1解三角形易错题解析
三角形易错题集锦(带答案解析)

三角形易错题一、填空题(共 10 小题) (除非特别说明,请填准确值)1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为_________ .2.等腰三角形 ABC 的周长是 8cm, AB=3cm,则 BC= _________ cm.3.等腰三角形的周长为 20cm,若腰不大于底边,则腰长 x 的取值范围是 _________ .4.如图: a∥ b, BC=4,若三角形 ABC 的面积为 6,则 a 与b 的距离是 _________ .5.小亮家离学校 1 千米,小明家离学校 3 千米,如果小亮家与小明家相距 x 千米,那么 x 的取值范围是 _________ .6.已知△ ABC 两边长 a,b 满足,则△ ABC 周长 l 的取值范围是 _________ .7.若等腰△ ABC (AB=AC),能用一刀剪成两个等腰三角形,则∠ A= _________ .8.图 1 是一个三角形,分别连接这个三角形三边的中点得到图 2;再分别连接图 2 中间小三角形的中点,得到图 3. (若三角形中含有其它三角形则不记入)(1) 图 2 有 _________ 个三角形;图 3 中有 _________ 个三角形(2)按上面方法继续下去,第 20 个图有 _________ 个三角形;第 n 个图中有 _________ 个三角形. (用 n 的代数式表示结论)9.一个三角形两边长为 5 和 7,且有两边长相等,这个三角形的周长是 _________ .10.两边分别长 4cm 和 10cm 的等腰三角形的周长是 _________ cm.参考答案与试题解析一、填空题(共 10 小题) (除非特别说明,请填准确值)1.一个凸多边形最小的一个内角为100°,其他的内角依次增加10°,则这个多边形的边数为 8 .考点:多边形内角与外角.专题:计算题.分析:根据内角和公式,设该多边形为 n 边形,内角和公式为180°• (n ﹣ 2),因为最小角为100°,又依次增加的度数为10°,则它的最大内角为( 10n+90) °,根据等差数列和的公式列出方程,求解即可.解答:解:设该多边形的边数为 n.则为=180 • (n ﹣ 2),解得 n1=8, n2=9,n=8时,10n+90=10×80+90=170,n=9 时,10n+90=9 × 10+90=180, (不符合题意)故这个多边形为八边形.故答案为: 8.点评:本题结合等差数列考查了凸 n 边形内角和公式.方程思想是解此类多边形有关问题常要用到的思想方法,注意凸 n 边形的内角的范围为大于0°小于180°.2.等腰三角形 ABC 的周长是 8cm, AB=3cm,则 BC= 2 或 3 或 2.5 cm.考点:等腰三角形的性质;三角形三边关系.专题:计算题.分析:按照 AB 为底边和腰,分类求解.当 AB 为底边时, BC 为腰;当 AB 腰时, BC 为腰或底边.解答:解: (1) 当 AB=3cm 为底边时, BC 为腰,由等腰三角形的性质,得 BC= (8 ﹣ AB) =2.5cm;(2) 当 AB=3cm 为腰时,①若 BC 为腰,则 BC=AB=3cm,②若 BC 为底,则 BC=8 ﹣ 2AB=2cm.故本题答案为: 2 或 3 或 2.5cm.点评:本题考查了等腰三角形的性质,分类讨论思想.关键是明确等腰三角形的三边关系.3.等腰三角形的周长为 20cm,若腰不大于底边,则腰长 x 的取值范围是 5<x≤ .考点:等腰三角形的性质;三角形三边关系.分析:根据题意以及三角形任意两边之和大于第三边列出不等式组求解即可.解答:解:等腰三角形的底边为 20 ﹣ 2x,根据题意得,,由①得,x≤ ,由②得, x>5,所以,腰长 x 的取值范围是5<x≤ .故答案为: 5<x≤ .点评:本题考查了等腰三角形两腰相等的性质,三角形的三边关系,列出不等式组是解题的关键.4.如图:a∥ b, BC=4,若三角形 ABC 的面积为 6,则 a 与b 的距离是 3 .考点:平行线之间的距离;三角形的面积.分析:过 A 作AD⊥BC 于 D,则 AD 的长就是 a b 之间的距离,根据三角形的面积公式求出 AD 即可.解答:解:过 A 作 AD⊥BC 于 D,∵ 三角形 ABC 的面积为 6, BC=4,:×BC ×AD=6,×4×AD=6,AD=3,∵ a∥ b,:a 与b 的距离是 3,故答案为: 3.点评:本题考查了两条平行线间的距离和三角形的面积,关键是正确作辅助线后能求出 AD 的长.5.小亮家离学校 1 千米,小明家离学校 3 千米,如果小亮家与小明家相距 x 千米,那么 x 的取值范围是2≤x≤4 .考点:三角形三边关系.分析:小明、小亮家的地理位置有两种情况:(1)小明、小亮家都在学校同侧;(2)小明、小亮家在学校两侧.联立上述两种情况进行求解.解答:解: (1)小明、小亮家都在学校同侧时,x≥2;(2)小明、小亮家在学校两侧时, x≤4.因此 x 的取值为2≤x≤4.点评:本题注意考虑两种不同的情况,能够分析出每一种情况的范围,再进一步综合两种情况的结论.6.已知△ ABC 两边长 a,b 满足,则△ ABC 周长l 的取值范围是 6<l<10 .考点:分析:解答:非负数的性质:算术平方根;非负数的性质:偶次方;三角形三边关系.由,可得 + (b ﹣ 3) 2=0,则 a=2, b=3,可得第三边 c 的取值范围是 1<c<5,从而求得周长 l 的取值范围.解:∵ ,∴ + (b ﹣ 3) 2=0,∴ a=2, b=3,∴ 第三边 c 的取值范围是 1<c<5,∴ △ ABC 周长 l 的取值范围是 6<l<10.故答案为: 6<l<10.点评:此题主要考查了非负数的性质,其中首先灵活应用了非负数的性质,然后利用三角形三边之间的关系,难度中等.7.若等腰△ ABC (AB=AC),能用一刀剪成两个等腰三角形,则∠ A= 36。
常见常新题型__注重解题方法——解三角形易错点扫描

ʏ江苏省高邮市第一中学 袁达飞解三角形问题是高考中的常见题型,主要利用正弦定理㊁余弦定理来求解未知边角的关系或具体值,由于解三角形需要综合应用正余弦定理和有关角的一些变换,所以经常会出现一些顾此失彼的错误,现归纳如下,供同学们学习时参考㊂易错点一㊁忽视解的讨论致误例1 在әA B C中,已知a =2,b =2,A =45ʎ,求B ㊂错解:由正弦定理知s i n B =b s i n Aa=2s i n 45ʎ2=12㊂又0<B <180ʎ,故B =30ʎ或150ʎ㊂剖析:上述解法中忽现了A +B +C =180ʎ这一隐含条件,当B =150ʎ时,A +B =195ʎ,与三角形的内角和为180ʎ矛盾㊂正解:由正弦定理知s i n B =b s i n Aa=2s i n 45ʎ2=12㊂又0<B <180ʎ,故B =30ʎ或B =150ʎ㊂若B =150ʎ,则A +B >180ʎ,应舍去㊂故B =30ʎ㊂易错点二㊁忽视三角形中角的范围致误例2 在әA B C 中,已知(a 2+b 2)㊃s i n (A -B )=(a 2-b 2)s i n C ,判断әA B C 的形状㊂错解:原式可化为(a 2+b 2)(s i n A c o s B-c o s A c o s B )=(a 2-b 2)(s i n A c o s B +c o s A s i n B ),即a 2s i n B c o s A =b 2s i n A c o s B ㊂由正弦定理得b 2s i