PCB可生产性设计规范
PCBA可制造设计规范

PCBA可制造设计规范PCBA(Printed Circuit Board Assembly)是指将电子元器件焊接到印刷电路板上形成具备特定功能的电子设备的工艺流程。
PCBA制造设计规范是为了保证PCBA的质量和可靠性,提高生产效率和降低成本而制定的一系列标准和要求。
下面将从设计、材料选用、工艺流程等方面详细介绍PCBA可制造设计规范。
1.设计规范(1)布局设计:合理布局各个电子元件的位置,尽量缩短元器件之间的连接距离,减少信号传输的衰减和噪音干扰。
(2)电路阻抗控制:根据设计要求和信号传输特性,合理设置电路板的材料和几何参数,确保电路板的阻抗匹配,并与信号源和负载匹配。
(3)绝缘与防护:合理设置绝缘隔离层、防护罩和屏蔽层,提供电磁屏蔽和机械保护。
(4)散热设计:对功耗较大的元器件,采取散热措施,如设置散热表面、散热片和风扇等,确保元器件工作温度在可接受范围内。
(5)信号完整性:避免信号串扰和互相干扰,如通过阻抗匹配、布线分隔、地线设计等手段提高信号完整性。
2.材料选用规范(1)电路板材料:选择适合设计要求的电路板材料,如FR4、高频材料、高温材料等,确保电路板的性能和可靠性。
(2)元器件选型:选择符合质量要求、温度范围、电气参数和可靠性要求的元器件,如芯片、电解电容、电阻等。
(3)焊接材料:选用适合工艺流程的焊接材料,如无铅焊料、焊膏等,确保焊接质量和可靠性。
3.工艺流程规范(1)印刷:确保PCB板材表面光洁、均匀,印刷厚度均匀一致,避免短路和偏厚现象。
(2)贴片:确保元器件与PCB板材精准对位,减少误差和偏离,避免虚焊、漏焊和偏焊。
(3)回流焊接:控制焊接温度和时间,确保焊点可靠性和焊接质量,避免过热和虚焊。
(4)清洗:清除焊接过程中产生的残留物,如焊膏、金属颗粒等,保证PCBA表面的干净和可靠性。
(5)测试与检验:进行全面的功能测试和质量检验,确保PCBA的功能和质量达到设计要求。
4.环境标准(1)温度和湿度:控制生产环境的温度和湿度,以确保PCBA的稳定性和可靠性。
PCB可制造性设计工艺规范

PCB可制造性设计工艺规范PCB(Printed Circuit Board,印刷电路板)是电子产品中非常常见的一部分。
它是由一种基层材料(通常是玻璃纤维增强复合材料)和通过印刷或压合技术固定在基层上的导电层构成的。
PCB可制造性设计工艺规范是一系列准则和要求,用于确保PCB的设计在生产制造过程中能够达到高质量和可重复性。
首先,对于PCB可制造性设计工艺规范来说,一个重要的方面是布局和布线。
布局指的是元件在PCB上的位置和排列方式,而布线则是指通过导线将元件连接在一起。
在布局方面,应该根据电路的需求和元件的特性进行合理的布局,避免不必要的干扰和噪音。
在布线方面,应该注意导线的长度、走线的宽度和间距,以及阻抗匹配和传输速率等因素。
其次,PCB可制造性设计工艺规范还包括了对于孔的规定。
在PCB制造过程中,通常需要在板上打孔以安装元件。
对于孔的规定,包括孔的类型(如贴片孔、通孔等)、孔的直径和位置等。
这些规定需要考虑到元件的尺寸和安装的要求,以及后续的焊接和连接等操作。
此外,在PCB可制造性设计工艺规范中还包括了对于焊盘和焊接的要求。
焊盘是指用于连接元件和导线的金属圆盘。
对于焊盘的规定,包括焊盘的形状、尺寸和间距等。
而对于焊接的要求,包括焊接的方法、焊点的形状和强度等。
这些规定需要考虑到焊接工艺的可行性和可靠性,以及后续的维修和升级等操作。
最后,PCB可制造性设计工艺规范还应该包括对于阻焊和丝印的要求。
阻焊是一种覆盖在PCB表面的绝缘材料,用于保护导线和焊盘不受外界环境的影响。
对于阻焊的规定,包括阻焊的类型、颜色和厚度等。
丝印则是一种印刷在PCB表面的文字和标记,用于标识元件和线路的位置和功能。
对于丝印的规定,包括丝印的颜色、位置和字体等。
