第12章 动载荷与动应力-2013.
动载荷

dmaxW 0 .132
二、杆AB下端固定,在C点受到以匀速 沿
水平运动的重物Q冲击。设AB杆的E、I及W均为已 知。试求杆内的最大冲击应力。
解:水平冲击无势能变化
1Qv2 2g
1 2
Pdd
Pd KdQ,
d Kdj
j Q3a/3E,I
v2
gst
v2
Kd 1 gst
说明:由结果可知,欲使 Kd ,除
外,还可采取 st 的
v
措施,如在吊索与重物间安置一缓冲弹簧。
等截面刚架的抗弯刚度为 EI,抗弯截面系数为W,重物P自由 下落时,求刚架内的最大正应力(不计轴力).
P
h
a
a
解:
st
4Pa3 3EI
V1 V
Fd F
d st
d st
kd
1 F(hd)2Fdd
d22s td2sh t 0
d st1
12hst
自由落体冲击的动荷因数
kd 1
12hst
1、利用动荷因数可计算动响应
d Kdst Fd KdFst
gst W
起吊重物时的冲击
已知:起重吊索下端挂一重物等速下降,当
吊索长度为 l 时,突然刹车,A、E、 V、P
求: F d 、 d
l
冲击前 U12 1P gv2Pdst2 1Pst
P
(重物的动能、势能、杆应变能)
Pd
冲击后
U2
1 2
Fd
(杆应变能)
d
d st1
冲击荷载问题的动响应
第十章-动载荷

2
2 动载荷问题分类 1) 构件有加速度时旳应力计算; 2) 冲击问题; 3) 振动问题; 4) 交变载荷。
3
§10. 2 动静法旳应用
1 动静法
即为理论力学中简介旳达朗伯原理。
2 匀加速平动构件中旳动应力分析
例子 设杆以匀加速度a作平动,
b
R
aR
截面积为A,比重为 。
加上惯性力系。
3 求解冲击问题旳能量法 线弹性系统
任一线弹性杆件或构造都可简化为线性弹簧。 15
3 求解冲击问题旳能量法 线弹性系统
任一线弹性杆件或构造都可简化为线性弹簧。
l Pl EA
P EA l l
等价弹簧旳弹性
系数 k EA
l
16
l Pl EA
等价弹簧旳弹性系数 能量法
P EA l l
k EA l
工程实例 气缸
在满足刚度和强度要求旳前提下
28
冲击问题旳一般解题环节
1) 判断是垂直冲击还是水平冲击;
2) 求 △st ; 3) 求 Kd ;
4) 计算静应力 st ; 5) 计算动应力 d = Kd st .
注意
1) 对于不是垂直冲击或水平冲击问题,或不满 足条件(冲击前无应力和变形),则需要应
a g
)
记: 若忽视自重,则
对线性系统
a
Kd Kd
1 a
g
g
动荷系数
内力、应力、应变和变形都与外力成线性关系。
动载荷问题旳求解 1) 求出动荷系数; 2) 按静载荷求解应力、应变、变形等; 3) 将所得成果乘以动荷系数 Kd 即可。 6
动载荷问题旳求解
1) 求出动荷系数;
动载荷

动荷系数 K d
v2 g st
P d K d P st d K d st
d K d st
三、冲击响应计算
例 直径0.3m的木桩受自由落锤冲击,落锤重5kN,
求:桩的最大动应力。E=10GPa
解:①求静变形 stP E stLAW EA L 42m 5m ②动荷系数
Wv h=1m
K d11 2h st112 4 12 05 0201 .97
1
一、动载荷:
§10-1 基本概念
载荷不随时间变化(或变化极其平稳缓慢),构件各部
件加速度保持为零(或可忽略不计),此类载荷为静载荷。
载荷随时间急剧变化,构件的速度有显著变化,此类载
荷为动载荷。
二、动响应:
构件在动载荷作用下产生的各种响应(如应力、应变、位
移等),称为动响应。
实验表明:只要应力不超过比例极限 ,在动载荷下胡克定
1、起重机丝绳的有效横截面面积为A , [] =300MPa ,物体单位体 积重为 , 以加速度a上升,试校核钢丝绳的强度(不计绳重)。
解:①受力分析如图:
x
aa
L
Nd
mn
qst
x
qG
惯性力q:GgAa
Nd(qstqG)xA(x 1g a)
②动应力
d
Nd A
x(1a)
g
最大动应力