n 2As i n 2B㊃s i n B c o s A =b 2s i n A c o s B ,化简得s i n A c o s A =s i n B c o s B ,即s i n 2A =s i n 2B ,所以A =B ㊂所以әA B C 是等腰三角形㊂剖析:上述解法忽略了角的范围,s i n 2A=s i n 2B 是2A =2B 的必要但不充分条件,另外,有些同学也可能由于逻辑关系不清而出现以下错误的判断:由s i n 2A =s i n 2B ,得2A =2B ,又2A +2B =π,且A =B ,A +B =π2,所以әA B C 是等腰直角三角形㊂正解:将条件都化为有关角的关系形式,前面同错解,得s i n 2A =s i n 2B ㊂因为A ,B 是三角形的内角,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2㊂故әA B C 是等腰三角形或直角三角形㊂易错点三㊁忽视隐含条件致误例3 在不等边әA B C中,a 为最大边,若a 2<b 2+c 2,则角A 的取值范围是㊂错解:因为a 2<b 2+c 2,所以b 2+c 2-a2>0,则c o s A =b 2+c 2-a22b c>0㊂又因为A 为әA B C 的内角,故A 为锐角,所以0<A <90ʎ㊂剖析:上述解法忽视了隐含条件:三角形的内角和为180ʎ,所以最大边所对的角应该大于60ʎ㊂正解:前面同错解,得0ʎ<A <90ʎ㊂又因为a 为最大边,所以A >60ʎ㊂所以60ʎ<A <90ʎ㊂故A 的取值范围是(60ʎ,90ʎ)㊂易错点四㊁忽视角之间的关系致误例4 在әA B C 中,若s i n 2A s i n 2B =t a n Ata n B ,则әA B C 的形状为㊂错解:已知s i n 2A s i n 2B =t a n A ta n B =s i n A c o s Bc o s A s i n B ㊂因为s i n A >0,s i n B >0,所以s i n A c o s A =s i n B c o s B ,即s i n 2A =s i n 2B ,所以2A =2B ,即A =B ㊂故әA B C 为等腰三角形㊂剖析:上述解法忽视了 在әA B C 中,由72解题篇 易错题归类剖析 高考数学 2023年10月Copyright ©博看网. All Rights Reserved.s i n 2A =s i n 2B ,可以得到2A +2B =π这种情况,导致漏解,结果错误㊂正解:前面同错解,得s i n 2A =s i n 2B ㊂所以2A =2B 或2A +2B =π,则A =B 或A +B =π2,故әA B C 为等腰三角形或直角三角形㊂易错点五㊁忽视三角形中三边的基本关系致误例5 已知钝角三角形的三边长分别是2a +1,a ,2a -1,求实数a 的取值范围㊂错解:因为2a +1,a ,2a -1是三角形的三边,所以2a +1>0,a >0,2a -1>0,解得a >12㊂又2a +1是三边长的最大值,设该边所对的角为θ,则c o s θ=a 2+(2a -1)2-(2a +1)22a (2a -1)<0,解得12<a <8㊂剖析:不是任意的三个正数都能作为三角形的三条边长,还需要满足三角形三边的基本关系,即两边之和大于第三边㊂上述解法中少了这个约束条件㊂正解:前面同错解,得12<a <8㊂又a +(2a -1)>2a +1,解得a >2㊂综上可得,实数a 的取值范围是(2,8)㊂易错点六㊁实际问题中题意不明致误图1例6 如图1,在海岛A 上有一座海拔1k m的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北30ʎ东㊁俯角为60ʎ的B 处,到11时10分,又测得该船在岛北60ʎ西㊁俯角为30ʎ的C 处㊂(1)求该船的航行速度;(2)又经过一段时间后,船到达海岛的正西方向的D 处,试问:此时船距海岛A 有多远?易错分析:有的同学对题意没有理解透彻,方位确定不了,不能观察出әB A C 是直角三角形;有的同学在求A D 的长时不能放在әA C D 中利用正弦定理求解㊂剖析:实际应用问题中的有关名词㊁术语不能混淆㊂①仰角和俯角:与目标视线在同一铅直平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫做仰角,目标视线在水平视线下方时叫做俯角㊂②方向角:从指定方向线到目标方向线的水平角㊂③方位角:从指定方向线顺时针到目标方向线的水平角㊂④坡度:坡面与水平面所成的二面角的度数㊂正解:(1)在R tәP A B 中,øA P B =60ʎ,P A =1,所以A B =3(k m )㊂在R t әP A C 中,øA P C =30ʎ,所以A C=P A ㊃t a n 30ʎ=33(k m )㊂在әA C B 中,øC A B =30ʎ+60ʎ=90ʎ,所以B C =A C 2+A B 2=332+32=303(k m )㊂所以该船的航行速度为303ː16=230(k m /h)㊂(2)øD A C =90ʎ-60ʎ=30ʎ㊂s i n øD C A =s i n (180ʎ-øA C B )=s i n øA C B =A B B C =3303=31010㊂s i n øC D A =s i n (øA C B -30ʎ)=s i n øA C B ㊃c o s 30ʎ-c o s øA C B ㊃s i n 30ʎ=31010㊃32-1-310102㊃12=33-11020㊂在әA C D 中,由正弦定理得A Ds i n øD C A=A C s i n øC D A ,所以A D =A C ㊃s i n øD C As i n øC D A=33㊃3101033-11020=9+313(k m )㊂故当船到达海岛的正西方向的D 处时,船与海岛A 的距离为9+313k m ㊂(责任编辑 王福华)82 解题篇 易错题归类剖析 高考数学 2023年10月Copyright ©博看网. All Rights Reserved.。
高考数学压轴专题(易错题)备战高考《三角函数与解三角形》难题汇编含答案解析

A.2或 B. C. D. 或
【答案】D
【解析】
【分析】
根据函数 的图象关于直线 对称,则有 ,解得 ,得到函数再求最值.
【详解】
因为函数 的图象关于直线 对称,
所以 ,
即 ,
解得 或 ,
当 时, ,此时 的最大值为 ;
当 时, ,此时 的最大值为 ;
【详解】
解:双曲线 的右焦点为 ,双曲线 的右支上一点 ,它关于原点 的对称点为 ,满足 ,且 ,可得 , , ,
,所以 ,可得 ,
,
所以双曲线的离心率为: .
故选: .
【点睛】
本题考查双曲线的简单性质的应用,三角形的解法,考查转化思想以及计算能力,属于中档题.
4.已知函数 ,若方程 的解为 ( ),则 =()
【详解】
设灯塔位于 处,船开始的位置为 ,船行 后处于 ,如图所示,
可得 , ,
,
在三角形 中,利用正弦定理可得:
,
可得
故选
【点睛】
本题主要考查的是正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解决本题的关键,属于基础题.
17.函数 (ω>0)的图像过点(1,2),若f(x)相邻的两个零点x1,x2满足|x1-x2|=6,则f(x)的单调增区间为()
A. B. C. D.
【答案】C
【解析】
【分析】
由已知可得 ,结合x1<x2求出x1的范围,再由 求解即可.