总的来说,PCB可制造性设计工艺规范是为了确保PCB在生产制造过程中能够达到高质量和可重复性而制定的一系列准则和要求。
这些准则和要求涵盖了PCB布局和布线、孔的规定、焊盘和焊接的要求,以及阻焊和丝印等方面。
PCB设计的可制造性原则

PCB设计的可制造性原那么1. 引言在电子产品制造过程中,PCB〔Printed Circuit Board,印制电路板〕的设计是非常关键的一步。
一个好的PCB设计不仅可以提高产品的性能和可靠性,还可以降低制造本钱和生产周期。
为了确保PCB设计的可制造性,设计人员需要遵循一些根本原那么和最正确实践。
本文将介绍一些常用的PCB设计的可制造性原那么。
2. 原那么一:保持布局简单和紧凑在进行PCB设计时,保持布局简单和紧凑是非常重要的原那么。
简单的布局可以降低PCB的复杂性,减少错误的可能性。
紧凑的布局可以缩短信号传输路径,减少电磁干扰,提高信号完整性。
3. 原那么二:考虑耦合和信号完整性PCB上的不同电路和组件之间存在着耦合作用。
在设计PCB时,需要考虑不同信号之间的干扰和交叉耦合。
通过合理的布局和地线规划,可以减少电磁干扰的影响,并提高信号的完整性。
4. 原那么三:合理设置电源和地线电源和地线的布局在PCB设计中扮演着重要的角色。
良好的电源和地线布局可以确保良好的电源分配和地线回流,减少电源噪声和干扰。
在设计中,应尽量将电源和地线别离,并使用适宜的地引脚和电源引脚进行连接。
5. 原那么四:防止过于密集的布线在PCB设计中,过于密集的布线可能导致信号干扰和短路等问题。
因此,应尽量防止过于密集的布线,合理规划和安排信号线和电源线的路径。
同时,应留出足够的空白区域,方便焊接和维修工作。
6. 原那么五:合理选择元件和材料在PCB设计中,选择适宜的元件和材料也是非常重要的。
适宜的元件和材料可以提供更好的性能和可靠性。
应选择具有良好可焊性和耐高温的元件,并防止使用过时或质量不佳的元件和材料。
7. 原那么六:考虑制造和组装过程在PCB设计中,要考虑制造和组装过程。
例如,要确保元件的放置和布线不会影响到焊接和组装的顺利进行。
同时,要尽量减少PCB板的层数和复杂性,以降低制造和组装的本钱。
8. 原那么七:进行设计验证和测试PCB设计完成后,应进行设计验证和测试。
PCB可制造性设计规范

PCB可制造性设计规范PCB (Printed Circuit Board)的制造性设计规范是指在设计和布局PCB电路板时所需考虑的一系列规范和标准,以确保电路板的制造过程顺利进行并获得可靠性和性能。
一、尺寸规范1.PCB电路板的尺寸要符合制造商的要求,包括最小尺寸、最大尺寸和板上零部件之间的间距。
2.确保电路板的边缘清晰、平整,并防止零部件或钳具与电路板边缘重叠。
二、层规范1.根据设计要求确定所需的层次和层的数量,确保原理图和布局文件的一致性。
2.定义PCB的地平面层、电源层、信号层和垫层、焊盘层等的位置和规格。
三、元件布局规范1. 合理布局元件,以最小化路径长度和EMI (Electromagnetic Interference),提高电路的可靠性和性能。
2.避免元件之间的相互干扰和干涉,确保元件之间有足够的间距,以便于焊接工序和维修。
四、接线规范1.线路走向应简洁、直接,避免交叉和环形走线。
2.确保信号和电源线路之间的隔离,并使用正确的引脚布局和接线技术。
五、电路可靠性规范1.选择适当的层次和厚度,以确保足够强度和刚度。
2.确保电路板表面和感应部件光滑,以防止划伤和损坏。
六、焊接规范1.在设计中使用标准的焊盘尺寸和间距,以方便后续的手工或自动焊接。
2.制定适当的焊盘和焊缺陷防范措施,以最小化焊接问题的发生。
七、标准规范1. 遵循IPC (Institute for Interconnecting and Packaging Electronic Circuits)标准,以确保PCB的制造符合国际标准。