dmax L(1g a)Kdstmax
1.假设: ①冲击物为刚体; ②冲击物不反弹; ③不计冲击过程中的声、光、热等能量损耗(能量守恒); ④冲击过程为线弹性变形过程。(保守计算)
2.动能 T ,势能 V ,变形能 U,冲击前、后,能量守恒: (冲击 )T 1V 前 1U 1T2V2U2(冲击 ) 后
工程力学第12章答案

习题12-3图 习题12-2图习题12-4图 第12章 杆类构件的静载强度设计12-1 关于弯曲问题中根据][max σσ≤进行强度计算时怎样判断危险点,有如下论述,试分析哪一种论述正确。
(A )画弯矩图确定M max 作用面。
(B )综合考虑弯矩的大小与截面形状;(C )综合考虑弯矩的大小、截面形状和尺寸以及材料性能; (D )综合考虑梁长、载荷、截面尺寸等。
正确答案是 C 。
12-2 悬臂梁受力如图所示,若截面可能有图示四种形式,中空部分的面积A 都相等,试分析哪一种形式截面梁的强度最高。
正确答案是 A 。
12-3 铸铁T 字形截面悬臂梁,受力如图所示,其中力F P 作用线沿铅垂方向。
若保证各种情况下都无扭转发生,即只产生弯曲,试判断图示四种放置方式中哪一种使梁有最高的强度。
正确答案是 B 。
12-4 图示四梁中q 、l 、W 、][σ均相同。
试判断下面关于其强度高低的结论中哪一个是正确的。
(A )强度:图a >图b >图c >图d ; (B )强度:图b >图d >图a >图c ; (C )强度:图d >图b >图a >图c ; (D )强度:图b >图a >图d >图c 。
正确答案是 B 。
解:2amax 81ql M =2bmax 401ql M =2cmax 21ql M = 2dmax 1007ql M =12-5 图示四梁中F P 、l 、W 、][σ均相同,不考虑轴力影响。
试判断关于它们强度高低的下述结论中哪一个是正确的。
(A )强度:图a =图b =图c =图d ; (B )强度:图a >图b >图d >图c ; (C )强度:图b >图a >图c >图d ; (D )强度:图b >图a >图d >图c 。
l q PF=3231ABM )(o M(a)习题12-5题习题12-6题32l M P /F 31(d-1)lM P /F 21AB(c-1)lM P /F 10351BA 10351 (b-1) l M P /F 41AB 41 (a-1) 正确答案是 B 。
第12章 动荷载

材料力学
解:1.假设:
假设冲击物体为刚体,受冲构件的质量可以省略。 在冲击物一经与受冲构件接触,就相互附着成为 一个自由度的运动系统。 2.由机械能守恒定律可知:
T V Ud
(a)
(1) 由上图可见: V Qh d
式中:T为冲击物体在冲击过程中减少的动能 V为冲击物体在冲击过程中减少的势能 U d 为冲击构件的变形能 (b)
(2) 由于冲击物体的初速度和最终速度都等于零, 所以没有动能变化。
材料力学
(3)
T=0
(c)
(4) U d 应等于冲击载荷 P 在冲击过程中所做的功。由于 d 冲击过程中 Pd 及 d
§12-4 提高构件抗冲击能力的措施
一、静变形 j 同 P d 和 d 的关系:
由上两节的分析我们可以得到受冲击构件的强度条件如下:
d max
2h j 1 1 j
从上式可看出:我们只要增大了 j 就可降低 d max 原因:静位移的增大,表示构件较为柔软,因而能更多的 吸收冲击物的能量。 注意:在增加静变形的同时,应尽可能的避免增加静应力
第12章 动荷载
材料力学
本章主要内容
§12-1 概述 §12-2 构件作匀加速直线运动或匀速转动时的应力计算 §12-3 冲击时应力和变形的计算 §12-4 提高构件抗冲击能力的措施 §12-5 冲击韧度
材料力学
机械实例
材料力学
机械实例
材料力学
机械实例
材料力学
机械实例
材料力学
机械实例
动载荷的概念及其分类

第12章 动载荷§12-1 动载荷的概念及其分类1.动载荷的概念前面各章讨论的都是构件在静载荷作用下的应力、应变及位移计算。
