmental bridge.Several load combinations corresponding to bending, shear and torsion are examined to determine thestresses resp. the forces in the joint [6]. In a single span bridge the joints near the support are always closed due to the small bending moment. As the behaviour of an open joint is of main interest also a single span bridge restraint on one side with a modified tendon profile has been modelled.Fig 13 shows the resulting shear forces in the first joint close to the support in the webs and the slabs due to torsion with increasing load. The results from three different numerical models are presented. The first one is a monolithic girder which behaves always linear. Further the shear forces for a segmental bridge with smooth and keyed joints are shown.There are no differences between the models as long as all joints are closed. When the joint starts to open, the force in the top slab (tensile region) degreases. A great difference in the behaviour of a bridge with plain and keyed joints can be noticed. Smooth joints can only transfer forces when they are under compression whereas keyed joints can still transfer forces until a certain gap is reached. Even bigger differences can be seen in the webs. The plain joint reach the limit condition lim F z = 0,7s n just after the joint opens whereas the force in the keyed joint still increases.The results emphazise that the shear keys have a significant influence on the behavior of a segmental bridge under torsion loads. Calculations with plain joints are insufficient when torsion effects become significant.H o r i z o n t a l f o r c e F [M N ]z-7,0-6,0-5,0-4,0-3,0-2,0-1,0H o r i z o n t a l f o r c e F [M N ]z 510201526303539-5,0-4,0-3,0-2,0-1,005102015263035393,0H o r i z o n t a l f o r c e F [M N ]y -2,00-3,0-1,02,01,00joint opening up to 1/3 hjoint opening up to 2/3 h yzFigure 13 Forces in the webs an the slabs due to torsionFigure 14 Joint opening due to positive resp. negative bending momentsFigure 15Analytical model5.2 Design of segmental jointsThere is a great uncertainty regarding the design of the joints between the segments (see fig. 18). This is surprising as the behaviour of the joint is of critical importance for the safety of a segmental structure.The shear capacity of a keyed joint is a combination of the friction between the plain surfaces and the shear capacity of the keys. The latter one is neglected in the German regulations.5.2.1 Existing design modelsThe joints of many segmental bridges had been designed according to the AASHTO Recommendations [4]. Equation 1 is mainly based on tests with small specimens having usually one shear key only [7] similar to that shown in figure 16 [8].)122,4660,6j key n sm nV A As s=+×+××(1)[m, MN, MPa ]where: s n average compressive stress across the jointA sm area of contact between smooth surfaces in thefailure planef ck characteristic concrete compressive strengthA key min. area of the base of all keys in the failure planeAccording to the German recommendations for design of segmental bridges [3] only the frictional forces should be considered in the design. The load bearing of the shear keys is neglected as only epoxy joints can be used. Please note the difference between eq. (1) and (2) regarding the frictional area A sm resp. A T.j n TV Am s=××(2)where: A T effective shear areaThe results of both models will be discussed together with the proposed design concept in section 5.2.3.5.2.2 Tests and numerical verificationTo develop a design concept for the joints tests with specimens, similar to that described in [7] having one or multiple shear keys (fig. 16) were conducted to calibrate the finite element model. The study includes dry and glued joints. The dimensions of the shear keys are representative for segmental bridges. The non-linear material behaviour of the concrete like e.g. crushing and cracking and the interaction between the indented surfaces (bond, slippage, friction) has been considered in the numerical model.Figure 16 Test specimenThe test specimens are first stressed normal to the joint and than loaded with a vertical force up to failure. Fig. 17 shows the experimental and calculated load-deformation curve. The behaviour of the joint and the ultimate load are well predicted. The highly complex concrete behaviour near the failure load has not been modelled as this region is not relevant for