【详解】
因为0<x ,∴ ,
又因为方程 的解为x1,x2(0<x1<x2<π),
∴ ,∴ ,
∴ ,
因为 ,∴0<x1 ,
∴ ,
解三角形易错题解析

解三角形易错题解析————————————————————————————————作者: ————————————————————————————————日期:ﻩ易错题解析例题1 在不等边△ABC 中,a 为最大边,如果a b c 222<+,求A的取值范围。
错解:∵a b c b c a 2222220<++->,∴。
则cos A b c a bc=+->22220,由于cosA 在(0°,180°)上为减函数且cos90090°,∴°=<A 又∵A 为△ABC 的内角,∴0°<A<90°。
辨析:错因是审题不细,已知条件弱用。
题设是a 为最大边,而错解中只把a 看做是三角形的普通一条边,造成解题错误。
正解:由上面的解法,可得A<90°。
又∵a为最大边,∴A>60°。
因此得A的取值范围是(60°,90°)。
例题2 在△AB C中,若a bA B 22=tan tan ,试判断△AB C的形状。
错解:由正弦定理,得sin sin tan tan 22A B A B = 即sin sin sin cos cos sin sin sin 2200A B A AB B A B =>>·,∵, ∴,即sin cos sin cos sin sin A A B B A B ==22。
∴2A=2B,即A =B 。
故△ABC 是等腰三角形。
辨析:由sin sin 22A B =,得2A =2B。
这是三角变换中常见的错误,原因是不熟悉三角函数的性质,三角变换生疏。
正解:同上得sin sin 22A B =,∴2A=22k B π+或222A k B k Z =+-∈ππ()。
∵000<<<<==A b k A B ππ,,∴,则或A B =-π2。
中考数学易错题复习专题:三角形(1)

三角形易错点1:三角形的概念,三角形中三种重要的线段——角平分线、中线、高.易错题1:如图,点A ,B ,C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积是______________.CBA1B 1A 1错解:4 正解:7赏析:错解的主要原因在对三角形中线的有关性质理解错误,以为外侧三个三角形与里面的△ABC 面积相等.三角形的一条中线把原三角形分成的两部分是两个等底同高的等积三角形,由此,连接B 1A ,C 1B ,A 1C ,图中的7个小三角形面积均相等,故答案为7.易错点2:三角形三边之间的关系——三角形任意两边之和大于第三边,任意两边之差小于第三边.易错题2:现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中的三根组成一个三角形,那么可组成三角形的个数是……………………………………………………………( )A .1个B .2个C .3个D .4个 错解:C 正解:B 赏析:本题对三角形三边的关系理解错误,可能以为三角形任意两边之和大于第三边的对立面是三角形任意两边之和小于第三边,其实,其对立面还包括等于的情况.从四根木棒中任取三根,共有3cm ,4cm ,7cm ;3cm ,4cm ,9cm ;3cm ,7cm ,9cm ;4cm ,7cm ,9cm 四种情况,但3+4=7,3+4<9,所以这两种情况不能组成三角形,故选B .易错点3:三角形按边、按角的分类,三角形内、外角的性质,特别是外角的两条性质. 易错题3:如图,在△ABC 中,∠ABC =50°,∠ACB =60°,点E 在BC 的延长线上,∠ABC 的平分线BD 与∠ACE 的平分线CD 相交于点D ,连接AD ,下列结论:①∠BAC =70°;②∠DOC =90°;∠BDC =35°;∠DAC =55°.其中,不正确的有………………( )A .①③B .②④C .②D .④F M O NP DA B错解:B 正解:C赏析:本题对①,②,③可利用三角形内角和定理及三角形外角的性质就可判断对错,关键是对④的判断易产生错误本题错解就是这种情况.判断④对错的关键是能否判定AD 是△ABC 的外角∠F AC 的平分线,为此,过点D 分别作DM ⊥AF 于点M ,DN ⊥AC 于点N ,DP ⊥CE 于点P ,由BD ,CD 分别平分∠BAC ,∠ACE ,可得DM =DP ,DN =DP ,所以DM =DN ,由角平分线的判定可得AD 平分∠F AC ,从而可通过计算判断④正确.易错点4:全等三角形的性质,三角形全等的判定,特别是两边一角对应相等的两个三角形不一定全等.易错题4:如图,已知AB =DC ,∠ACF =∠DBE ,则添加下列条件之一,能判定△ACF ≌△DBE 且是用“SAS ”判断全等的是……………………………………………………( )A .AF =DEB .∠A =∠DC .AF ∥DED .FC =EBF EDC AB错解:A 正解:D赏析:三角形全等的判定方法通常有SAS 、ASA 、SSS 、AAS 四种,本题错解的原因是对SAS 的条件没有理解清楚.两边一角对应相等的情况有两种:一种是SAS ,其条件是两边及其夹角对应相等,另一种是两边及其一组等边的对角对应相等,这样的两个三角形不全等.易错题5:如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AE =BE .EBCDA错解:∵∠DAB =∠CBA ,∴∠DAE =∠CBE ,在△ADE 和△BCE 中,∵AD =BC ,∠DAE =∠CBE ,∠DEA =∠CEB ,∴△ADE ≌△BCE (AAS ),∴AE =BE .正解:在△ADB 和△BCA 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△BCA (SAS ),∴∠D =∠C . 在△ADE 和△BCE 中,∵AD BC DEA CEB D C =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ADE ≌△BCE (AAS ),∴AE =BE .又解:在△ADB 和△BCA 中,∵AD BC DAB CBA AB BA =⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△BCA (SAS ),∴∠ABD =∠BAC ,即∠ABE =∠BAE ,∴AE =BE .赏析:本题错在第一步,由∠DAB =∠CBA ,不能得出∠DAE =∠CBE ,可能是把未知条件当做已知条件用了.应先根据“SAS ”证△ADB ≌△BCA ,注意,这里的理由是“SAS ”而不是“SSA ”,由“SSA ”不能判断三角形全等,接下来可用“AAS ”或“ASA ”证△ADE≌△BCE 而得出结论,也可根据等腰三角形的判定“等角对等边”得出结论.易错点5:等腰三角形(含等边三角形)的性质与判定.易错题6:已知△ABC 是等边三角形,BD 为中线,延长BC 至点E ,使CE =CD =a ,连接DE ,则DE =__________.EBCDA错解:2a 正解赏析:本题可能以为DE =AC 而得出错解,在△DCE 中,用三边的关系也可判断2a 不正确.应先由等边三角形的性质得出BD 垂直平分AC ,∠CBD =30°,∠BCD =60°,又CE =CD ,∴∠E =∠CDE ,又∵∠BCD =∠E +∠CDE ,∴∠E =∠CBD =30°,∴BD =ED .再在Rt △BCD 中,由tan ∠BCD =BDCD得出BD =CD tan60,也可在Rt △BCD 中先得出BC =2CD ,再由勾股定理求得BD,∴DE.易错点6:运用等腰三角形的性质与判定计算或证明有关问题时注意分类讨论思想的运用.易错题7:在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在直线相交所得锐角为40°,则∠B 的度数为_______________.错解:65°正解:65°或25°赏析:本题只考虑了△ABC 中顶角∠BAC 为锐角的情况.由于等腰三角形的顶角可以是锐角,也可以是直角或钝角,∴本题应分三种情况讨论求解:①当∠BAC 为锐角时,如图1:40°图1E BCD A40°图2EBCDA图3EBCDADE 垂直平分AB ,∠ADE =40°,则∠A =50°,又∵AB =AC ,∴∠B =∠C ,∴∠B =180502︒-︒=65°;当∠BAC 为钝角时,如图2,DE 垂直平分AB ,∠ADE =40°,则∠DAB =50°,∴∠BAC =180°-50°=130°,又∵AB =AC ,∴∠B =∠C ,∴∠B =1801302︒-︒=25°(或:由∠DAB =∠B +∠C ,而∠B =∠C ,∴∠B =12∠DAB =12×50°=25°);当∠BAC 为直角时,如图3,DE ∥AC ,不合题意,此种情况舍去.∴答案为65°或25°.易错点7:全等三角形与等腰三角形的综合应用.易错题8:我们把由不平行于底边的直线截等腰三角形两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”,其中∠B =∠C .