静载荷是指构件上的载荷从零开始平稳地增加到最终值。
因加载缓慢,加载过程中构件上各点的加速度很小,可认为构件始终处于平衡状态,加速度影响可略去不计。
动载荷是指随时间作明显变化的载荷,即具有较大加载速率的载荷。
一般可用构件中材料质点的应力速率( dt d σσ=•)来表示载荷施加于构件的速度。
实验表明,只要应力在比例极限之内,应变与应力关系仍服从胡克定律,因而,通常也用应变速率( dt d εε=•)来表示载荷随时间变化的速度。
一般认为标准静荷的 ,随着动载荷 的增加,它对材料力学性能的影响越趋明显。
对金属材料,静荷范围约在 ,如果 ,即认为是动载荷。
min /)~.(3010=•ε•ε/2−s ~41010−•=εs /210−•≥ε2.加速运动构件中的动应力分析三类动载荷问题:根据加载的速度与性质,有三类动荷问题。
(1)一般加速度运动(包括线加速与角加速)构件问题,此时还不会引起材料力学性能的改变,该类问题的处理方法是动静法。
•ε(2) 冲击问题,构件受剧烈变化的冲击载荷作用。
大约在 ,它将引起材料力学性能的很大变化,由于问题的复杂性,工程上采用能量法进行简化分析计算。
•εs /~101(3)振动与疲劳问题,构件内各材料质点的应力作用周期性变化。
由于构件的疲劳问题涉及材料力学性能的改变和工程上的重要性,一般振动问题不作重点介绍,而将专章介绍疲劳问题。
§12-2 构件作等加速运动时的应力计算1.动应力分析中的动静法度为 a 的质点,惯性力为其质量 m 与 a 的乘积,方向与a 相反。
达朗贝尔原理指出,对作加速度运动的质点系,如假想地在每一质点上加上惯性力,则质点系上的原力系与惯性力系组成平衡力系。
这样,可把动力学问题在形式上作为静力学问题处理,这就是动静法。
动载荷
材料力学
§2
惯性力问题
动载荷
2、等角速度旋转的构件
•旋转圆环的应力计算 一平均直径为D的薄壁圆环绕通过其圆心且垂直于圆环平面 的轴作等角速度转动。已知转速为,截面积为A,比重为,壁 厚为t。 解:等角速度转动时,环内各
qd
an
D o
t
o
点具有向心加速度,且D>>t 可近似地认为环内各点向心 an 2 D / 2 。 加速度相同, 沿圆环轴线均匀分布的惯性 力集度 q d 为:
圆环横截面上的应力:
式中 v D 是圆环轴线上各点的线速度。强度条件为:
2
d
材料力学
v 2
g
[ ]
§2
惯性力问题
动载荷
•旋转圆环的变形计算
D , 在惯性力集度的作用下,圆环将胀大。令变形后的直径为 则其直径变化 D D D ,径向应变为
t D ( D D) r t D D E d v 2 D
式中 k d 为冲击时的动荷系数,
2
kd st
2H kd 1 1 st
其中 st 是结构中冲击受力点在静载荷(大小为冲击物重量) 作用下的垂直位移。
材料力学
§3
冲击问题
动载荷
因为
Pd d d kd Q st st
所以冲击应力为
d k d st
2H 当 110 时,可近似取 k d st
2 H ,误差<5%。 st 2 H ,误差<10%。 st
4、 k d 不仅与冲击物的动能有关,与载荷、构件截面尺寸有关, 更与 st 有关。这也是与静应力的根本不同点。构件越易变 形,刚度越小,即“柔能克刚”。
材料力学动载荷(共59张PPT)
Kd
1a1 5 1.51 g 9.8
三、计算物体静止时,绳索所需的横截面积
由强度条件得
三、计算物体静止时,绳索所需的横截面积
因此,吊索受到冲击作用。 〔2〕H =1m, 橡皮垫d2 = 0. 当CD、EF两杆位于铅直平面内时, 冲击点静位移 最大应力为
FNd
Ast P840 0 11 0 3 0 60.51 03
二、构件作等速转动时的动应力
截面为A的薄壁圆环平均直径为 D,以 等角速度ω绕垂直于环平面且过圆心的平面转 动,圆环的比重为γ。求圆环横截面的动应力。
解:一、求薄壁圆环内动内力
(1)
an
2R
2
D 2
F
man
AD 2
g
D 2
(2)
qd
ma n
D
Aan
g
A 2 D