the load bearing capacity of a joint.0,7vertical deflections at top of the specimen in mm0,60,50,40,30,20,10,0200s h e a r f o r c e i n k N0,8250150100500,7vertical deflections at top of the specimen in mm0,60,50,40,30,20,10,0200s h e a r f o r c e i n k N0,825015010050Figure 17 Test results versus numerical results for a dry and epoxy joint5.2.3 New design modelAfter the verification of the finite element model, a numerical parametric study had been conducted with various number and shapes of shear keys, concrete qualities etc. [6]. The results lead to a design model that differs from the existing concepts. The shear capacity of a keyed dry joint V d,j is a combination of a frictional and a shear part. For the first one the total area of the joint A joint is used and not only the smooth parts (A Sm ) like in AASHTO recommendations. The load bearing capacity of the keys depends on the concrete tensile resp. compressive strength and the area of the failure plane A key . for dry joints: (),int 1d j n jo ck keyFV A f f A m s g =××+××where: m = 0,65 coefficient of frictiong F = 2,0 safetycoefficient s n average compressive stress across the joint A joint area of the compression zone f ck characteristic concrete compressive strength b width of the web f = 0,14 factor for the indentation of the joint A key min. area of the base of all keys in the failureplaneh neheight of keys, with h ne £ 6b n b n width of the keysThe failure plane A key will have the least area of key breakage. A relatively high safety coefficient of g F = 2,0 should be used as the failure of the joint is brittle.For glued joints only the frictional part can be used (eq. 4). Experiments showed a relatively small increase in strength of appr. 20% between a glued and a dry joint. Furthermore a sufficient quality of the glue can not be guaranteed on site. for glued joints:,int 1d j n jo FV A m s g =××× (4)To compare the results of both models, the shear stress t = V d,j / A joint is calculated for a standard segment of the segmental bridge in Bangkok [2]. The relevant joints are fully closed. The concrete compressive strength is f ck = 40 MPa .Fig. 18 shows the load bearing capacity of a keyed joint according to various design models. The great differences between AASHTO and the German regulations can be seen. The first model can not be used for high compressive stresses, which may occur near the ultimate design load of a multispan segmental bridge. Furthermore it seems to overestimate the load bearing capacity of a joint. 01020Compressive Stress [MPa]51525353010S h e a r S t r e s s [M P a ]15205AASHTO [4]: 4,171,06n t s =+×[MPa]DBV [3]: 0,7n t s =×Figure 18 Comparison between different design models (standard segment [2])5.3 Types of jointsFigure 19 Types of JointsFigure 18 Bang Na – Bang Pli Bang Pakong ExpresswayREFERENCES[1] Brockmann, Ch., Shafer, G.: Design and Construction of the Bang Na-Bang Pli-Bang PakongExpressway. in: Stoelhorst, D. et al: Challenges for Concrete in the Next Millenium, Vol. 1,pp. 275-280, Rotterdam 1998[2] Rombach, G.: Bangkok Expressway - Segmentbrückenbau contra Verkehrschaos, aus: Ausdem Massivbau und seinem Umfeld (Hilsdorf, Kobler ed.), Schriftenreihe des Institutes fürMassivbau und Baustofftechnologie, University of Karlsruhe 1995, pp. 645-656[3] Deutscher Beton-Verein: Empfehlungen für Segmentfertigteilbrücken mit externen Spanngliedern,1999[4] AASHTO 89 (American Association of State Highway and Transportation Officials): GuideSpecifications for Design and Construction of Segmental Concrete Bridges, 1989, InterimSpecifications 1990 –1999[5] Takebayashi, T., Deeprasertwong, K., Leung, Y.: A Full-Scale Destructive Test of a PrecastSegmental Box Girder Bridge with Dry Joints and External Tendons, Proceedings of the Institution of Civil Engineers, August 1994, pp. 297-315[6] Specker, A.: Der Einfluss der Fugen auf die Querkraft- und Torsionstragfähigkeit externvorgespannter Segmentbrücken. Thesis, Technical University of Hamburg-Harburg, 2001[7] Buyukozturk, O., Bakhoum, M., Beattie, S.: Shear Behaviour of Joints in Precast Concrete SegmentalBridges, Journal of Structural Engineering, No. 12, December 1990, pp. 3380-3401[8] Roberts, C.L., Breen, J.E., Kreger, M.E.: Measurements Based Revisions for Segmental BridgeDesign and Construction Criteria. Research Report 1234-3F, The University of Texas at Austin,Austin 1993。