圆锥曲线几何问题的转换
圆锥曲线几何关系代数化

圆锥曲线几何关系代数化全文共四篇示例,供读者参考第一篇示例:圆锥曲线是平面解析几何中的重要概念,它们是一类通过平面上一点与一个定点之间的距离与一个定直线上的定点之间的距离的比值不变的曲线。
常见的圆锥曲线包括椭圆、双曲线和抛物线。
在这些曲线中,存在许多有趣的几何关系,而这些几何关系可以通过代数的方法来求解和证明。
首先介绍一下圆锥曲线的基本性质。
以椭圆为例,椭圆定义为平面上满足一定条件的点的集合,比如所有与给定直线的距离之和等于常数的点构成的集合。
根据定义,我们可以轻松地证明椭圆的中点具有对称性,椭圆上两点之间的连线和椭圆上切线的交点构成的线都经过椭圆的焦点等等。
这些性质虽然可以通过几何的方法证明,但是用代数方法更为方便。
为了代数化椭圆的几何关系,我们可以引入平面直角坐标系。
假设椭圆的方程为\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \],其中\(a\)和\(b\)为椭圆的半长轴和半短轴。
我们可以将椭圆上的点表示为\(P(x,y)\),利用坐标代入椭圆方程即可得到关于\(x\)和\(y\)的方程。
利用这个方程我们可以求出椭圆上点的对称性、切线方程、焦点位置等等。
还可以用代数的方法来解决椭圆的焦点和直角坐标系之间的几何关系。
假设椭圆的焦点和直角坐标系的关系有如下式子:\[ F_1(-\sqrt{a^2 - b^2}, 0) \]\[ F_2(\sqrt{a^2 - b^2}, 0) \]将这两个点代入椭圆方程中,即可证明这两个点在椭圆上。
又由于椭圆的焦点定义为到焦点的距离与到直系质保持恒定,可以得到椭圆上一点到两个焦点的距离之和等于常数,这也就是椭圆的定义。
同样道理,对于双曲线和抛物线,我们也可以借助代数方法来求解几何关系。
双曲线可以表示为\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \],我们可以通过这个方程来证明双曲线的渐近线方程、焦点位置等等。
解圆锥曲线问题多种常用方法

解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by ax 。
(2))0,0(12222>>=-b a by ax 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by ax(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =共线时,距离和最小。
浅谈解决圆锥曲线问题的几种方法

浅谈解决圆锥曲线问题的几种方法解决圆锥曲线问题在数学领域中是一个重要的课题,涉及到许多不同的方法和技巧。
圆锥曲线包括抛物线、椭圆、双曲线等,它们在几何学和代数学中都具有重要的地位,因此解决圆锥曲线问题的方法也显得尤为重要。
在本文中,将会介绍一些解决圆锥曲线问题的常见方法,并且深入讨论它们的一些特点和应用。
1. 解析几何方法解析几何方法是解决圆锥曲线问题的一种常见方法。
通过坐标系和代数方法来描述和分析圆锥曲线的特性和性质,这种方法在解决几何问题时非常有用。
一般情况下,利用解析几何方法可以将圆锥曲线的方程化简为一般形式,然后通过对方程的解析分析来得到曲线的性质和特点。
在解析几何方法中,常用的手段包括曲线的参数方程、焦点、准线、曲率等,通过这些参数来描述圆锥曲线的形状和性质。
解析几何方法还可以通过坐标变换,将圆锥曲线的方程转化为简单的形式,从而更加容易地进行分析和计算。
在解析几何方法中,一些常见的技巧包括拟合直线、圆的切线方程、曲线的渐近线等,这些方法都是解决圆锥曲线问题的重要手段。
2. 计算方法计算方法是解决圆锥曲线问题的另一种重要方法。
通过数值计算和求解,可以得到曲线的交点、切线、凹凸点等重要信息,从而帮助我们更好地理解和分析圆锥曲线的性质。
在计算方法中,常用的手段包括牛顿迭代法、二分法、拉格朗日乘数法等,这些方法可以帮助我们求解参数方程、方程组,从而得到圆锥曲线的一些重要特征。
几何方法在解决圆锥曲线问题中也具有重要的地位。
通过几何方法,我们可以直观地理解和分析圆锥曲线的形状和性质,这对于我们理解和应用圆锥曲线都非常有帮助。
在几何方法中,常用的手段包括图形的平移、旋转、缩放等,这些方法可以帮助我们更加直观地理解曲线的性质和特点。
几何方法还可以通过投影、相似性等方式,来研究和分析圆锥曲线的性质。
通过几何方法,我们可以得到曲线的对称性、轴对称性、中轴线等重要信息,这些信息对于我们理解和应用圆锥曲线都非常有帮助。
齐次平移法巧解圆锥曲线问题