在由不平行BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E ,若EB =EC ,请问当点E 在四边形ABCD 内部时(如图2所示),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)图1BCP D A 图2EBCDA图3BCDA错解:是“准等腰梯形”,理由:∵EB =EC ,∴∠EBC =∠ECB ,∴∠ABC =∠DCB ,∴是“准等腰梯形”.当点E 不在四边形ABCD 内部时,如图3,四边形ABCD 是“准等腰梯形”.正解:如图4,过点E 分别作EF ⊥AB 于点F ,EG ⊥AD 于点G ,EH ⊥CD 于点H .∵AE 、DE 分别平分∠BAD 、∠ADC ,∴EF =EG =EH .又∵EB =EC ,∴Rt △BFE ≌Rt △CHE ,∴∠3=∠4,又∵EB =EC ,∴∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC =∠DCB .又∵四边形ABCD 为AD 截某三角形所得,且AD 不平行BC ,∴四边形ABCD 是“准等腰梯形”. 当点E 不在四边形ABCD 内部时,有两种情况:当点E 在四边形ABCD 的边BC 上时,如图5,四边形ABCD 是“准等腰梯形”;当点E 在四边形ABCD 的外部时,如图6,四边形ABCD 是“准等腰梯形”.4321HGF图4EBCD A 图5BCDA 图6BDA赏析:本题中第一问的理由不正确,没有充分利用两条角平分线的条件,第二问没有理解不在四边形内部的含义,不在四边形内部应包括在四边形上和四边形外部两种情况.这两种情况的理由是:当点E 在四边形ABCD 的边BC 上时,如图7,同理可得Rt △BFE ≌Rt △CHE ,∴∠B =∠C ,∴四边形ABCD 是“准等腰梯形”;当点E 在四边形ABCD 的外部时,如图8,同理可得Rt △BFE ≌Rt △CHE ,∴∠EBF =∠ECH ,∵EB =EC ,∴∠EBC =∠ECB ,∴∠EBF -∠EBC =∠ECH -∠ECB ,即∠ABC =∠DCB .∴四边形ABCD 是“准等腰梯形”.HGF 图7BCD A H GF 图8BCD A易错练1.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条边上,若∠1=25°,则∠2的度数为……………………………………………………………………………( ) A .53° B .55° C .57° D .60°2.如图,在△ABC 中,AB =AC ,点D 、E 在BC 上,连接AD 、AE .若只添加一个条件就能得到∠DAB =∠EAC ,则下列条件中不正确的是………………………………………( ) A .BE =CD B .AD =AE C .∠BAE =∠CAD D .∠DAE =∠DEA30°21第1题图第2题图BCDA3.已知等腰三角形ABC 中,AD ⊥BC 于点D ,AD =12BC ,则△ABC 的底角度数为_________. 4.在△ABC 中,AB =AC ,点E 、F 分别在AB 、AC 上,AE =AF ,BF 与CE 相交于点D .求证:DB =DC ,并直接写出图中其他相等的线段.FEBC DA5.已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 边的延长线上,且∠DEC =45°,点M 、N 分别是DE 、AE 的中点,连接MN 交直线BE 于点F .当点D 在CB 边的延长线上时,如图1所示,易证MF +FN =12BE . (1)当点D 在CB 边上时,如图2所示,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 边的延长线上时,如图3所示,请证明你发现的结论. (3)你能用式子综合概括本题中MF 、FN 与BE 之间的关系吗?NMF EBC DA图1N MFEBCDA图2NMFE BC DA 图3参考答案3.75°或45°或15°解析:分三种情况:如图①,AD为腰上的高,且在△ABC内部,∵AB=BC,AD=12BC,∴AD=12AB,∴12ADAB=,又∵sin∠B=ADAB,∴sin∠B=12,∴∠B=30°,∴底角为180302︒-︒=75°;如图②,AD为底边上的高,∵AB=BC,AD⊥BC,∴BD=CD,又∵AD=12BC,∴BD=AD,∴△ABD为等腰直角三角形,∴底角为45°;如图③,AD为腰上的高,且在△ABC外部,∵AB=BC,AD=12BC,∴AD=12AB,∴12ADAB=,又∵sin∠DBA=ADAB,∴sin∠DBA=12,∴∠DBA=30°,又∵∠DBA=∠B +∠C,∠B=∠C,∴底角为30°÷2=15°.4.证明:在△ABF和△ACE中,∵AB ACBAF CAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE,∴BF=CE,∵AB=AC,AE=AF,∴BE=CF.∠ABF =∠ACE ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC -∠ABF =∠ACB -∠ACE ,即∠DBC =∠DCB ,∴DB =DC .图中其他相等的线段有DE =DF ,BE =CF ,BF =CE . 5.解:(1)不成立;猜想:FN -MF =12BE .理由如下:如图4,连接AD ,∵点M 、N 分别是DE 、AE 的中点,∴MN =12AD ,又∵AC =BC ,∠ACB =∠BCE =90°,∠DEC =45°,∴DC =EC ,∴△ACD ≌△BCE (SAS ),∴AD =BE .∵MN =FN -MF ,∴FN -MF =12BE .N MFEBCD A图4(2)发现的结论: MF -FN =12BE .证明:如图5,连接AD ,∵点M 、N 分别是DE 、AE 的中点,∴MN =12AD ,又∵AC =BC ,∠ACB =∠BCE =90°,∠DEC =45°,∴DC =EC ,∴△ACD ≌△BCE (SAS ),∴AD =BE .∵MN =MF -FN ,∴MF -FN =12BE .。
八年级数学三角形解答题易错题(Word版 含答案)

八年级数学三角形解答题易错题(Word 版 含答案)一、八年级数学三角形解答题压轴题(难)1.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动. (1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小.(2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.【答案】(1)135°;(2)67.5°;(3)60°, 45°【解析】【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1ABE ABO 2∠=∠,由三角形内角和定理即可得出结论;(2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=︒ ,故PAB MBA 270∠+∠=︒,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠=∠,1ABC ABM 2∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知CDE DCE 112.5∠+∠=︒,进而得出结论;(3))由∠BAO 与∠BOQ 的角平分线相交于E 可知1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB=90°, ∴OAB OBA 90∠+∠=︒,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴1BAE OAB 2∠=∠,1ABE ABO 2∠=∠, ∴()1BAE ABE OAB ABO 452∠+∠=∠+∠=°, ∴∠AEB=135°;(2)∠CED 的大小不变.如图2,延长AD 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴90∠=AOB °,∴OAB OBA 90∠+∠=°,∴PAB MBA 270∠+∠=°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴1BAD BAP 2∠=∠,1ABC ABM 2∠=∠, ∴()1BAD ABC PAB ABM 1352∠+∠=∠+∠=°,F 45∠=°, ∴FDC FCD 135∠+∠=°,∴CDA DCB 225∠+∠=°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴CDE DCB 112.5∠+∠=°,∴E 67.5∠=°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ , ∴()11E EOQ EAO BOQ BAQ ABO 22∠=∠-∠=∠-∠=∠, ∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴EAF 90∠=°.在△AEF 中,∵有一个角是另一个角的3倍,故有:①EAF 3E ∠=∠,E 30∠=°,ABO 60∠=°;②EAF 3F ∠=∠,E 60∠=°,ABO 120∠=°;③EAF 3E ∠=∠,E 22.5∠=°,ABO 45∠=°;④EAF 3F ∠=∠,E 67.5∠=°,ABO 135∠=°.∴∠ABO 为60°或45°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.2.已知在四边形ABCD 中,∠A =∠C =90°.(1)∠ABC +∠ADC = °;(2)如图①,若DE 平分∠ADC ,BF 平分∠ABC 的外角,请写出DE 与BF 的位置关系,并证明;(3)如图②,若BE ,DE 分别四等分∠ABC 、∠ADC 的外角(即∠CDE =14∠CDN ,∠CBE =14∠CBM ),试求∠E 的度数.【答案】(1)180°;(2)DE ⊥BF ;(3)450【解析】【分析】(1)根据四边形内角和等于360°列式计算即可得解;(2)延长DE 交BF 于G ,根据角平分线的定义可得∠CDE=12∠ADC ,∠CBF=12∠CBM ,然后求出∠CDE=∠CBF ,再利用三角形的内角和定理求出∠BGE=∠C=90°,最后根据垂直的定义证明即可;(3)先求出∠CDE+∠CBE ,然后延长DC 交BE 于H ,再根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.【详解】(1)解:∵∠A=∠C=90°,∴∠ABC+∠ADC=360°-90°×2=180°;故答案为180°;(2)解:延长DE 交BF 于G ,∵DE 平分∠ADC ,BF 平分∠CBM ,∴∠CDE=12∠ADC ,∠CBF=12∠CBM , 又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC )=∠ADC ,∴∠CDE=∠CBF ,又∵∠BED=∠CDE+∠C=∠CBF+∠BGE ,∴∠BGE=∠C=90°,∴DG ⊥BF ,即DE ⊥BF ;(3)解:由(1)得:∠CDN+∠CBM=180°,∵BE 、DE 分别四等分∠ABC 、∠ADC 的外角,∴∠CDE+∠CBE=14×180°=45°, 延长DC 交BE 于H , 由三角形的外角性质得,∠BHD=∠CDE+∠E ,∠BCD=∠BHD+∠CBE ,∴∠BCD=∠CBE+∠CDE+∠E ,∴∠E=90°-45°=45°【点睛】本题考查了三角形的内角和定理,四边形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键,要注意整体思想的利用.3.已知:线段AB ,以AB 为公共边,在AB 两侧分别作ABC ∆和ABD ∆,并使C D ∠=∠.点E 在射线CA 上.(1)如图l ,若ACBD ,求证:AD BC ∥; (2)如图2,若BD BC ⊥,请探究DAE ∠与C ∠的数量关系,写出你的探究结论,并加以证明; (3)如图3,在(2)的条件下,若BAC BAD ∠=∠,过点D 作DF BC ∥交射线于点F ,当8DFE DAE ∠=∠时,求BAD ∠的度数.【答案】(1)见详解;(2)DAE ∠+2C ∠=90°,理由见详解;(3)99°.【解析】【分析】(1)根据平行线的性质和判定定理,即可得到结论;(2)设CE 与BD 交点为G ,由三角形外角的性质得∠CGB=∠D+∠DAE ,由BD BC ⊥,得∠CGB+∠C=90°,结合C D ∠=∠,即可得到结论;(3)设∠DAE=x ,则∠DFE=8x ,由DF BC ∥,DAE ∠+2C ∠=90°,得关于x 的方程,求出x 的值,进而求出∠C ,∠ADB 的度数,结合∠BAD=∠BAC ,即可求解.【详解】(1)∵AC BD ,∴∠C+∠CBD=180°,∵C D ∠=∠,∴∠D+∠CBD=180°,∴AD BC ∥;(2)DAE ∠+2C ∠=90°,理由如下:设CE 与BD 交点为G ,∵∠CGB 是∆ADG 的外角,∴∠CGB=∠D+∠DAE ,∵BD BC ⊥,∴∠CBD=90°,∴在∆BCG 中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵C D ∠=∠,∴DAE ∠+2C ∠=90°;(3)设∠DAE=x ,则∠DFE=8x ,∴∠AFD=180°-8x ,∵DF BC ∥,∴∠C=∠AFD=180°-8x ,又∵DAE ∠+2C ∠=90°,∴x+2(180°-8x)=90°,解得:x=18°,∴∠C=180°-8x=36°=∠ADB ,又∵∠BAD=∠BAC ,∴∠ABC=∠ABD=12∠CBD=45°, ∴∠BAD=180°-45°-36°=99°.【点睛】本题主要考查平行线的性质和判定定理,三角形的内角和定理与外角的性质,掌握平行线的性质和三角形外角的性质,是解题的关键.4.探究:(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求证:∠P=90°+12∠A.(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何数量关系,并证明你的结论.(3)如图3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何数量关系,请直接写出结论.【答案】(1)见解析;(2)12∠A=∠P,理由见解析;(3)∠P=90°﹣12∠A,理由见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的性质进行解答即可:(2)根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果,(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.【详解】证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.又∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∴∠PBC+∠PCB=12(180°﹣∠A),根据三角形内角和定理可知∠BPC=180°﹣12(180°﹣∠A)=90°+12∠A;(2)12∠A=∠P,理由如下:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE.∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACP=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∴12∠A=∠P.(3)∠P=90°﹣12∠A,理由如下:∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣12(∠FBC+∠ECB)=180°﹣12(∠A+∠ACB+∠A+∠ABC)=180°﹣12(∠A+180°)=90°﹣12∠A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,此类题解题的关键是找出角平分线平分的两个角的和的度数,从而利用三角形内角和定理求解.5.已知:点D是△ABC所在平面内一点,连接AD、CD.(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;(3)如图3,在(2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.【答案】(1) 111º ;(2) ∠A-∠C=2∠P,理由见解析;(3) ∠A+∠C=2∠P,理由见解析.【解析】【分析】(1)延长AD交BC于E,利用三角形外角的性质即可求解;(2)∠A-∠C=2∠P,由三角形外角等于不相邻的两个内角的和以及(1)结论即可求解;(3)∠A+∠C=2∠P,由(2)结论以及角平分线的性质即可得到.【详解】(1)如图1,延长AD交BC于E,在△ABE中,∠AEC=∠A+∠B=28º+72º=100º,在△DEC中,∠ADC=∠AEC+∠C=100º+11º=111º ;(2)∠A-∠C=2∠P,理由如下:如图2,∠5=∠A+∠1,∠5=∠P+∠3∴∠A+∠1=∠P+∠3∵PB平分∠ABC,PD平分∠ADC∴∠1=∠2,∠3=∠4∴∠A+∠2=∠P+∠4由(1)知∠4=∠2+∠P+∠C∴∠A+∠2=∠P+∠2+∠P+∠C∴∠A-∠C=2∠P(3)∠A+∠C=2∠P,理由如下:如图3,同(2)理知∠A+∠1=∠P+∠3,∠C+∠4=∠P+∠2∴∠A+∠C+∠1+∠4=2∠P+∠2+∠3∵PB平分∠ABC,PD平分∠ADC∴∠1=∠2,∠3=∠4∴∠1+∠4=∠2+∠3∴∠A+∠C=2∠P【点睛】本题考查了三角形外角的性质,角平分线的定义,整体思想的利用是解题的关键.6.如图①,在△ABC中,AE平分∠BAC,∠C>∠B,F是AE上一点,且FD⊥BC于D点.(1)试猜想∠EFD,∠B,∠C的关系,并说明理由;(2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?