g2
Ro
qd
(2) qdm D na A g anA g 2D 2
P(1 b 2 )
3g
P (1 b 2 )
3g
b 2
P(1 ) 3g
2 P b 2
3g
Pl (1 b2 )
3
3g
Pl (1 b 2 )
3
3g
三、计算 ωmax 。
当CD、EF两杆位于铅直平面内时, CD杆中有最大轴力
FNmax
P
Pb2
g
P (1 b 2 ) 3g
A
P b 2 P
g
bF
E
B
b
解:制动前瞬时,系统的机械能
l
由机械能守恒,得
Td
JGIp l
T11 2J2, V 10, U 10
材料力学-第12章动载荷与疲劳强度概述(A)
FN FT T st I = v 2 A A
可见,由于飞轮以等角速度转动,其轮缘中的正应力与 轮缘上点的速度平方成正比。 设计时必须使总应力满足强度条件。
第12章 动载荷与疲劳强度概述
旋转构件的受力分析与动应力计算
FN FT T st I v2 A A
第12章 动载荷与疲劳强度概述
旋转构件的受力分析与动应力计算
考察以等角速度旋转的飞轮。飞轮材料密 度为 ,轮缘平均半径为 R,轮缘部分的横 截面积为A。 设计轮缘部分的截面尺寸时,为简单 起见,可以不考虑轮辐的影响,从而将飞 轮简化为平均半径等于R的圆环。 由于飞轮作等角速度转动,其上各点 均只有向心加速度,故惯性力均沿着半径 方向、背向旋转中心,且为沿圆周方向连 续均匀分布的力。
第12章 动载荷与疲劳强度概述
等加速度直线运动构件的动应力分析
W FT FI Fst ma W a W g
单向拉伸时杆件横截面上的总正应力为
FN FT T st I A A
其中
W st , A
W I a Ag
分别称为静应力(statics stress)和动应力(dynamics stress)。
第12章
动载荷与疲劳强度概述(A)
工程结构中还有一些构件或零部件中的应力虽然与加速 度无关,但是,这些应力的大小或方向却随着时间而变化, 这种应力称为交变应力 (alternative stress)。在交变应力作 。 用下发生的失效,称为疲劳失效,简称为疲劳(fatigue)。
本章将首先应用达朗贝尔原理和机械能守恒定律,分析 两类动载荷和动应力,然后将简要介绍疲劳失效的主要特征 与失效原因,以及影响疲劳强度的主要因素。
动载荷与交变荷载
max 越低,N 越高;当 max 降低至某一
值 后,S-N 曲线趋于水平。
max (MPa)
750 650 550
104
105
106
107 N
11.4.3 影响疲劳极限的因素及提高疲劳强度的措施
11.3.2 自由落体冲击
已知:一重量为 P 的重物由高度为 h 的位置自由下落,冲击到固定在等截 面直杆下端 B 处的圆盘上,杆 AB 的长度为 l,横截面面积为 A。求冲击位移。
A
A
A
P
Fd
P
B
d
B
st
B
解:按简化计算法,不考虑系统冲击过程中热能、声能及其它形式能量的损失。
A
A
A
P
Fd
B
d
通过减小应力集中和改善表面质量,以提高构件的疲劳极限。
• 缓和应力集中 适当加大截面突变处的过渡圆角 • 提高构件表面层质量 淬火、渗碳、渗氮、喷丸等改善表面层质量
11.2 构件作等加速直线运动或等速转动时的动应力
11.2.1 构件作等加速直线运动时的动应力
对于以等加速度作直线运动构件,只要确定其上各点的加速度 a ,就 可以应用达朗贝尔原理施加惯性力,然后,按照弹性静力学中的方法对构 件进行应力分析和强度与刚度计算。
如图所示,一起重机钢索以等加速度 a 提升一重物,重物的重量为 G,不 计钢索的重量。求:钢索的动应力。
d st
1
1 2H st
F
b
A
C
H
d
B h
z
L/2
L/2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三. 自由落体冲击应力和变形
k 2st kd 2h 0
2 st d
其解为: k 1 1 2h d
st
2h 取正号: kd 1 1 st
自由落体冲击 动荷系数
