复合函数求导公式
三个复合函数求导公式

三个复合函数求导公式嘿,说起复合函数求导公式,这可是数学里挺关键的一部分。
咱先来说说第一个复合函数求导公式,就像搭积木一样,一层一层来。
比如说,有个复合函数 f[g(x)],那它的导数就是f’[g(x)] * g’(x)。
给您举个例子吧,就像咱平时去菜市场买菜。
假设咱想买的菜的价格是由当天的气温决定的,气温越高,菜越便宜。
咱把菜价设为 f(T),气温设为 T = g(x),x 呢就是时间。
那菜价对时间的变化率,就相当于这个复合函数的导数。
再看看第二个复合函数求导公式,它就像解开一团乱麻,得有耐心和技巧。
假如有个复合函数是由三个部分组成的,就像做一个三层的蛋糕,每一层都有它的作用。
比如说 h[k(m(x))],它的导数就是h’[k(m(x))] * k’(m(x)) * m’(x)。
这就好比您组装一个复杂的模型,每个零件的安装顺序和方式都影响着最后的效果。
然后是第三个复合函数求导公式,这个有点像走迷宫,得找准方向。
比如说有个复合函数是 p[q(r(s(x)))],那它的导数就是p’[q(r(s(x)))] *q’(r(s(x))) *r’(s(x)) * s’(x)。
给您说个我之前的经历,有一次我去辅导一个学生的数学,他对复合函数求导那是一头雾水。
我就拿一个很简单的例子给他讲,比如一个函数是 (2x + 1)^2 ,这其实就是个复合函数,可以看成 f(g(x)) ,其中 g(x) = 2x + 1 ,f(x) = x^2 。
那求导的时候,先求f’[g(x)] 就是 2g(x) ,再乘以g’(x) 也就是 2 ,结果就是 4(2x + 1) 。
这孩子一开始瞪大眼睛,满脸迷茫,我就反复给他讲,让他自己多做几道题,慢慢地,他终于明白了,那脸上露出的笑容,让我也觉得特有成就感。
总之啊,这三个复合函数求导公式虽然看起来有点复杂,但只要您多练习,多琢磨,就像熟悉菜市场的菜价规律,或者组装模型的步骤一样,肯定能掌握得牢牢的。
复合函数的导数

所以
yx yu ux 2u cos x 2sin x cos x.
例 3 设 y = etan x,求 y . 解 y = etan x 可以看成是由 y = eu,u = tan x 复合而成,所以
yx yu ux (eu )u (tan x)x
= elnx ·(ln x) e ln x 1
x
x 1 x 1 .
x
例 12 设 u x2 y2 z2 , 求证:
u x
2
u y
2
u z
2
1
.
证明
u x 2
x2
1 y2
z2
(x2
y2
z 2 )x
x
x
,
x2 y2 z2 u
同理,得
u y ,u z ,代等式左边得解 先用复合函数求导公式,再用加法求导公式,
然后又会遇到复合函数 1 x2 的求导.
[ln(x 1 x2 )]
1
( x 1 x2 )
x 1 x2
1
[1 ( 1 x2 )]
x 1 x2
x
1 1
x2
1
1. 1 x2
x 1
x2
例 11 设 y = sh x, 求 y .
解
y
(shx)
一、复合函数的求导法则
定理 2 设函数 y = f (u), u = (x) 均可导, 则复合函数 y = f ( (x)) 也可导.
且 或
或
证 设变量 x 有增量 x,相应地变量 u 有 增量 u,从而 y 有增量 y. 由于 u 可导,
所以lim u 0. x0
复合函数求导公式复合函数综合应用