说明理由.①②【答案】(1)∠EFD=12∠C-12∠B.()成立,理由见解析.【解析】【分析】先根据AE 平分∠BAC 推出∠BAE=12∠BAC=12[180°-(∠B+∠C )],再根据外角的定义求出∠FED=∠B+∠BAE ,然后利用直角三角形的性质求出∠EFD=90°-∠FED . 【详解】 解:(1)∠EFD =12∠C -12∠B . 理由如下:由AE 是∠BAC 的平分线知∠BAE =12∠BAC . 由三角形外角的性质知∠FED =∠B +12∠BAC , 故∠B +12∠BAC +∠EFD =90°①. 在△ABC 中,由三角形内角和定理得∠B +∠BAC +∠C =180°, 即12∠C +12∠B +12∠BAC =90°②. ②-①,得∠EFD =12∠C -12∠B . (2)成立.理由如下:由对顶角相等和三角形的外角性质知:∠FED =∠AEC =∠B +12∠BAC , 故∠B +12∠BAC +∠EFD =90°①. 在△ABC 中,由三角形内角和定理得: ∠B +∠BAC +∠C =180°,即12∠B +12∠BAC +12∠C =90°②.②-①,得∠EFD =12∠C -12∠B . 【点睛】 此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,命题时经常将多个知识点联系在一起进行考查,这样更能训练学生的解题能力.7.如图 (1)所示,AB ,CD 是两条线段,M 是AB 的中点,连接AD ,MD ,BC ,BD , MC ,AC ,S △DMC ,S △DAC 和S △DBC 分别表示△DMC ,△DAC ,△DBC 的面积,当AB ∥CD 时,有S △DMC =2DAC DBC S S.(1)如图 (2)所示,当图6-9(1)中AB 与CD 不平行时,S △DMC =2DBC DAC S S +是否仍然成立?请说明理由; (2)如图 (3)所示,当图6-9(1)中AB 与CD 相交于点O 时,S △DMC 与S △DAC ,S △DBC 有什么样的数量关系?试说明你的结论.【答案】(1) S △DMC =2DAC DBC S S +仍成立,理由见解析; (2)S △DMC =2DBC DAC S S -,理由见解析.【解析】【分析】(1)先看题中给出的条件为何成立,由于三角形ADC ,DMC ,DBC 都是同底,而由于AB ∥DC ,因此高相等,就能得出题中给出的结论,那么本题也要用高来求解,过A ,M ,B 分别作BC 的垂线AE ,MN ,BF ,AE ∥MN ∥BF ,由于M 是AB 中点,因此MN 是梯形AEFB 的中位线,因此MN=12(AE+BF ),三个三角形同底因此结论①是成立的. (2)本题可以利用AM=MB ,让这两条边作底边来求解,三角形ADB 中,小三角形的AB 边上的高都相等,那么三角形ADM 和DBM 的面积就相等(等底同高),因此三角形OAD ,OMD 的和就等于三角形BMD 的面积,同理三角形AOC 和OMC 的面积和等于三角形CMB 的面积.根据这些等量关系即可得出题中三个三角形的面积关系.【详解】(1)当AB 与CD 不平行时,S △DMC =2DAC DBC S S+仍成立.分别过点A ,M ,B 作CD 的垂线AE ,MN ,BF ,垂足分别为E ,N ,F.∵M 为AB 的中点,∴MN =12(AE+BF),∴S △DAC +S △DBC =12DC·AE+12DC·BF =12DC·(AE+BF)= 12DC·2MN=DC·MN=2S △DMC .∴S △DMC =2DAC DBC S S +; (2)S △DMC =2DBC DAC S S-.理由:∵M 是AB 的中点,∴S △ADM =S △BDM ,S △ACM =S △BCM ,而S △DBC =S △BDM +S △BCM +S △DMC ,① S △DAC =S △ADM +S △ACM -S △DMC ,②∴①-②得S △DBC -S △DAC =2S △DMC ,故S △DMC =2DBC DAC S S-.【点睛】本题考查了三角形中位线和梯形,解题的关键是掌握三角形中位线定理和梯形的概念.8.学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;(3)如图③,若△ABC中,∠ABO=13∠ABC,∠ACO=13∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为_.【答案】(1)∠BOC=∠BAC+∠B+∠C.理由见解析;(2)∠BOC=90°+12∠A.理由见解析;(3)∠BOC=60°+23∠A.理由见解析.【解析】【分析】(1)如图1,连接AO,延长AO到H.由三角形的外角的性质证明即可得到结论:∠BOC=∠BAC+∠B+∠C;(2)利用角平分线的定义,三角形的内角和定理证明可得到结论:∠BOC=90°+12∠A;(3)类似(2)可证明结论:∠BOC=60°+23∠A.【详解】解:(1)∠BOC=∠BAC+∠B+∠C.理由:如图1,连接AO,延长AO到H.∵∠BOH=∠B+∠BAH,∠CAH=∠C+∠CAH,∴∠BOC=∠B+∠BAH+∠CAH+∠C=∠BAC+∠B+∠C,∴∠BOC=∠BAC+∠B+∠C;(2)∠BOC=90°+12∠A.理由:如图2,∵OB,OC是△ABC的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-(180°-∠A)=90°+12∠A,∴∠BOC=90°+12∠A;(3)∠BOC=60°+23∠A.理由:∵∠ABO=13∠ABC,∠ACO=13∠ACB,∴∠BOC=180°-23(∠ABC+∠ACB)=180°-23(180°-∠A)=60°+23∠A.故答案为:∠BOC=60°+23∠A.【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握三角形的角的基本知识.9.动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系.已知:如图(1),在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.并说明理由.探究二:若将△ADC改为任意四边形ABCD呢?已知:如图(2),在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,请你利用上述结论探究∠P与∠A+∠B的数量关系,并说明理由.探究三:若将上题中的四边形ABCD改为六边形ABCDEF如图(3)所示,请你直接写出∠P 与∠A+∠B+∠E+∠F的数量关系.【答案】探究一: 90°+12∠A;探究二:12(∠A+∠B);探究三:∠P=12(∠A+∠B+∠E+∠F)﹣180°.【解析】试题分析:探究一:根据角平分线的定义可得∠PDC=12∠ADC,∠PCD=12∠ACD,然后根据三角形内角和定理列式整理即可得解.探究二:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究一解答即可.探究三:根据六边形的内角和公式表示出∠EDC+∠BCD,然后同理探究一解答即可.试题解析:探究一:∵DP、CP分别平分∠AD C和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠ACD,= 180°-12(∠ADC+∠ACD),=180°-12(180°-∠A),=90°+12∠A;探究二:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠DPC=180°-∠PDC-∠PCD,=180°-12∠ADC-12∠BCD,=180°-12(∠ADC+∠BCD),=180°-12(360°-∠A-∠B),=12(∠A+∠B);探究三:六边形ABCDEF的内角和为:(6-2)×180°=720°,∵DP、CP分别平分∠EDC和∠BCD,∴∠PDC=12∠EDC,∠PCD=12∠BCD,∴∠P=180°-∠PDC-∠PCD,=180°-12∠EDC-12∠BCD,=180°-12(∠EDC+∠BCD),=180°-12(720°-∠A-∠B-∠E-∠F),=12(∠A+∠B+∠E+∠F)-180°,即∠P=12(∠A+∠B+∠E+∠F)-180°.点睛:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,在此类题目中根据同一个解答思路求解是解题的关键.10.已知:如图,等边三角形ABD与等边三角形ACE具有公共顶点A,连接CD,BE,交于点P.(1)观察度量,BPC的度数为____.(直接写出结果)(2)若绕点A 将△ACE 旋转,使得180BAC ∠=︒,请你画出变化后的图形.(示意图)(3)在(2)的条件下,求出BPC ∠的度数.【答案】(1)120°;(2)作图见解析;(3)∠BPC =120°.【解析】分析:(1)∠BPC 的度数为120°,理由为:由△ABD 与△ACE 都是等边三角形,利用等边三角形的性质得到∠DAB=∠ABD=∠CAE=60°,AD=AB ,AC=AE ,利用等式的性质得到夹角相等,利用SAS 得出三角形DAC 与三角形BAE 全等,由全等三角形的对应角相等得到∠ADC=∠ABE ,利用外角性质,等量代换即可得到所求;(2)作出相应的图形,如图所示;(3)解法同(1),求出∠BPC 的度数即可.