动荷载.交变应力.ppt
合集下载
材料力学 第十四章动荷载及交变应力

2.5m
FNd
2.5m
σ d m ax
M d m ax = = 13 5.4 M P a < [σ ] Wz
梁的强度足够. 梁的强度足够.
二,构件作匀速转动时的应力
轮缘
ω
D
δ
轮幅
y
ω
qd d
D
O
O
m m FNd
O n n FNd x
an=ω2D/2
FNd Aρω 2 D 2 = 4
D Aρω 2 D qd = 1. A.ρω 2 = 2 2 FNd ρω 2 D 2 σd = = = ρ v 2 ≤ [σ ] A 4
di = kd sti Fd = kd P
σ d = kdσ st
动荷因数kd中的st计算:是将冲击物的重量P 动荷因数 中的 计算:是将冲击物的重量 作为静荷载沿冲击方向作用在被冲击构件的冲 击点,引起该点沿冲击方向的位移. 击点,引起该点沿冲击方向的位移.
P
st
l
EA
P h P l
Pd
Δd
如:轮船靠泊时的冲击力 起吊重物时的惯性力
t
构件由动荷载引起的应力和变形称为动应力和动变形. 构件由动荷载引起的应力和变形称为动应力和动变形. 构件在动荷载作用下,同样有强度,刚度和稳定性问题. 构件在动荷载作用下,同样有强度,刚度和稳定性问题. 构件内的应力随时间作交替变化,则称为交变应力. 构件内的应力随时间作交替变化,则称为交变应力.
动荷载作用下构件的材料仍服从虎克定律. 动荷载作用下构件的材料仍服从虎克定律. 构件的材料仍服从虎克定律
§14-2 构件作匀加速直线运动 14和匀速转动时的应力
构件作匀加速直线运动时,内部各质点具有相同的 构件作匀加速直线运动时, 加速度;构件作匀速转动时, 加速度;构件作匀速转动时,内部各质点均具有向 心加速度. 心加速度.
材料力学第九章动荷载和交变应力

kd 1 a g 1 2.5 9.8 1.26
st FNst / A W2 / A 127.3MPa d kd st 160.4MPa 1.05[ ]
∴ 钢索满足强度要求。
2.5m
FNd W2
W2 g
a
2.5m a
W2
2.梁的强度校核
W1
kd 1 a g 1 2.5 9.8 1.26
求σdmax、△Dd。不计梁的自重。 A
解:1.计算静态的△Cst、Mmax和
σstmax
W
h
D
2l / 3 l
C
B
l/3
由 w Fb(l 2 b2 ) x Fb x3
6EIl
6EIl
得
Δ Cst
W
l [l 2 ( l )2]
3
3
6EIl
2l 3
Wl 3
6EIl
( 2l )3 3
4Wl 3 0.19mm 243EI
结论:梁满足强度要求。
三、提高构件抗冲击能力的措施
d kdst Fd kdW d kd st
kd 1
1 2h — —竖向冲击动荷因数
st
kd
v2 水平冲击动荷因数
gst
在静应力不变的情况下,减小动荷系数可以减小冲击应力。
即加大冲击点沿冲击方向的静位移: 被冲击物采用弹性模量低、变形大的材料制作; 或在被冲击物上垫上容易变形的缓冲附件。
W
h C
z Iz = 1130cm4 Wz =141cm3
A
B
1.梁本身的变形
1.5m
1.5m
k
ΔCst1
Wl 3 48EI
0.474mm
2.支座缩短量
动荷载交变应力