齐次平移法巧解圆锥曲线问题归纳总结:1、概述:圆锥曲线是数学几何上最常见的曲线之一,也称为双曲线。
它是一种抛物线的特殊形式。
它具有复杂的几何形状,是一种数学复杂的曲线,更加困难利用传统方法求解。
因此,出现了平移法的求解方法,即“齐次平移法”,对于奇形怪状的圆锥曲线,可以很好地进行求解。
2、齐次平移法概述:齐次平移法是通过将圆锥曲线进行线性变换,将原曲线变换到X-Y坐标轴上来解决圆锥曲线问题的一种有效方法。
它由坐标轴上的点和曲线两个部分组成,可将双曲线抛物线和椭圆形等曲线线性变换成直线。
首先,将原曲线变换到指定区域内,然后逆变换回原曲线。
来达到求解的目的。
3、齐次平移法的步骤:(1)步骤一:选择一个基准点,在其旁边变换坐标轴;(2)步骤二:选择曲线的极点和焦点,并计算出坐标轴的偏角;(3)步骤三:计算坐标轴的长度,变换至相应的量程;(4)步骤四:将原曲线经过坐标轴变换后,再将点和曲线映射到坐标轴上;(5)步骤五:将曲线和直线表达式变换,从而求解出原曲线的参数;(6)步骤六:转换坐标轴,将曲线恢复至原状求解圆锥曲线问题。
4、齐次平移法优势:(1)比较高效:将曲线进行线性变换,使其变换成直线,平滑地进行求解,一般不需要大量的计算,耗费时间较少;(2)可以解决复杂曲线问题:齐次平移法可用于求解几乎任何好形怪状的双曲曲线,使其更容易理解和求解;(3)通用性强:齐次平移法可以很好地解决几乎所有的圆锥曲线问题,且可以不受边界条件的限制;(4)推广性:圆锥曲线问题的求解可以推广到多维空间。
综上所述,齐次平移法是圆锥曲线求解的有效方法,难度较低,工作量较少,适用性强,事半功倍,为解决复杂的圆锥曲线作出了重要贡献。
圆锥曲线求解技巧

圆锥曲线求解技巧圆锥曲线是数学中重要的一个分支,包括圆、椭圆、抛物线和双曲线。
它们都具有各自独特的性质和方程形式。
在求解圆锥曲线的问题时,有一些常见的技巧和方法可以帮助我们简化计算和理解问题。
下面是一些圆锥曲线求解技巧的介绍。
1. 几何特征:首先,了解每种圆锥曲线的几何特征是非常重要的。
圆是所有圆锥曲线中最简单的一种,其方程形式为x²+ y²= r²,其中r是圆的半径。
椭圆具有中心点和两个焦点,其方程形式为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)是中心点的坐标,a和b是椭圆在x轴和y轴上的半径。
抛物线则有焦点和直线的焦点形式,其方程形式为y²= 4ax或x²= 4ay,其中a是抛物线的焦距。
双曲线也有焦点和直线的形式,其方程形式为(x - h)²/a² - (y - k)²/b² = 1或者(y - k)²/b² - (x - h)²/a² = 1,其中(h, k)是中心点的坐标,a和b 是双曲线在x轴和y轴上的半径。
2. 参数化表示:参数化是一种将一个曲线表示为参数的函数的方法。
通过引入新的参数,我们可以简化对曲线的表示和求解。
例如,对于椭圆,我们可以引入参数化坐标x = a cosθ和y = b sinθ,其中a和b是椭圆的半径。
这样,我们可以将椭圆的方程简化为极坐标形式r = a(1 - e²)/(1 + e cosθ),其中e是椭圆的离心率。
同样地,对于抛物线,我们可以引入参数化坐标x = at²和y = 2at。
通过参数化,我们可以更容易地计算和理解曲线的性质。
3. 极坐标表示:极坐标是一种将点表示为距离和角度的方式。
对于圆锥曲线,极坐标表示是很有用的,特别是当涉及到对称性和角度的问题时。
圆锥曲线几何问题的转换