本题解析:(1)∠BPC 的度数为120°,理由为:证明:∵△ABD 与△ACE 都是等边三角形,∴∠DAB=∠ABD=∠CAE=60°,AD=AB ,AC=AE ,∴∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,在△DAC 与△BAE 中,{AD ABDAC BAE AC AE=∠=∠=,∴△DAC≌△BAE(SAS ),∴∠ADC=∠ABE,∵∠ADC+∠CDB=60°,∴∠ABE+∠CDB=60°,∴∠BPC=∠DBP+∠PDB=∠ABE+∠CDB+∠ABC=120°;(2)作出相应的图形,如图所示;(3)∵△ABD 与△ACE 都是等边三角形,∴∠ADB=∠BAD=∠ABD=∠CAE=60°,AD=AB ,AC=AE ,∴∠DAB+∠DAE=∠CAE+∠DAE,即∠DAC=∠BAE,在△DAC 与△BAE 中,{AD ABDAC BAC AC AE=∠=∠=,∴△DAC≌△BAE(SAS ),∴∠ADC=∠ABE,∵∠ABE+∠DBP=60°, ∴∠ADC+∠DBP=60°,∴∠BPC=∠BDP+∠PBD=∠ADC+∠DBP+∠ADB=120°.点睛:本题考查了等边三角形的性质,外角性质,以及全等三角形的判定与性质,熟练掌握等边三角形的性质是解本题的关键.。
解三角形解答题易错点剖析

2
0
°+θ)⇒
2
1
3
2
2
c
o
s θ- s
i
nθ =
4
4
s
i
n
·
θ
3
1
2
t
a
n θ+ 3t
a
nθ-1
c
o
sθ- s
i
nθ ⇒2
2
2
=0⇒t
a
nθ=
- 3± 1
1
。
4
又θ 为锐角,
故t
a
nθ=
- 3+ 1
1
。
4
二、解三角形的最值问题易错点
例 3
已 知 锐 角 △ABC 的 内 角 A ,
B,
2
2
C 所对的边分别 为a,
1,
3,
2;
4,
2,
1,
创新定义的数列抽象 出 其 中 内 含 的 等 差 (比)
4,
3,
1;
3,
1,
2,
4;
3,
1,
4,
2;
3,
2,
1,
4;
3,
2,
4,
1;
共2
3;
4,
2,
3,
1;
4,
3,
1,
2;
4,
3,
2,
1,
4 个 数 列,
然后借助 数 列 的 性 质 或 基 本 量 运 算 求 解;将
数列,
培养同学们
运用数学 知 识 解 决 实 际 问 题 的 能 力,积 累 数
学活动经 验。 并 把 知 识 应 用 于 实 践,提 升 同
高考数学压轴专题(易错题)备战高考《三角函数与解三角形》图文解析

数学《三角函数与解三角形》知识点练习一、选择题1.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14CD【答案】A 【解析】 【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x +sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 2111cos 22223x x π⎛⎛⎫-=-+ ⎪ ⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A 【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a ﹣c cos B )sin A =c cos A sin B ,则△ABC 的形状一定是( ) A .钝角三角形 B .直角三角形C .等腰三角形D .锐角三角形【答案】C 【解析】 【分析】根据题意,由(cos )sin cos sin a c B A c A B -=变形可得sin sin a A c C =,进而由正弦定理可得22a c =,即a c =,即可得答案. 【详解】根据题意,在ABC ∆中,(cos )sin cos sin a c B A c A B -=,sin cos sin cos sin (cos sin cos sin )sin()sin a A c B A c A B c B A A B c A B c C =+=+=+=,即有sin sin a A c C =,又由正弦定理可得22a c =,即a c =. 故选:C . 【点睛】本题主要考查三角形的形状判断,考查正弦定理的应用,意在考查学生对这些知识点的理解掌握水平,属于基础题.3.函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象的交点横坐标的和为( ) A .53π B .2πC .76π D .π【答案】B 【解析】 【分析】根据两个函数相等,求出所有交点的横坐标,然后求和即可. 【详解】令sin cos2x x =,有2sin 12sin x x =-,所以sin 1x =-或1sin 2x =.又[],2x ππ∈-,所以2x π=-或32x π=或6x π=或56x π=,所以函数()[]()cos 2,2f x x x ππ=∈-的图象与函数()sin g x x =的图象交点的横坐标的和3522266s πππππ=-+++=,故选B. 【点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.4.若函数()sin 2f x x =向右平移6π个单位后,得到()y g x =,则关于()y g x =的说法正确的是( ) A .图象关于点,06π⎛⎫- ⎪⎝⎭中心对称 B .图象关于6x π=-轴对称C .在区间5,126ππ⎡⎤--⎢⎥⎣⎦单调递增 D .在5,1212ππ⎡⎤-⎢⎥⎣⎦单调递增 【答案】D 【解析】 【分析】利用左加右减的平移原则,求得()g x 的函数解析式,再根据选项,对函数性质进行逐一【详解】函数()sin 2f x x =向右平移6π个单位,得()sin 2()sin(2)63g x x x ππ=-=-. 由23x π-=k π,得26k x ππ=+()k ∈Z ,所以,06π⎛⎫- ⎪⎝⎭不是()g x 的对称中心,故A 错; 由23x π-=2k ππ+, 得212k x π5π=+()k ∈Z ,所以()g x 的图象不关于6x π=-轴对称,故B 错;由222232k x k πππππ-≤-≤+,得1212k x k π5ππ-≤≤π+()k ∈Z , 所以在区间5,126ππ⎡⎤--⎢⎥⎣⎦上()g x 不单调递增,在5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增, 故C 错,D 对; 故选:D . 【点睛】解答三角函数问题时一般需将解析式化简为sin()y A x B ωϕ=++或cos()y A x B ωϕ=++,从而可利用正(余)弦型周期计算公式2||T πω=周期,对正弦型函数,其函数图象的对称中心为,k B πϕω-⎛⎫⎪⎝⎭,且对称中心在函数图象上,而对称轴必经过图象的最高点或最低点,此时函数取得最大值或最小值.5.如图,边长为1正方形ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至BC ,在旋转的过程中,记([0,])2ABP x x π∠=∈,BP 所经过的在正方形ABCD 内的区域(阴影部分)的面积为()y f x =,则函数()f x 的图像是( )A .B .C .D .【答案】D 【解析】 【分析】根据条件列()y f x =,再根据函数图象作判断. 【详解】 当0,4x π⎡⎤∈⎢⎥⎣⎦时,()112y f x tanx ==⨯⨯; 当,42x ππ⎛⎤∈⎥⎝⎦时,()11112y f x tanx ==-⨯⨯; 根据正切函数图象可知选D. 【点睛】本题考查函数解析式以及函数图象,考查基本分析识别能力,属基本题.6.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象可由函数32cos 2y x x =-的图象( ) A .向右平移3π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 B .向右平移6π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 C .向左平移3π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 D .向左平移6π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到 【答案】D 【解析】 【分析】合并3sin2cos2y x x =-得:2sin 26y x π⎛⎫=-⎪⎝⎭,利用平移、伸缩知识即可判断选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1解三角形易错题解析易错题解析例题1 在不等边△ABC中,a为最大边,如果a b c222<+,求A 的取值范围。
错解:∵a b c b c a2222220<++->,∴。