(7)
由此解得d 的两个根,并取其中大于st 的一个,得
Δd (1
1
2h Δst
) Δst
(8)
A
CP
B
(c)
Δst
于是得动荷因数 Kd 为
Kd 1
1 2h Δst
(9)
Δd Kd Δst
(10)
若梁的两端支承在两个刚度相同的弹簧上,则梁在冲
击点沿冲击方向的静位移为
Δst
Pl 3 48 EI
P 2k
例题: 匀加速起吊一根杆件(图a),杆的长度为l,
横截面面积为A,材料的密度为,加速度为a。试求距
杆下端为 x 的横截面上的动应力d 。
解:取距下端为x的一段杆为
FRd
x
分离体,作用于这段杆上的重力
沿杆轴均匀分布,其集度为Ag
,惯性力也沿杆轴均匀分布,其
l x
a
FNd
m
m
m
m
q Ag Aa
集度为Aa ,指向与a 指向相
3. 疲劳破坏是突然发生的,构件破坏前无明显的塑性 变形,不易为人们察觉。
因此,处于交变应力下的构件应进行疲劳强度校核。
§12.2 构件有加速度时动应力计算
计算采用动静法
在构件运动的某一时刻,将分布惯性力加在 构件上,使原来作用在构件上的外力和惯性力 假想地组成平衡力系,然后按静荷作用下的问 题来处理。
则冲击物减少的势能为
Ep P(h Δd )
(b)
而冲击物的初速与终速均为零,故
Ek 0
(c)
杆内应变能
Vεd
EA 2l
Δd2
(d)
将(b)(c)(d)代入(a)得
P(h
第十、十一章动载荷 交变应力概述

第十章 动载荷与交变应力
§10-2 动静法的应用
一、动静法
1. 构件作加速运动时,构件内各质点将产生惯性力, 惯性力的大小等于质量与加速度的乘积,方向与加速度的方向
相反。 2. 动静法:在任一瞬时,作用在构件上的荷载,惯性力和
约束力,构成平衡力系。当构件的加速度已知时,可用动静 法求解其动应力。
二、匀加速直线运动构件的动应力
式中, st
P 为静应力。 A
由(3),(4)式可见,动荷载等于动荷载因数与静荷载 的乘积;动应力等于动荷载因数与静应力的乘积。即用动荷因 数反映动荷载的效应。
6
材 料 力 学 电 子 教 案
第十章 动载荷与交变应力
例 10-4 已知梁为16号工字钢,吊索横截面面积 A=108
mm2,等加速度a =10 m/s2 ,不计钢索质量。求:1,吊索的动应 力d ; 2,梁的最大动应力d, max 。 解: 1. 求吊索的d 16号工字钢单位长度的 重量为
横截面上的正应力为
FNd rw2 D 2 d A 4
13
材 料 力 学 电 子 教 案
第十一章 动载荷与交变应力
四、匀变速转动时构件的动应力
例 6-3 直径d =100 mm的圆轴,右端有重量 P =0.6 kN, 直径D=400 mm的飞轮,以均匀转速n =1 000 r/min旋转(图a)。
P a FNd P a P (1 ) g g a 令 K d 1 (动荷系数) g
(1) (2) (3)
则
5
FN d Kd P
材 料 力 学 电 子 教 案
第十章 动载荷与交变应力
钢索横截面上的动应力为
FN d P d K d K d st A A
材料力学第五版课件 主编 刘鸿文 第六章 动荷载·交变应力