几何问题的转换一、基础知识:在圆锥曲线问题中,经常会遇到几何条件与代数条件的相互转化,合理的进行几何条件的转化往往可以起到“四两拨千斤”的作用,极大的简化运算的复杂程度,在本节中,将列举常见的一些几何条件的转化。
1、在几何问题的转化中,向量是一个重要的桥梁:一方面,几何图形中的线段变为有向线段后可以承载向量;另一方面,向量在坐标系中能够坐标化,从而将几何图形的要素转化为坐标的运算,与方程和变量找到联系2、常见几何问题的转化: (1)角度问题:① 若与直线倾斜角有关,则可以考虑转化为斜率k② 若需要判断角是锐角还是钝角,则可将此角作为向量的夹角,从而利用向量数量积的符号进行判定(2)点与圆的位置关系① 可以利用圆的定义,转化为点到圆心距离与半径的联系,但需要解出圆的方程,在有些题目中计算量较大② 若给出圆的一条直径,则可根据该点与直径端点连线的夹角进行判定:若点在圆内,ACB ∠为钝角(再转为向量:0CA CB ⋅<;若点在圆上,则ACB ∠为直角(0CA CB ⋅=);若点在圆外,则ACB ∠为锐角(0CA CB ⋅>) (3)三点共线问题① 通过斜率:任取两点求出斜率,若斜率相等,则三点共线 ② 通过向量:任取两点确定向量,若向量共线,则三点共线(4)直线的平行垂直关系:可转化为对应向量的平行与垂直问题,从而转为坐标运算:()()1122,,,a x y b x y ==,则,a b 共线1221x y x y ⇔=;a b ⊥12120x x y y ⇔+=(5)平行(共线)线段的比例问题:可转化为向量的数乘关系(6)平行(共线)线段的乘积问题:可将线段变为向量,从而转化为向量数量积问题(注意向量的方向是同向还是反向)3、常见几何图形问题的转化(1)三角形的“重心”:设不共线的三点()()()112233,,,,,A x y B x y C x y ,则ABC 的重心123123,33x x x y y y G ++++⎛⎫⎪⎝⎭(2)三角形的“垂心”:伴随着垂直关系,即顶点与垂心的连线与底边垂直,从而可转化为向量数量积为零(3)三角形的“内心”:伴随着角平分线,由角平分线性质可知(如图):,IP AC IQ AQ ⊥⊥I 在BAC ∠的角平分线上AI AC AI AB AP AQ ACAB⋅⋅⇒=⇒=(4)P 是以,DA DB 为邻边的平行四边形的顶点DP DA DB ⇒=+(5)P 是以,DA DB 为邻边的菱形的顶点:P 在AB 垂直平分线上(6)共线线段长度的乘积:若,,A B C 共线,则线段的乘积可转化为向量的数量积,从而简化运算,(要注意向量的夹角)例如:AC AB AC AB ⋅=⋅,AC BC AC BC ⋅=-⋅CA二、典型例题:例1:如图:,A B 分别是椭圆()2222:10x y C a b a b+=>>的左右顶点,F 为其右焦点,2是,AF FB 的等差中项,3是,AF FB 的等比中项(1)求椭圆C 的方程(2)已知P 是椭圆C 上异于,A B 的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ AP ⊥,并交直线l 于点Q 。
圆锥曲线解题技巧和方法综合方法