h: 冲击高度 st:将冲击物重量按静载方式加到冲击点 引起该点相应位移。
2018/7/24
12.2.1. 自由落体冲击应力和变形 讨论:
2h 自由落体冲击 kd 1 1 动荷系数
st
(1) 如果冲击物作为突加载荷作用在梁上,此时h=0,得到 kd=2,即突加载荷作用力是静载荷作用的两倍。 (2) 如果自由落体时,已知的不是冲击物的高度,而是冲击 物在冲击时的速度,则根据自由落体公式v2=2gh,得到
不 平 衡
2018/7/24
加惯性力
平 衡
10
材料力学
12.1.1直线变速运动构件的动应力
轴力:
P Fy 0, FN P a 0 g a FN (1 ) P g a 记 kd 1 动荷系数 g
则 FN = kdP
2018/7/24
材料力学
11
12.1.1直线变速运动构件的动应力
a 1
a
2 a 3
P172表查得
34
1 1 2 1 2 Pa3 st ( 2a Pa a a Pa a) EI 2 3 2 3 EI
2018/7/24 材料力学
例3
A
(3) 求kd
2h kd 1 1 st
Pa st EI
3
P
B C
2a M Pa
q A g
作出弯矩图,得最大静荷弯矩
M st max
ql 2 A gl 2 40 40
a A gl 2 (1 ) g 40
最大动荷弯矩
M d max kd M st max
2018/7/24
材料力学
14
12.2.2等速转动构件的动应力
单位体积质量: 横截面面积:A 单位长度质量:A
P 500 静荷应力: st1 0.7074 MPa 2 A π 0.03 4
动应力: d1 kd1 st1 120 0.7074= 84.9MPa
2018/7/24
材料力学
26
例2
(2) 环形重物落在弹簧上
此时,冲击点沿冲击方向的静荷 位移为杆的静荷轴向伸长与弹簧 静荷变形之和,有
解:(1) 环形重物直接落在刚性 托盘上 冲击点沿冲击方向的静荷位移
Pl st1 EA
2018/7/24
500 2 6 7.074 10 m 2 π 0.03 200 109 4
材料力学 25
例2
动荷系数:
kd1 1 1
2h
st
2 0.05 1 1 120 6 7.074 10
求梁内最大冲击正应力dmax。
P
A 2a 解:(1) 判断
h
C
B
a
自由落体冲击问题,动荷系数可直接用公式计算。
2018/7/24
材料力学
32
例3(2) 求 (单位力法,P272) st
A B
P
C
2a M
A B
a 1
C
Pa
M
2018/7/24 材料力学
a
33
例3
A
P
B
C
2a M Pa M
2 a 3
解:(1) 确定动荷系数 横梁作匀加速提升,动荷系数:
a kd 1 g
(2) 计算起吊力 静荷起吊力等于梁的自重,即 Fst Al g
a 所以,动荷起吊力 F kd Fst (1 ) Al g g
2018/7/24 材料力学 13
例1
(3) 计算最大弯矩 梁单位长度重力
P(h+d)=Pdd/2
令 则
Pd kd P
冲击动荷系数
st:将冲击物重量当作 静载加到冲击点引 P(h+kdst) = kdPkdst/2 起的冲击点位移
Pd kd P d kd st
k 2st kd 2h 0
2 st d
2018/7/24
材料力学
20
2018/7/24
材料力学
28
12.2.2. 水平冲击
d st
2018/7/24
材料力学
29
12.2.2. 水平冲击
d
st
P 2 初:T1 v V1= 0, U1= 0 2g
末: T2=0, V2=0, U2= Pdd/2 能量守恒:T1+V1+U1 = T2+V2+U2
记 Pd=kdP
(2) 冲击载荷:构件受剧烈变化力的作用
加速度不易求,材料的力学性质变化较大; 用能量法简化求解。
(3) 振动载荷: (4) 交变载荷:(下一章讨论) 应力作周期变化。
2018/7/24
材料力学
8
12.1 惯性载荷作用下的动应力
1. 特点:加速度可求
形式:直线变速运动构件,等速转动构件。