l
解:1)求最大静应力和静变形
Q
( ) s st max
=
QL Wz
QL3 D st = 3EI
l
2)计算动荷系数
Kd =
v2 gD st
3)计算最大正应力
(s d )max
=
Kd (s st )max
=
Kd
QL Wz
内容小结
动响应=Kd × 静响应
1、构件有加速度时动应力计算
(1)直线运动构件的动应力
Kd = 1+
1+ 2h D st
= 1+ 1+ 2h ×EA
Ql
l
3)计算冲击应力
sd
=
kds st =
Q+ A
(Q )2 Q Q
h
【例6-4】圆截面直杆长度为6m,截面直径d=300mm,杆件材
料的杨氏模量E=10GPa,重物重5kN,从h=1m处自由落下。
1、求最大应力。 2、在木柱上端垫20mm厚的橡皮,杨氏模量E=8MPa。最大正 应力为多少?
1998年6月3日,德国艾舍德高速列车脱轨事故中的车轮轮缘疲劳断口
三.什么是疲劳?
只有承受交变应力作用的条件下,疲劳才发生;
三.什么是疲劳?
疲劳破坏起源于高应力或高应变的局部;
a. 静载下的破坏,取决于结构整体;
b. 疲劳破坏由应力或应变较高的局部开始,形成损伤 累积,导致破坏发生;
Q
h
解:
1、
D st =
Ql = EA
5创103 6? 103 10创103 1 创3.14 3002
=
4.25? 10- 2(mm)
4
2h
解:1)求最大静应力和静变形
Q
( ) s st max
=
QL Wz
QL3 D st = 3EI
l
2)计算动荷系数
Kd =
v2 gD st
3)计算最大正应力
(s d )max
=
Kd (s st )max
=
Kd
QL Wz
内容小结
动响应=Kd × 静响应
1、构件有加速度时动应力计算
(1)直线运动构件的动应力
Kd = 1+
1+ 2h D st
= 1+ 1+ 2h ×EA
Ql
l
3)计算冲击应力
sd
=
kds st =
Q+ A
(Q )2 Q Q
h
【例6-4】圆截面直杆长度为6m,截面直径d=300mm,杆件材
料的杨氏模量E=10GPa,重物重5kN,从h=1m处自由落下。
1、求最大应力。 2、在木柱上端垫20mm厚的橡皮,杨氏模量E=8MPa。最大正 应力为多少?
1998年6月3日,德国艾舍德高速列车脱轨事故中的车轮轮缘疲劳断口
三.什么是疲劳?
只有承受交变应力作用的条件下,疲劳才发生;
三.什么是疲劳?
疲劳破坏起源于高应力或高应变的局部;
a. 静载下的破坏,取决于结构整体;
b. 疲劳破坏由应力或应变较高的局部开始,形成损伤 累积,导致破坏发生;
Q
h
解:
1、
D st =
Ql = EA
5创103 6? 103 10创103 1 创3.14 3002
=
4.25? 10- 2(mm)
4
2h
动载荷与交变荷载PPT课件

Ph
d
1 2
Fd d
Fd
AE l
d
P
h
d
1 2
EA l
2 d
st
Pl AE
P
AE l
st
2 d
2 st d
2 st h
0
d st 1
1
2h st
降低动荷因数的措施:
Kd 1
1
2h st
1、 增大相应的静位移。例如在发生冲击的物体间放置一弹簧( 缓冲弹簧) 2、 减小冲击物自由下落的高度。当 h → 0 时,即重物骤然加在杆件上,Kd = 2 ,表明骤然荷载引起的动应力是将重物缓慢作用所引起的静应力的 2 倍。
动响应:构件在动载荷作用下产生的各种响应(如应力、应变、位移等)。
11.1.2 动载荷问题的分类及研究方法
动载荷问题的分类: (1)构件作等加速直线运动和等速转动时的动应力计算; (2)构件在受冲击和作强迫振动时的动应力计算; (3)构件在交变应力作用下的疲劳破坏和疲劳强度计算。
动载荷问题的研究方法:
Kd
d st
1
1 2H st
F
b
A
C
H
d
B h
z
L/2
L/2
Fd
y
F
A
C
B
st
L/2
L/2
静位移
st
FL3 48EI
Kd 1
1 2H 1 st
1
96HEI FL3
A
(2)、最大应力
d max
Kd st max
Kd
FL 4Wz
(3)、最大挠度
d max
Kd st max
材料力学课件-第十三章---动荷载