复合函数求导公式复合函数综合应用假设有函数y=f(u)和u=g(x),其中y是一个关于u的函数,u是一个关于x的函数。
我们希望求得y关于x的导数dy/dx。
首先,我们需要求得函数y关于u的导数dy/du。
这可以通过对函数f(u)求导得到。
假设f(u)的导数为df/du,则dy/du=df/du。
接下来,我们需要求得函数u关于x的导数du/dx。
这可以通过对函数g(x)求导得到。
假设g(x)的导数为dg/dx,则du/dx=dg/dx。
最后,我们可以通过链式法则来求得y关于x的导数dy/dx。
链式法则指出,如果z是一个关于u的函数,u是一个关于x的函数,则z关于x的导数dz/dx可以表示为dz/du乘以du/dx,即dz/dx=dz/du * du/dx。
将这个原理应用到我们的问题中,可以得到dy/dx=(dy/du)*(du/dx)。
代入我们之前求得的dy/du和du/dx,可以得到dy/dx=(df/du)*(dg/dx)。
这就是复合函数求导公式。
根据这个公式,我们可以求得复合函数关于自变量的导数。
下面,我们来看一个关于复合函数的综合应用问题。
假设有一个函数y=f(u)和u=g(x),其中f(u)和g(x)分别为:f(u)=2u^2+ug(x)=3x-1我们希望求得函数y关于x的导数dy/dx。
首先,我们可以求得函数y关于u的导数dy/du。
由于f(u) = 2u^2+ u,我们可以对f(u)求导,得到df/du = 4u + 1接下来,我们求得函数u关于x的导数du/dx。
由于g(x) = 3x - 1,我们可以对g(x)求导,得到dg/dx = 3最后,我们根据复合函数求导公式,可以得到dy/dx = (df/du) * (dg/dx) = (4u + 1) * 3这样,我们就求得了函数y关于x的导数dy/dx,即dy/dx = (4u + 1) * 3需要注意的是,我们还没求得u关于x的表达式。
复合导数求导公式

复合导数求导公式导数是微积分中的重要概念之一,用于描述函数在某一点的变化率。
在计算导数时,我们经常需要使用复合函数,即一个函数作为另一个函数的输入。
复合导数求导公式是用于计算复合函数导数的工具。
在复合函数中,由于函数之间存在依赖关系,因此需要使用链式法则来计算复合导数。
链式法则是指导数的乘积规则,它告诉我们如何计算复合函数的导数。
设有函数f(x)和g(x),其中g(x)是f(x)的内函数。
如果g(x)是可导的,且f(x)在x点可导,则复合函数F(x) = f[g(x)]在x点的导数可以由链式法则得到:F'(x) = f'[g(x)] · g'(x)其中,f'(x)表示f(x)的导数,g'(x)表示g(x)的导数。
这个公式告诉我们,当我们要计算复合函数在某一点的导数时,首先需要计算外函数的导数,然后乘以内函数的导数。
通过这个公式,我们可以计算各种复合函数的导数。
下面将介绍一些常见的例子。
1. 复合函数的求导假设我们要求函数F(x) = (3x^2 + 2x)^3的导数。
首先,我们可以将F(x)表示为复合函数,f(g(x))的形式,其中f(x) = x^3,g(x) = 3x^2 + 2x。
根据链式法则公式,我们可以得到:F'(x) = f'[g(x)] · g'(x)f'(x) = 3x^2 的导数为 6x,g'(x) = (3x^2 + 2x)的导数为 6x + 2。
将这些结果代入公式,我们可以得到复合函数F(x)的导数:F'(x) = 6x · (6x + 2)通过化简运算,我们最终得到F(x)的导数为:F'(x) = 36x^2 + 12x2. 链式法则的推广上述例子介绍了链式法则的基本形式,但实际上,链式法则还可以推广到更高阶的复合函数。
例如,假设我们有一个三次复合函数F(x) = [f(g(h(x)))]^2,其中f(x),g(x),h(x)分别为函数。
复合函数导数的基本公式14个