2.正确标注和命名电路板上的元件和信号,以方便生产和测试。
八、生产文件和图纸规范1.提供准确和详细的生产文件和图纸,包括层叠图、金属化孔、引线表和拼图图等。
2.确保文件和图纸的易读性和可修改性。
九、封装规范1.选择适当的封装类型和尺寸,以满足电路板的要求。
2.避免使用不常见或过于复杂的封装,以确保可靠的元件焊接和连接。
可制造性需求规范AQ2A-05-R002

< 0.8mm
< 0.8mm
缩短贴片周期、减少短 路,提高直通率
BGA旁边加MARK 标识点
φ1.0mm,圆或方形
依照IPC-7351设 计
依照IPC-7351设计
缩短贴片周期、减少短 路,提高直通率 缩短贴片周期、减少短 路,提高直通率
依照IPC-7351设 计
缩短贴片周期、减少短 路,提高直通率
1.2mm
器件的重量
表贴器件最大重量≤
35g,元件重量与顶部可
吸附面积比小于0.600g/ ㎡.A=器件重量/引脚与 焊盘接触面积,片式器 件A≤0.075g/㎡,翼形引 脚器件A≤0.300g/㎡,J
器件重量符合要求, 利于自动贴片机的生 产,且保证焊接质量, 器件不易脱落。
形引脚器件A≤0.200g/
38
电容及信号接口接 地PAD
39
插件管脚过孔
40
功放IC
41
管脚PAD间距
42
单板可 制造性
43
单板可 制造性
Φ30-50mi
Φ30-50mi
≧ 0.1mm
≧ 0.1mm
缩短装配周期、减少装 配出错率。
缩短装配周期、减少装 配出错率。
按原理图标识重 要的测试点
缩短装配周期、减少装 配出错率。
≧ 5mm
≧ 5mm
≧ 2.0mm 清晰、不得印在 焊盘上 ≧ 5mm
缩短装配周期、减少装 配出错率。 缩短装配周期、减少装 配出错率。 缩短装配周期、减少装 配出错率。 缩短装配周期、减少装 配出错率。 缩短装配周期、减少装 配出错率。
≧ 5mm
缩短装配周期、减少装 配出错率。
椭圆形
椭圆形、泪滴型
PCB设计规范范文

PCB设计规范范文PCB(Printed Circuit Board)是电子产品中不可或缺的关键组件之一、它承载着电子元件并提供电气连接,为电子设备的正常运行提供支持。
为了确保PCB的正常工作和受到适当的维护,有一套规范和指南来指导PCB的设计和生产。
以下是一些常见的PCB设计规范:1.尺寸规范:PCB的尺寸应根据实际应用需求进行设计,并应考虑到电子产品的外部尺寸要求。
尺寸的准确性对于PCB和组装工艺的成功都至关重要。
2.电气规格:PCB设计应符合应用需求的电气规范。
其中包括电压、电流、频率等参数的限制。
电气规格的合理设计可以确保电路的稳定性、可靠性和性能。
3.材料选用:PCB的材料选择应考虑到产品应用场景和要求,包括高温环境、潮湿环境、抗震性能等。
常见的PCB材料有FR-4、铝基板、陶瓷基板等。
4.敏感电路隔离:PCB设计中敏感电路应与其他电路隔离,以避免相互之间的干扰。
敏感电路包括模拟电路和高频电路。
5.地线规划:良好的地线规划可以降低电路中的噪声和干扰。
地线应尽可能宽,避免共线回流路径,减小回流电流的磁场。
6.线宽距规范:PCB中导线的线宽和间隔距离应根据电流和电压要求设计。
较大的电流需要较宽的线宽,较大的电压需要较大的间距。
7.最小孔径:PCB设计中应注意最小孔径的限制,以确保钻孔的准确性和稳定性。
通常情况下,最小孔径应大于钻头直径的两倍。
8.贴片元件安装规范:PCB设计中应合理安排贴片元件并留出足够的安装空间。
贴片元件的布置应符合组装工艺的要求,并确保元件之间的电气连接。
9.GPIO引脚排列:PCB设计中应按照IC的GPIO引脚功能进行排列。
相同功能的引脚应相邻,以方便信号的连接和布线。
10.PCB标记和标识:PCB设计中应包含元件的标记和标识。
标记包括元件的名称和编号,以方便组装和维护。
