复合函数求导法
复合函数求导公式大全 大学复合函数求导法则

复合函数求导公式大全大学复合函数求导法则复合函数如何求导?大学符合函数求导公式有哪些?下文小编给大家整理了复合函数的求导公式及法则,供参考! 复合函数求导公式 复合函数求导法则证法一:先证明个引理 f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0) 证明:设f(x)在x0可导,令H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0 因lim(x->;x0)H(x)=lim(x->;x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0) 所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) 反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0) 因存在极限lim(x->;x0)H(x)=lim(x->;x0)[f(x)-f(x0)]/(x-x0)=lim(x->;x0)f'(x)=H(x0) 所以f(x)在点x0可导,且f'(x0)=H(x0) 引理证毕。
设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0) 证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)。
§8.4复合函数求导法

et,
则
dz z du z dv z dt u dt v dt t ve t u sin t cos t e t cos t e t sin t cos t
u
z v t
e t (cos t sin t ) cos t . 例3: 设z=f(u, v), u=u(x, y), v=v(x, y), x=x(s, t), z z y=y(s, t)均满足复合函数求偏导数的条件, 计算 , . s t (两重复合问题) 解: 复合函数的变量关系图
例4: 设 w=f( x+y+z, xyz )具有二阶连续偏导数, 求 w 2 w , . x xz 解: 令 u= x+y+z, v= xyz, 记 2 f ( u , v ) f ( u, v ) f1 , f12 , 同理有 f 2, f11 , f 22 . u uv w f u f v 则 f1 y z f 2; u x v x x 2w f1 f 2 ( f1 y z f 2) y f 2 y z ; x z z z z f1 f1 u f1 v 而 f11 x y f12 ; z u z v z f 2 f 2 u f 2 v f 21 x y f 22 ; z u z u, x, y), u=(x, y), 即z=f[(x, y), x, y],
u
y
u y
令 v = x, w = y. 则 v w v w 0, 1. z 1, 0, x x y y
x
y
z z u z z z u z . , y u y w x u x v f z f z , . 则 由于 v=x, w=y. 记 x v y w 两 z f u f z f u f 者 , . 的 x u x x y u y y 区 别
大学数学_8_4 复合函数的求导法则

( u 2 v 2 ) 高阶的无穷小,得 z z u z v ( u 2 v 2 )
t 0
lim
u t v t t z du z dv ( u 2 v 2 ) u 2 v 2 lim . 2 2 u dt v dt t 0 t u v z du z dv u dt v dt 所以复合函数 z f [ (t ), (t )] 可导,具有求导公式:
设 u (t ) v (t ) .w (t ) 均 在 点 t 处 可 导 , z f (u , v, w) 在对应点(u , v, w) 处有连续的偏导数, 写出复合 函数 z f [ (t ), (t ), (t )] 的全导数公式. u t 函数的结构图是 z w t v t 由 z 经u , v, w 到 t 有三条途径,故和式中应有三项,所以全 导数为 dz z du z dv z dw . dt u dt v dt w dt dz 例 1 设 z uv , u sin t ,v cos t ,求全导数 . dt dz z du z dv 解 dt u dt v dt v cos t u ( sin t ) cos 2 t sin 2 t cos 2t
例 5 设 z arcsin u, u x 2 y 2 ,求
z z , . x y
解 函数的结构如下: x z u y 所以 z z u 1 2x 2x x u x 1 u2 1 ( x 2 y 2 )2 z dz u 1 2y 2y 2 y du y 1 u 1 ( x 2 y 2 )2
t 0
t
lim(
复合函数的导数