2. 惯性力
第12章 动载荷与动应力
12.1 惯性载荷作用下的动应力
12.2 冲击应力
12.3 振动应力
2018/7/24
材料力学
1
12.1 惯性载荷作用下的动应力
一. 静载荷与动载荷
1. 静载荷:
载荷值由零开始,缓慢增加,到一定数值后不再 变化或变化很小。
特点:加载过程中结构内任意点加速度近似为零, 即结构时刻保持平衡。 在此之前所研究的载荷都是静载荷。
500 2 500 st2 2 π 0.03 1 106 9 200 10 4 7.074 106 + 500 106 = 507.074 106 m Pl P EA k
2h 2 0.05 1 1 15.08 动荷系数:kd2 1 1 6 st2 507.074 10
A
强度条件: d
D 2 2
4
4
应变:周向线应变
πD1 πD D d D 2 2 v 2 d πD D E 4E E
极限速度(转速)
直径改变量:D
2018/7/24
D3 2
4E
Dv 2
材料力学
5
3. 动荷响应的特点 (1) 构件各部分有明显的加速度; 不平衡,内力难以用静力平衡方程计算。 (2) 材料的力学性质与静荷载作用不同。 一般可用应变率来区分静荷载与动荷载: 静荷载: 105 ~ 101 1/ s
1 8 动荷载: 10 ~ 10 1/ s
2018/7/24
v
能量守恒: T1 + V1+U1 = T2+V2+U2
P 2 1 1 v P d st Pst Pd d 2g 2 2
初 末
记 Pd=kdP
d=kdst
v2 kd 1 g st
2018/7/24 材料力学 31
例3 图示外伸梁抗弯刚度为EI,抗弯截面模量为W。
E
与 (或v)有关
16
材料力学
12.2 冲击应力
一、冲击现象
冲击物
P
冲击物
P
被冲击物 冲击物
P
冲击作用时间很短10-6~10-3秒。 由于冲击载荷的变化规律难以精确掌握,因此常采用能 量转化及守恒定律求近似解。
2018/7/24
材料力学
17
二、假设:
1. 冲击物的变形很小,可以忽略不计,即视为刚体,并且 从冲击开始到产生最大位移的整个过程中,冲击物与被 冲击物一起运动,不发生分离。 不吸收变形能 2. 忽略被冲击物的质量,认为冲击载荷引起的应力和变形, 在冲击瞬时遍及被冲击物,被冲击物仍处于线弹性范围 内,并且无反弹。 不计被冲击物的动能和势能 3. 忽略其它能量损失,如接触区局部塑性变形的能量损失、 发热、发声等,只有位能、动能和应变能的转化。 机械能守恒定律仍然成立 动能T, 势能V, 变形能U 任意时刻有:T + V + U = 常数
v2 kd 1 1 g st
(3) 自由落体时,若己知的是冲击物冲击时的初动能,则根 据动能表达式T=Wv2/(2g),得到
kd 1 1
2018/7/24
2T W st
材料力学 24
例2
钢制圆截面杆上端固定,下端固连一无重刚性托盘以承 接落下的环形重物。已知杆的长度 l=2m ,直径 d=30mm , 弹性模量E=200GPa。若环形重物的重力P= 500N,自高 度 h=50mm 处自由落下,使杆受到冲击。求下列两种情 况下,杆的动应力: (1) 重物直接落在刚性托盘上; (2) 托盘上放一刚度系数k=1MN/m的弹簧,环形重物落在弹 簧上。
初 末
d=kdst
P 2 1 2 v kd Pst 2g 2
kd v2 g st
30
2018/7/24
材料力学
12.2.3. 运动物体的突然制动(刹车)
初: T1
P 2 1 v V1 P d st U1 Pst 2g 2 1 U 2 Pd d 末: T2 = 0 V2 = 0 2
动应力: d2 kd2 st2 15.08 0.7074=10.7 MPa
2018/7/24 材料力学 27
例2
d1 84.9 MPa d2 = 10.7 MPa
讨论: ◆ 弹簧起到了缓冲作用,使冲击载荷大大减小。 ◆ 动荷因数中的st是冲击物的重力以静荷方式作用 于构件冲击点时,所引起的构件冲击点沿冲击方 向的静位移。这一点在应用时需要特别注意。