11.焊盘设计:PCB设计中应合理设计焊盘,确保良好的焊接质量。
焊盘的尺寸和形状应适应元件的尺寸和引脚间距。
PCB设计规范

一、目的规范产品设计,更有利于整个制造过程,减少制程中不良的发生率,降低制造工艺难度。
二、范围本标准适用于本公司各部门PCB设计。
一、外尺寸根据公司现有设备,在设计时,应考虑基板的设计尺寸(如有客户指定超出此尺寸的PCB,需考虑该板的外发制造)根据公司设备情况.模板时应避免将PCB窄边作为制造用板边.或在窄边布置工艺板边.注:②.自动插件部品脚距离制造板边<5 mm(图中②)③.手动插件、自动插件部品表面任意部分距离制造板边尺寸<2.00mm;(图中③)⑤.<1.00mm空电路线距离制造板边尺寸<3.00mm(图中⑤)⑥.定位孔中心距离制造板边>7.00mm或定位孔边缘距离制造板边距离>8.50(图中⑥)④.手动插件的背面焊盘距离制造板边<1.00mm;(图中④)PCB设计参考标准1、公司当前设备可制造最大PCB外尺寸为330.00*250.00mm;但最小整板不得低于64.00mm.2、当有以下情况之一,需要增加工艺板边:①.SMD贴装部品焊盘距离制造板边尺寸<5.00mm;(图中①)外形尺寸无工艺板边布板时需要特别注意禁止布置SMD元件区域,不得安放任何SMD元件.释义:工艺板边——工艺边其实就是为了辅助生产插件走板、焊接过波峰在PCB板两边或者四边增加的部分,主要为了辅助生产,不属于PCB板的一部分,生产完成需去除。
制造板边——是指在完全没有工艺板边的情况下PCB四周的边缘部分,常常被视作板边在制造过程中使用。
二、定位标示释义:定位孔——用于制造过程中安装夹具或机械定位的通孔。
定位开孔与安装孔可通用.螺丝孔——产品组装时用于固定或安装产品的通孔。
因受力较大。
在设计时需要做加强其机械应力.1.定位孔的设计根据制造工艺来定,公司现行使用定位孔的工艺段分别为:自动插件印刷ICT FCT高压测试公司现行AI采用弹簧爪片对PCB进行定位作业,故对PCB定位孔有一定的技术要求.①.爪片的可定位尺寸在3.00-6.00mm.最佳生产状态为3.00mm(中心距离板边5.00mm)②.定位孔大小定∅4.00mm,允许误差为+0.05③.所有定位孔或螺丝孔周围5*5mm范围内,禁止布置SMD元件.以避免基板加工或螺丝紧定时产生外力导致部品损坏.(定位孔设计在工艺板边时,则无需考虑此问题)2、MARK点的设置.焊盘外径D一般不小于(d+1.5)mm,其中d为孔径,对于一些密度比较大的元件的焊盘最小直径可取(d+1.2)①MARK点为1*1mm露铜圆形,可以选用镀锡,在周围再围绕∮3.00mm圆环,以增强与隔绝外围线路。
PCB设计规范

PCB设计规范1. 目的规范产品的电路和工艺设计,确定设计时的各项参数,使得PCB的设计满足可生产性、易测试性、EMC(电磁兼容性)、EMI(电磁干扰)、DFM(面向制造的技术)等技术规范要求,在产品设计过程中构建产品的工艺、技术、质量、成本等优势。
2. 使用范围本规范使用于所有电子产品的PCB工艺设计,运用于但不限于PCB的设计、PCB投板工艺审查、单板工艺审查等活动。
3. 规范内容3.1 PCB物理参数要求3.1.1 PCB板材根据PCB的使用条件以及机械、电性能要求确定基材材质,例如:FR-4、CEM-1、铝基板、陶瓷基板、纸芯板等;根据PCB的结构确定覆铜箔层数,例如:单面、双面或多层板;根据PCB的尺寸和元器件重量确定基材厚度,一般在0.3mm~6mm,常用PCB的厚度是1.6mm,特大型板可用2mm。
基材参数Tg(玻璃化转变温度)、CTE(热膨胀系数)、耐热性、平整度、电气性等符合要求。
3.1.2 PCB表面处理确定PCB铜箔的表面处理镀层,例如镀锡、镀镍、镀金或OSP等,并在文件中表明。
3.2 热设计要求3.2.1 高热器件应考虑放于出风口或利于对流的位置。