所以
yx yu ux 2u cos x 2sin x cos x.
例 3 设 y = etan x,求 y . 解 y = etan x 可以看成是由 y = eu,u = tan x 复合而成,所以
yx yu ux (eu )u (tan x)x
= elnx ·(ln x) e ln x 1
x
x 1 x 1 .
x
例 12 设 u x2 y2 z2 , 求证:
u x
2
u y
2
u z
2
1
.
证明
u x 2
x2
1 y2
z2
(x2
y2
z 2 )x
x
x
,
x2 y2 z2 u
同理,得
u y ,u z ,代等式左边得解 先用复合函数求导公式,再用加法求导公式,
然后又会遇到复合函数 1 x2 的求导.
[ln(x 1 x2 )]
1
( x 1 x2 )
x 1 x2
1
[1 ( 1 x2 )]
x 1 x2
x
1 1
x2
1
1. 1 x2
x 1
x2
例 11 设 y = sh x, 求 y .
解
y
(shx)
一、复合函数的求导法则
定理 2 设函数 y = f (u), u = (x) 均可导, 则复合函数 y = f ( (x)) 也可导.
且 或
或
证 设变量 x 有增量 x,相应地变量 u 有 增量 u,从而 y 有增量 y. 由于 u 可导,
所以lim u 0. x0
复 合 函 数 的 求 导 法 则

练习 求下列函数的导数
y = e3x (A)1.
3x 3x 3x 解:y ′ = ( e ) ′ = e ( 3 x ) ′ = 3 e
y = cos( x 3 ) (A)2.
2 3 3 3 3 解:y ′ = (cos x ) ′ = − sin x ( x ) ′ = − 3 x sin x
(B)3. y = e 解: y ′ = e
2x ′ 1 所以 yx = yu ⋅ ux = ⋅ (−2x) = 2 u x −1
′
′
(A) 例3 求函数 y = cos 2 x 的导 数 2 解:设 y = u 则 u = cos x
因为 所以
′ ′ yu = 2u, ux = −sinx
′ ′ ′ yx = yu ⋅ ux = 2u(−sin x) = −2cosx sin x = −sin2x
′ y u = 5u 4 , u ′ = 3, x
′ x y′ = yu ⋅ u′ = 5u4 ×3 = 5(3x + 2)4 ×3 =15(3x + 2)4 所以 x
2 (B) 例2 求函数 y = ln(1 − x ) 的导数
解:设 因为
y = ln u
则
u = 1− x2
′ 1 ′ yu = , u x = −2 x, u
x π (B) 例5 求 y = ln tan( + ) 的导数。 的导数。 2 4
x π 解: 设 y = ln u , u = tan v, v = + 2 4
由
y ′ = f ′ ( u ) ⋅ φ ′( v ) ⋅ ϕ ′( x ) 得
x π ′ = (lnu)′ ⋅ (tanv)′ ⋅ ( + )′ y 2 4
复合函数的导数及导数的运算法则

复合函数的导数及导数的运算法则复合函数是指由两个或多个函数组成的函数。
在求复合函数的导数时,需要使用链式法则,即将函数的导数作为求导的一部分。
设有两个函数f(x)和g(x),假设y=f(g(x))是一个复合函数。
我们的目标是求解复合函数y=f(g(x))的导数dy/dx。
根据链式法则,dy/dx可以表示为:dy/dx = df(g(x))/dx根据上述公式,我们可以按照以下步骤求导:Step 1: 首先对f(g(x))进行求导,即求df(g)/dg。
Step 2: 然后对g(x)进行求导,即求dg(x)/dx。
Step 3: 最后将求导得到的结果相乘,即df(g)/dg * dg(x)/dx =dy/dx。
下面我们讨论一些常见的复合函数和它们的导数运算法则。
1. 复合函数的链式法则(Chain Rule)设有函数f(u)和g(x),假设y=f(g(x))是一个复合函数。
根据链式法则,复合函数y=f(g(x))的导数可以表示为:dy/dx = f'(g(x)) * g'(x)其中,f'(u)和g'(x)分别表示f(u)和g(x)的导数。
例如,如果y=(2x+1)^3,则可以将它表示为y=u^3,其中u=2x+1、根据链式法则:dy/dx = 3u^2 * du/dx = 3(2x + 1)^2 * 2 = 6(2x + 1)^22.复合函数中的乘法法则如果复合函数中有乘法运算,则可以使用乘法法则来求导。
例如,如果y=x^2*e^x,则可以使用乘法法则来求导:dy/dx = (d/dx)(x^2) * e^x + x^2 * (d/dx)(e^x)对于每一项使用基本求导法则:dy/dx = 2x * e^x + x^2 * e^x3.复合函数中的除法法则如果复合函数中有除法运算,则可以使用除法法则来求导。
例如,如果y=(x^2+1)/(x-1),则可以使用除法法则来求导:dy/dx = [(d/dx)(x^2 + 1)(x - 1) - (d/dx)(x - 1)(x^2 + 1)]/(x - 1)^2再对每一项使用基本求导法则:dy/dx = [(2x)(x - 1) - (x^2 + 1)]/(x - 1)^24.复合函数中的三角函数法则如果复合函数中包含三角函数,则可以使用三角函数法则来求导。
复合函数求导法则有哪些呢