则cos Ab c abc=+->22220,由于cosA在(0°,180°)上为减函数且cos90090°,∴°=<A又∵A为△ABC的内角,∴0°<A<90°。
辨析:错因是审题不细,已知条件弱用。
题设是a为最大边,而错解中只把a看做是三角形的普通一条边,造成解题错误。
正解:由上面的解法,可得A<90°。
又∵a为最大边,∴A>60°。
因此得A的取值范围是(60°,90°)。
例题2 在△ABC中,若abAB22=tantan,试判断△ABC的形状。
错解:由正弦定理,得sinsintantan22ABAB=即sin sinsincoscossinsin sin2200ABAABBA B=>>·,∵,∴,即sin cos sin cos sin sinA AB B A B==22。
∴2A=2B,即A=B。
故△ABC是等腰三角形。
213602393R a A ===sin sin °。
∴a b c A B C R ++++==sin sin sin 22393。
例题4 在△ABC 中,c =+62,C =30°,求a +b 的最大值。
错解:∵C =30°,∴A +B =150°,B =150°-A 。
由正弦定理,得a A b A sin sin()sin =-=+1506230°°∴a A=+262()sin ,b A =+-262150()sin()°又∵sin sin()A A ≤-≤11501,°∴a b +≤+++=+262262462()()()。
故a b +的最大值为462()+。
辨析:错因是未弄清A 与150°-A 之间的关系。
这里A 与150°-A 是相互制约的,不是相互独立的两个量,sinA 与sin(150°-A)不能同时取最大值1,因此所得的结果也是错误的。
正解:∵C =30°,∴A +B =150°,B =150°-A 。
由正弦定理,得a A b A sin sin()sin =-=+1506230°°因此a b A A +=++-262150()[sin sin()]°2(62)sin 75cos(75)624(62)cos(75)(843)cos(75)843A A A =-+=-=+-≤+·°°·°°∴a +b 的最大值为843+。
例题5 在△ABC 中,已知a =2,b =22,C =15°,求A 。
错解:由余弦定理,得c a b ab 222215=+-cos °624822228434=+-=-×××∴c =-62。
又由正弦定理,得sin sin A a C c ==12而000018030150A A A <<=,∴=或。
辨析:由题意b a >,∴B A >。
因此A =150°是不可能的。
错因是没有认真审题,未利用隐含条件。
在解题时,要善于应用题中的条件,特别是隐含条件,全面细致地分析问题,避免错误发生。
正解:同上c A b a =-=>6212,,∵sin , 00018030B A A A ><<=∴,且,∴。
例题6 在△ABC 中,αβcos cos A b =,判断△ABC 的形状。
错解:在△ABC 中,∵a A b B cos cos =,由正弦定理得22R A A R B B sin cos sin cos =∴sin sin 222222180A B A B A B ==+=,∴且° ∴A =B 且A +B =90° 故△ABC 为等腰直角三角形。
辨析:对三角公式不熟,不理解逻辑连结词“或”、“且”的意义,导致结论错误。
正解:在△ABC 中,∵a A b B cos cos =,由正弦定理, 得2222R A A R B B A B sin cos sin cos sin sin ==,∴。
∴2A =2B 或2A +2B =180°,∴A =B 或A +B =90°。
故△ABC 为等腰三角形或直角三角形。
例题7 若a ,b ,c 是三角形的三边长,证明长为a b c,,的三条线段能构成锐角三角形。
错解:不妨设0<≤≤a b c ,只要考虑最大边的对角θ为锐角即可。
cos ()()()θ=+-=+-a b c a b a b cab22222。
由于a ,b ,c 是三角形的三边长,根据三角形三边关系,有a b c +>,即cos θ>0。
∴长为a b c,,的三条线段能构成锐角三角形。
辨析:三条线段构成锐角三角形,要满足两个条件:①三条边满足三角形边长关系;②最长线段的对角是锐角。
显然错解只验证了第二个条件,而缺少第一个条件。
正解:由错解可得cos θ>0 又∵a b c a b c a b c a b c+-=+-++++()()2()20a b c ab a b c a b c a b c+-==>++++++即长为a b c,,的三条线段能构成锐角三角形。
典型题1、若ABC ∆的内角A 满足2sin 23A =,则sin cos A A += 15.15.53 D .53-解:由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0, 又25(sin cos )1sin 23A A A +=+=,故选A2、如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形 D .111A B C∆是锐角三角形,222A B C ∆是钝角三角形解:111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形。
故选D 。
3、ABC的三内角,,A B C所对边的长分别为,,a b c设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,则角C 的大小为(A)6π (B)3π (C) 2π (D) 23π【解析】222//()()()p q a c c a b b a ba c ab⇒+-=-⇒+-=,利用余弦定理可得2cos 1C =,即1cos 23C C π=⇒=,故选择答案B 。
【点评】本题考查了两向量平行的坐标形式的重要条件及余弦定理和三角函数,同时着重考查了同学们的运算能力。
4、已知等腰ABC △的腰为底的2倍,则顶角A 的正切值是( ) 3B3 1515解:依题意,结合图形可得15tan 215A =,故221522tan15152tan 7151tan 1()2AA A ===--,选D5、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =A .14B .34C .24D .23解:ABC ∆中,a 、b 、c 成等比数列,且2c a =,则b =2a ,222cos 2a c b B ac+-==222242344a a a a +-=,选B.6、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c =(A) 1 (B )2 (C )3—1(D )3解:由正弦定理得sinB =12,又a >b ,所以A >B ,故B =30︒,所以C =90︒,故c =2,选B7、设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2ab bc =+是2A B=的(A )充要条件 (B )充分而不必要条件(C )必要而充分条件 (D )既不充分又不必要条件解析:设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若()2ab bc =+,则2sinsin (sin sin )A B B C =+,则1cos 21cos 2sin sin 22a BB C --=+, ∴ 1(cos 2cos 2)sin sin 2B A B C -=,sin()sin()sin sin B A A B B C +-=, 又sin()sin A B C +=,∴ sin()sin A B B -=,∴ A B B -=,2A B =, 若△ABC 中,2A B =,由上可知,每一步都可以逆推回去,得到()2ab bc =+,所以()2ab bc =+是2A B =的充要条件,选A.8、在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___________. 解: sin :sin :sin 5:7:8A B C =⇔a :b :c =5:7:8设a =5k ,b =7k ,c =8k , 由余弦定理可解得B ∠的大小为3π. 9、在∆ABC 中,已知433=a ,b =4,A =30°,则sinB= .3解:由正弦定理易得结论sinB 3。
10、在△ABC 中,已知BC =12,A =60°,B =45°,则AC = 【思路点拨】本题主要考查解三角形的基本知识 【正确解答】由正弦定理得,sin45sin 60AC BC =解得6AC =【解后反思】解三角形:已知两角及任一边运用正弦定理,已知两边及其夹角运用余弦定理11、已知△ABC 的三个内角A 、B 、C 成等差数列,且AB =1,BC =4,则边BC 上的中线AD 的长为 .解析: 由ABC ∆的三个内角A 、B 、C 成等差数列可得A+C=2B 而A+B+C=π可得3B π∠= AD 为边BC 上的中线可知BD=2,由余弦定理定理可得3AD =本题主要考察等差中项和余弦定理,涉及三角形的内角和定理,难度中等。