3.2.2 较高的元件应考虑放于出风口,且不阻挡风路。
3.2.3 散热器的放置应考虑利于对流。
3.2.4 温度敏感器械件应考虑远离热源。
对于自身温升高于 30℃的热源,一般要求:a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于 2.5mm;b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于 4.0mm。
若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在降额范围内。
3.2.5 大面积铜箔要求用隔热带与焊盘相连。
为了保证透锡良好,在大面积铜箔上的元件的焊盘要求用隔热带与焊盘相连,即焊盘与铜箔间以“十”字或“米”字形连接;对于需过5A以上大电流的焊盘不能采用隔热焊盘,如图1所示:3.2.6 过回流焊的0805以及0805以下片式元件两端焊盘的散热对称性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.概况1.1本规范的内容是确保所设计之PCB符合相关标准及实际生产,以降低生产之困惑,使制程生产顺畅.1.2主要生产设备有:锡膏印刷机、贴片机、回流焊炉、AOI自动检验机、波峰焊.2.PCB外形、尺寸及其他要求:2.1 PCB外形应为长方形或正方形,如PCB外形不规则,可通过拼板方式或在PCB的长方向加宽度不小于8mm的工艺边。
PCB的长宽比以避免超过2.5为宜。
2.2 SMT生产线可正常加工的PCB外形尺寸最小为50mm×50mm(长×宽)。
最大尺寸因受现有设备的如下表限制.因此PCB(拼板)外形尺寸(长×宽)正常不宜超过450mm×380mm。
如果由于设计确实需要超过此尺寸,制板时请通知工艺人员协商确定生产方案。
各设备可加工的最大PCB尺寸及设备夹持长度见下表:(单位:mm)2.3拼板及工艺边:2.3.1 何种情况下PCB需要采用拼板:当PCB外形尺寸有如下的特征之一时需考虑采用拼板:(1)SMT板长<120mm或直插件板长<80mm;(2)SMT板宽<50mm或直插件板宽<80mm;(3)基标点的最大距离<100mm;(4)板上元件较少(少于180个元件)拼板后板的长宽不会超出350mm×245mm时。
采用拼板将便于定位贴装及提高生产效率。
2.3.2 拼板的方法:为了减少拼板的总面积节约PCB的成本,板与板之间一般不留间距(采用板边缘线重叠零间距);拼板时一般是以板的长边互拼,或长短边同时互拼的方式进行,但应避免拼板后板的长宽比超过2.5为宜。
拼板一般采用V-CUT方法进行。
工艺边同样采用此方法与板连接。
对于焊接面只有阻容器件或较简单的SOP封装IC时,双面均是表贴件的PCB可采用正反拼(阴阳拼板)的双面SMT工艺,但对于双面均有精密元器件或有较大体积元器件的板,则不宜采用正反拼(阴阳拼板)工艺。
拼板在订制PCB及网板时一定要注明统一的拼板方式及各单板的精确相对位置尺寸,如板与板之间的间距为零时是以板的边缘线重叠或是以板的边缘线紧靠来确定相对位置的,一般在没有特别说明的的情况下是以板边缘线重叠作为默认值的。
2.3.3 何种情况下PCB需要增加工艺边:当PCB有如下的特征之一时应增加工艺边:[1]PCB的外形不规则难以定位;[2]在定位用的边上元件(包括焊盘和元件体)距离板边缘太小(SMT板的元件面<5mm或焊接面<8mm,直插件<8mm),造成流板时轨道刮碰到元件;[3]板上布有引线间距≤0.65mm的IC或≤0603(英制)规格的片状元器件但没有PCB所要求的标准定位孔。
2.3.4 增加工艺边的方法:工艺边增加是为了PCB 在生产时能得到准确的定位,一般是加在(拼)板的较长边上,由于它的增加直接影响了PCB 的成本,因而在保证满足使用功能时尽可能减小工艺边的尺寸以节约成本,而要满足准确定位的要求一般是要求能够在工艺边上得到标准的定位孔,从下面的图中可以看到,得到标准定位孔的工艺边应不小于8mm 的宽度,长度一般是与(拼)板的边长一致。