复合函数求导法则有哪些呢复合函数的求导法则同学们清楚吗,如果不清楚,快来小编这里瞧瞧。
下面是由小编为大家整理的“复合函数求导法则有哪些呢”,仅供参考,欢迎大家阅读。
复合函数求导法则有哪些呢Y=f(u),U=g(x),则y′=f(u)′*g(x)′例1.y=Ln(x^3),Y=Ln(u),U=x^3,y′=f(u)′*g(x)′=[1/Ln(x^3)]*(x^3)′=[1/Ln(x^3)]*(3x^2)=(3x^2)/Ln(x^3)]例2.y=cos(x/3),Y=cosu,u=x/3由复合函数求导法则得y=-sin(x/3)*(1/3 )=-sin(x/3)/3拓展阅读:求导公式运算法则是什么运算法则是:加(减)法则,[f(x)+g(x)]'=f(x)'+g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
导数也叫导函数值,又名微商,是微积分中的重要基础概念。
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
求导运算法则是:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)';乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
复合函数的导数求法

幂函数的导数
幂函数是形如$y = x^n$的函数,其 中$n$是实数。
VS
幂函数的导数可以通过幂函数的定义 和极限的定义求得,结果为$y' = nx^{n-1}$。
三角函数的导数
三角函数包括正弦函数、余弦函数和正切函数等。
正弦函数的导数是余弦函数,即$frac{d}{dx}sin x = cos x$;余弦函数的导数是负的正弦函数,即$frac{d}{dx}cos x = -sin x$; 正切函数的导数是正切函数的平方与1的和的倒数,即$frac{d}{dx}tan x = frac{1}{cos^2 x}$。
探讨未来可能的研究方向
复杂复合函数的求导 方法
对于更为复杂的复合函数,如多 层嵌套、多变量复合等,需要进 一步研究更为高效、简洁的求导 方法。这有助于解决实际应用中 更为复杂的数学问题。
复合函数导数的性质 研究
复合函数的导数具有一些独特的 性质,如连续性、可微性等。未 来可以进一步探讨这些性质在复 合函数求导中的应用,以及它们 对导数求解的影响。
对数函数是形如$y = log_a x$的函数,其中$a > 0$且$a neq 1$。
03 复合函数求导举例
简单复合函数求导
举例1
$y = sin(2x)$
分析
这是一个简单的复合函数,其中内层函数是 $2x$,外层函数是$sin u$。
求导过程
根据链式法则,$frac{dy}{dx} = cos(2x) cdot 2 = 2cos(2x)$。
指数函数和对数函数的导数
指数函数的导数是其本身与底数自然对数的乘 积,即$frac{d}{dx}a^x = a^x ln a$。
对数函数的导数是底数的倒数与自变量对数的倒数之 积,即$frac{d}{dx}log_a x = frac{1}{x ln a}$。