复合函数导数的基本公式14个复合函数的导数是微积分学中的一个重要概念,它在解决实际问题中有着广泛的应用。
在计算复合函数的导数时,有一些基本公式可以帮助我们简化计算过程。
下面将介绍14个复合函数导数的基本公式,并给出相关的解释和证明。
1.常数函数求导法则:若数k为常数,f(x)=k,则有(f(g(x)))'=0,即常数函数的导数为零。
2.幂函数导数公式:若f(x)=x^n,其中n为正整数,则有(f(g(x)))'=n*x^(n-1)*g'(x)。
这个公式可以通过对幂函数进行微分得到。
3.指数函数导数公式:若f(x)=e^x,则有(f(g(x)))'=e^g(x)*g'(x)。
这个公式可以通过对指数函数进行微分得到。
4.对数函数导数公式:若f(x) = ln(x),则有(f(g(x)))' = g'(x)/g(x)。
这个公式可以通过对对数函数进行微分得到。
5.三角函数导数公式:若f(x) = sin(x),则有(f(g(x)))' = cos(g(x)) * g'(x)。
若f(x) = cos(x),则有(f(g(x)))' = -sin(g(x)) * g'(x)。
若f(x) = tan(x),则有(f(g(x)))' = sec^2(g(x)) * g'(x)。
这些公式可以通过对三角函数进行微分得到。
6.反三角函数导数公式:若f(x) = arcsin(x),则有(f(g(x)))' = g'(x)/sqrt(1 - g^2(x))。
若f(x) = arccos(x),则有(f(g(x)))' = -g'(x)/sqrt(1 -g^2(x))。
若f(x) = arctan(x),则有(f(g(x)))' = g'(x)/(1 + g^2(x))。
复合函数求导公式有哪些

复合函数求导公式有哪些
有很多的同学是非常的想知道,复合函数求导公式是什幺,小编整理了
相关信息,希望会对大家有所帮助!
1 复合函数如何求导规则:1、设u=g(x),对f(u)求导得:f’(x)=f’(u)*g’(x);
2、设u=g(x),a=p(u),对f(a)求导得:f’(x)=f’(a)*p’(u)*g’(x);
拓展:
1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那幺对于Mx∩Du内的任意一个x 经过u;有唯一确定的y 值与之对应,则变量x 与y 之间通过变量u 形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x 称为自变量,u 为中间变量,y 为因变量(即函数)。
2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数
y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x 的取值范围,取他们的交集。
3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则
y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k 属于R+).
4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。
即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
1 复合函数求导法则Y=f(u),U=g(x),则y′=f(u)′*g(x)′
例1.y=Ln(x),Y=Ln(u),U=x,
y′=f(u)′*g(x)′=[1/Ln(x)]*(x)′=[1/Ln(x)]*(3x)。
复合函数的导数公式推导

复合函数的导数公式推导
复合函数的导数公式推导
复合函数是指将一个函数的输出值作为另一个函数的输入值的过程。
在实际问题中,复合函数的应用非常广泛。
例如,在数学中,我们可以将两个函数复合起来,以便求出新函数的导数。
这个过程的推导如下:
假设 f(x) 表示一个函数,并且 g(u) 表示另一个函数。
现在,我们来寻找 f(g(u)) 的导数。
首先,根据复合函数的定义,我们可以得到:
f(g(u)) = f(x)
将其对 u 求导:
f'(g(u)) * g'(u) = f'(x) * x'
其中,f'(x) 和 g'(u) 分别表示函数 f(x) 和 g(u) 的导数。
注意到,当 u 取特定的值时,x 和 g(u) 是相等的。
因此,我们可以将 x 替换为 g(u),得到:
f'(g(u)) * g'(u) = f'(g(u)) * g(u)'
将上式移项,得到:
(f'(g(u))) / (g'(u)) = g(u)'
这个公式就是复合函数的导数公式。
它告诉我们,f(g(u)) 在 u 处的导数等于 f'(g(u)) 和 g'(u) 的商,再乘以 g(u) 在 u 处的导数。
这个公式
在实际问题中非常有用,因为它可以帮助我们求出复合函数的导数,
从而解决问题。
复合函数求导公式推导

复合函数求导公式推导
复合函数的求导公式可以通过链式法则进行推导。
设有函数 y = f(u) 和 u = g(x),其中 y 是一个关于 x 的函数。
根据链式法则,y 对 x 的导数可以表示为:
dy/dx = dy/du * du/dx
其中,dy/du 表示函数 y 对中间变量 u 的导数,du/dx 表示中间变量 u 对自变量 x 的导数。
首先,求出 dy/du,即函数 y 对中间变量 u 的导数。
这可以通过对函数 y 使用普通的求导方法来得到。
然后,求出 du/dx,即中间变量 u 对自变量 x 的导数。
同样,可以使用普通的求导方法来计算。
最后,将 dy/du 和 du/dx 相乘得到 dy/dx,即函数 y 对自变量 x 的导数。
综上所述,复合函数的求导公式可以表示为:
dy/dx = (dy/du) * (du/dx)
这就是复合函数求导的公式。