(下图是异形双面表贴板的同面双拼外加工艺边示意图)2.3.5带工艺边的拼板中V-CUT 连接特别说明:带有工艺边的拼板,如果工艺边已将各板连接固定好,那拼板之间如果是零间距时可采用V-CUT 切断连接(如上图),省去后续的割板工序,但如果厂家做不到切断,可留一点连接而不完全切断,用手瓣断时不致造成弯曲变形,但切不可将连接用的工艺边也切断!另外,对于单板尺寸的长宽比大于2的板,由于切断后单板的稳定性明显变差,所以此时不宜将板间的连接切断!为防止印制板在生产过程中变形(如贴片/回流/插件/波峰时),垂直于生产流向的工艺边上尽量避免开V-CUT 槽或邮票孔。
如下图:PCB 外形要求:PCB 板基板边缘不能有缺口且不能断开,确保流水线各设备轨道加卸载的顺利进行。
而且,若有大缺口,则在生产过程、焊接过程、周转过程都容易变形,影响焊接可靠性(含出厂后)。
生产流向好的设计 图一不好的设计 图二2.3.6 异形板的工艺边的邮票孔要求:有些异形板由于本身的形状会影响定位的准确及稳定性,因此在不影响印制板成本的情况下应将板的缺口补齐成方形,补缺口一般是采用邮票孔结合长孔的连接方式,邮票孔连接的方式应该考虑掰板后的毛刺是凹陷在板边缘内(通过将邮票孔位放在板边缘线内侧),以减少掰板后修边的动作。
如果生产中不会影响板的定位及稳定性,就不要补齐缺口。
如果无法确定可由工艺人员决定方案。
附:邮票孔的使用规则:孔完全内嵌PCB板,即孔圆内切板边(除非有特别要求板的边缘必须非常平齐);每处邮票桥接的连接宽度一般5mm-10mm(据PCB板的受力情况及板尺寸而定),即孔内径0.6mm-0.7mm,孔中心距1.0mm,桥接外延左右处各加两个引孔(以除去连接处两边毛刺,如下图红色孔),桥接共5-10个孔(含2个引孔);若定位孔在工艺边上,则定位孔所在工艺边要求较大的邮票连接强度;邮票桥一般要求远离PCB的折角边处;邮票桥不能在元件体下(如外露接口器件);桥接处两边并不是都要打孔,若所桥接的是无电路作用的工艺边,则工艺边上的桥接处不需要邮票孔。
示例:2.4 PCB 安装定位孔尺寸要求: 2.4.1 表贴定位孔尺寸要求:至少要二个定位孔(在定位边方向,一般为长边),两个定位孔位置尺寸要求如下图。
直径要求统一为3.3mm (包括在工艺边上的定位孔也统一为3.3mm)。
定位孔不能金属化。
在定位孔外围1mm 范围内不允许有SMT 元件,5mm 范围内不能有基标点。
另注:板上螺丝孔直径也请统一为3.3mm 。
(有时需要螺丝孔兼作定位孔)。
定位孔和螺丝孔请统一制作成器件封装形式。
2.4.2 表贴锡膏印刷定位孔尺寸要求:在板四个角,分布四个孔。
直径要求Φ3.3mm 。
(四个孔直径要保持相同)。
这四个孔的位置不作精确要求。
其中底边两个孔也可用定位孔代替(定位孔兼作此孔),直径要一致。
(定位孔不能金属化)2.4.3 过炉支撑孔要求(防止板变形):若板的长度超过250mm ,则在板长方向的大约中央线上 约等长地分布两个孔(非金属化),直径要求Φ3mm 。
但孔位置不必非常精确要求。
但属于同系列的PCB 板产品,此两个孔位置在此系列PCB 上要保持相同。
Φ3.30mm流板方向流板方向5±0.055±0.05Φ3.30mm ±0.05表贴定位孔要求:1、 直径3.3mm2、 两边距5mm3、 周禁1mm 无SMD 元件 4、 周禁5mm 无MARK 点2.5 基标(Fiducial Mark )尺寸要求:基标分为PCB 基标和细间距IC 基标。
基标的中心为Φ1.0mm 的镀锡平面,全反光性好,外围Φ3.0mm 内无反光(无铜箔、绿油或白油);PCB 的基标至少要有两点,最好在板的四个角上均有基标点,但注意不要作在对称的位置上(防止生产反向流板)。