解:①
j Qh1 / E1A1 QL / EA
50.024 81030.152
514 10106 0.32
71.5105 m
Kd 1
1 53.4 210.02 71.5105
②
QL / EA 514
j
10106 0.32
0.707 105 m
Kd 1
1 533 21 0.707105
33
34
1 2
mv
2
mg 2
K
2 d
j
冲击前:
动能T1mv2 /2 势能V10 变形能U10
冲击后:
动能T2 0 势能V2 0 变形能U 2 Pd d /2
动荷系数 Kd
2
g j
17
三、冲击响应计算 等于静响应与动荷系数之积.
[例5 ] 直径0.3m旳木桩受自由落锤冲击,落锤重5kN, 求:桩旳最大动应力。E=10GPa Wv
25
解:⒈ 求冲击点C处旳静位移用能量法可求得冲击点C处旳
静位移
st
Wl13 3EI
Wl 3
3EI
BAl1
W
l13 l 3 3EI
Wl1l GI P
l1
100N 0.3m3 0.8m3
3 200 109 Pa π (0.06m)4
100N (0.3m)2 0.8m 80 109 Pa π (0.06m)4
加速度提起重50kN 旳物体,试校核钢丝绳旳强度。
解:①受力分析如图:
Nd
a Nd (GqL)(1 g )
②动应力
L q(1+a/g) G(1+a/g)
d
Nd A
1 (GqL)(1 A
动荷载

FN qd ( )d
x l l
A
g
w 2x
Aw 2
g
x
d
Aw 2
2g
(l 2 x 2 )
杆相应的动应力为
FN w 2 2 s d ( x) (l x 2 ) A 2g
从而可知杆内最大动应力为
材料力学
s d max
w 2 l 2
2g
18
中南大学土木工程学院
材料力学 中南大学土木工程学院
动应力是
s d Kds st 20MPa
28
(3)自由落体加橡皮垫的情况下
P
h
Pd Pl 4 104 0.04 4 104 5 3 st 2.99 10 m 6 2 10 2 E1 A1 EA 8 10 0.15 10 0.2
等直杆OB在水平面内绕通过O点并垂直于水平面 的z-z轴转动。已知角速度为w,杆横截面积为A, O 材料的容重为,弹性模量为E。求杆内最大 动应力和杆的总伸长。 解:求杆内最大动应力 杆OB距z-z轴x处的法向加速度为
z
x
dx B l
w
z
an w 2 x
q d ( x)
杆OB距z-z轴x处单位长度上的动荷载为 因此,杆OB距z-z轴x处的截面上的轴力为
材料力学
中南大学土木工程学院
16
直径d=100mm的转轴以n=600r/min的转速转动,轴的B端装有一个质量很 大的飞轮,其转动惯量为Ix=103kgm2,与飞轮相比轴的质量可以忽略不计。 轴的A端装有刹车离合器,刹车时使轴在20s内均匀减速停止转动。求轴内 最大动应力。 解:计算轴AB的荷载
s d max Kds st max 2.02 61.7 124.6MPa [s ] 160MPa
x l l
A
g
w 2x
Aw 2
g
x
d
Aw 2
2g
(l 2 x 2 )
杆相应的动应力为
FN w 2 2 s d ( x) (l x 2 ) A 2g
从而可知杆内最大动应力为
材料力学
s d max
w 2 l 2
2g
18
中南大学土木工程学院
材料力学 中南大学土木工程学院
动应力是
s d Kds st 20MPa
28
(3)自由落体加橡皮垫的情况下
P
h
Pd Pl 4 104 0.04 4 104 5 3 st 2.99 10 m 6 2 10 2 E1 A1 EA 8 10 0.15 10 0.2
等直杆OB在水平面内绕通过O点并垂直于水平面 的z-z轴转动。已知角速度为w,杆横截面积为A, O 材料的容重为,弹性模量为E。求杆内最大 动应力和杆的总伸长。 解:求杆内最大动应力 杆OB距z-z轴x处的法向加速度为
z
x
dx B l
w
z
an w 2 x
q d ( x)
杆OB距z-z轴x处单位长度上的动荷载为 因此,杆OB距z-z轴x处的截面上的轴力为
材料力学
中南大学土木工程学院
16
直径d=100mm的转轴以n=600r/min的转速转动,轴的B端装有一个质量很 大的飞轮,其转动惯量为Ix=103kgm2,与飞轮相比轴的质量可以忽略不计。 轴的A端装有刹车离合器,刹车时使轴在20s内均匀减速停止转动。求轴内 最大动应力。 解:计算轴AB的荷载
s d max Kds st max 2.02 61.7 124.6MPa [s ] 160MPa