板上应有两个基标点的距离大于100mm ,达不到要求的应做成拼板;如果是双面均有表贴元件,则两面均应布基标。
细间距IC 基标可分布在IC 的任意两对角上,但最好设计为IC 位置的中心一点为好。
所有板面上基标点的中心点距离板边缘均应大于5mm ,距离定位孔也要大于5mm 。
注意:基标点统一制作成器件封装形式,即要有自身封装对应的位号(Ref 名),以便于准确定位坐标。
3.SMC/SMD 封装代号的一般识别:3.1 片状阻容元器件外形代号及其尺寸(长×宽):3.2 MELF 、MLL 、SOD 元件为类似圆柱形的器件,如二级管。
3.3 SOT 元件为类似三级管的元件 3.4 SOP 为两侧有引脚朝外的IC 3.5 SOJ 为两侧有引脚朝内的IC 3.6 PLCC 为四面有引脚朝内的IC 3.7 QFP 为四面有引脚朝外的IC 3.8 BGA 是以球栅阵列为引线的IC焊盘在PCB 上的排布设计原则:PCB 排版时需考虑板卡的可生产操作性,为了尽早发现可能存在的布板问题,避免造成投产后的再次改板,因此在订制PCB 板前需由板卡工艺人员确认一下。
3.9相临元件焊盘的间距极限如下图:但对于插件较多的双面表贴板,因波峰焊接表贴件受到许多方面的限制,因此双面表贴件通常均采用回流焊接,焊接面的表贴件在波峰焊接前采用夹具或阻焊带屏蔽掉,故焊接面的表贴件与插焊孔边缘之间的间距须在3mm 以上(对于1206及以上的表贴元件与插焊孔边缘之间的间距须在5mm 以上),若焊接面的表贴元件高度超过5mm,则一般以表贴件的高度尺寸为上述的最小间距要求。
焊接面的表贴件最好集中排布,特别是不要分散排布在插件孔之间。
SMD尽量能够移到Top元件面。
反面元件不多的产品尽量改为单面表贴板,以减少生产流程。
3.10特殊yy类高端产品的阻容元件,因性能要求所限,表贴阻容间的间距若实在无法达3.11SMD焊盘与通孔最小空隙距6mil即SMT焊盘边缘距过孔(塞绿油)的最小距离为6m il,最佳0.5mm以上,焊盘与通孔之间须有阻焊膜覆盖。
焊盘表面严禁有通孔,以避免焊料流失造成虚焊。
通孔与焊盘的连接线的宽度小于0.25mm并且小于焊盘宽度或直径的1/2。
3.12距PCB长边或定位边(即不带露出板边缘插座的边及对边)5mm内不应有焊盘和基标,双面表贴板的焊接面则应有8mm的范围无焊盘。
3.13元件排布及焊盘设计应考虑方位及对称性,方向一致性为最佳,体积大的元件应尽可能排在PCB中间,特别是波峰焊接面Bootom面更应该考虑元件排布的方位,以免在波峰焊时产生阴影效应造成难以克服的焊接缺陷,同时应避免排布间距小于1mm的IC,Bottom面表矩形元件焊盘严禁设计为尺寸大小不等的不对称的焊盘图形。
焊盘之间、焊盘与通孔以及焊盘与大面积接地(或屏蔽)铜铂之间的连线,其长度尽量大于0.5mm,其宽度须小于0.25mm并且应小于其中较小的焊盘宽度或直径的1/2。
细间距IC引线焊盘之间如没有涂覆绿油,其焊盘之间严禁直接用短接线相连,须用引出线在外连接并覆盖绿油。
无外引脚的元件的焊盘之间不允许有通孔,以保证焊接质量。
各导通孔在没有特别要求的情况下均应涂覆绿油。
3.14查选焊盘设计尺寸时,应与自己所选用的元件封装外形、焊端、引脚等与焊接相关的尺寸相匹配、尺寸单位(公英制),同一面的IC本体之下不能布其他元器件,焊接片状元件的焊盘绝不允许兼作测试点,为避免损坏器件必须另外设计专用的测试焊盘。
4无外引线元器件焊盘尺寸设计原则:4.1 常用矩形阻容元件焊盘尺寸(此类元件易出现偏移、虚焊和一端立起)如下表:由于小元件的焊盘尺寸对焊接质量的影响较大,不同的焊接方式(SMT回流焊接和波峰焊接)要求不同,在布板时一定要注意区分清楚!通常情况下焊接面的表贴件如果较多且相对集中,一般采用双面回流焊接方式,只有焊接面的表贴件与插焊点距离较小且混排在一块时才考虑采用波峰焊接方式。