圆锥曲线的解题技巧一、常规七大题型:(1) 中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两 点为(X i ,yJ , (x 2 ,y 2),代入方程,然后两方程相减,再应用中点关系 及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参 数。
2 2X 7 如:(1) r T =1(ab 0)与直线相交于A 、B ,设弦AB 中点为a b M(x o ,y o ),则有畤 2k = O 。
a b 2 2 (2) 笃-% fa 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为 a b(3) y 2=2px (p>o )与直线I 相交于A 、B 设弦AB 中点为M(x °,y o ),则有 2y o k=2p,即 y o k=p.2典型例题 给定双曲线X 2 -亍=1。
过A (2,1)的直线与双曲线交于 两点P i 及P 2,求线段P i P 2的中点P 的轨迹方程。
(2) 焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F i 、F 2构成的三角形问题,常用 正、余弦定理搭桥。
2 2典型例题 设P(x,y)为椭圆 J 七二1上任一点,F i (-c ,o), F 2(c,o )a b 为焦点,• PF/?二〉,PF 2F 1 二。
sin (口 + P )(1) 求证离心率e 二sina + sin P M(x o ,y o)则有 直 Yoa 2b 2(2)求IPF J PF2|3的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程2=p(x 1)(p 0),直线y = t与轴的交点在抛物线准线的右边。
(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且0A丄OB,求p关于t的函数f(t)的表达式。
圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题解析几何是数学中的一个重要分支,它通过运用几何图形和代数方法解决各种问题。
而在解析几何中,圆锥曲线是一个特别重要的概念,包括椭圆、双曲线和抛物线。
在解析几何问题中,我们可以运用平移与旋转变换的方法,来简化解答问题的过程。
本文将介绍圆锥曲线解题技巧与方法,并探讨如何通过平移与旋转变换来简化解析几何问题。
一、椭圆的解析几何问题对于椭圆的解析几何问题,我们可以运用平移与旋转变换的方法来简化解答问题的过程。
首先,我们将椭圆的中心平移到坐标原点上,这样可以将椭圆的方程形式简化为标准方程。
对于椭圆的标准方程,可以通过旋转变换来使其长轴与坐标轴重合。
通过变换后的方程,我们可以更加方便地求解椭圆的焦点、顶点、离心率等重要参数。
二、双曲线的解析几何问题对于双曲线的解析几何问题,同样可以通过平移与旋转变换来简化解答问题的过程。
首先,我们可以将双曲线的中心平移到坐标原点上,使其方程形式变为标准方程。
通过旋转变换,我们可以将双曲线的方程转化为标准方程,使其对称轴与坐标轴重合。
这样,我们就可以更方便地求解双曲线的焦点、渐近线等重要参数。
三、抛物线的解析几何问题对于抛物线的解析几何问题,同样可以利用平移与旋转变换来简化解答问题的过程。
将抛物线的焦点平移到坐标原点上,将其方程形式转化为标准方程,从而更便捷地求解抛物线的顶点、焦点、直径等重要参数。
通过旋转变换,使抛物线的方程转化为标准方程,使其对称轴与坐标轴重合,进一步简化计算过程。
四、通过平移与旋转变换简化解析几何问题的优势通过平移与旋转变换来简化解析几何问题,可以将图形的方程形式转化为标准方程,从而更方便地计算图形的重要参数。
这种方法的优势在于能够减少问题的复杂度,简化计算过程,提高解题的效率。
通过合理运用平移与旋转变换,可以将解析几何问题转变为更加简单直观的形式,使问题更易于理解和解答。
总结:对于解析几何问题中的圆锥曲线,我们可以运用平移与旋转变换的方法来简化解答问题的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何问题的转换一、基础知识:在圆锥曲线问题中,经常会遇到几何条件与代数条件的相互转化,合理的进行几何条件的转化往往可以起到“四两拨千斤”的作用,极大的简化运算的复杂程度,在本节中,将列举常见的一些几何条件的转化。
1、在几何问题的转化中,向量是一个重要的桥梁:一方面,几何图形中的线段变为有向线段后可以承载向量;另一方面,向量在坐标系中能够坐标化,从而将几何图形的要素转化为坐标的运算,与方程和变量找到联系 2、常见几何问题的转化: (1)角度问题:① 若与直线倾斜角有关,则可以考虑转化为斜率k② 若需要判断角是锐角还是钝角,则可将此角作为向量的夹角,从而利用向量数量积的符号进行判定 (2)点与圆的位置关系① 可以利用圆的定义,转化为点到圆心距离与半径的联系,但需要解出圆的方程,在有些题目中计算量较大② 若给出圆的一条直径,则可根据该点与直径端点连线的夹角进行判定:若点在圆内,ACB ∠为钝角(再转为向量:0CA CB ⋅<;若点在圆上,则ACB ∠为直角(0CA CB ⋅=);若点在圆外,则ACB ∠为锐角(0CA CB ⋅>) (3)三点共线问题① 通过斜率:任取两点求出斜率,若斜率相等,则三点共线 ② 通过向量:任取两点确定向量,若向量共线,则三点共线(4)直线的平行垂直关系:可转化为对应向量的平行与垂直问题,从而转为坐标运算:()()1122,,,a x y b x y ==,则,a b 共线1221x y x y ⇔=;a b ⊥12120x x y y ⇔+=(5)平行(共线)线段的比例问题:可转化为向量的数乘关系(6)平行(共线)线段的乘积问题:可将线段变为向量,从而转化为向量数量积问题(注意向量的方向是同向还是反向)3、常见几何图形问题的转化(1)三角形的“重心”:设不共线的三点()()()112233,,,,,A x y B x y C x y ,则ABC 的重心123123,33x x x y y y G ++++⎛⎫⎪⎝⎭(2)三角形的“垂心”:伴随着垂直关系,即顶点与垂心的连线与底边垂直,从而可转化为向量数量积为零(3)三角形的“内心”:伴随着角平分线,由角平分线性质可知(如图):,IP AC IQ AQ ⊥⊥I 在BAC ∠的角平分线上AI AC AI AB AP AQ ACAB⋅⋅⇒=⇒=(4)P 是以,DA DB 为邻边的平行四边形的顶点DP DA DB ⇒=+(5)P 是以,DA DB 为邻边的菱形的顶点:P 在AB 垂直平分线上C(6)共线线段长度的乘积:若,,A B C 共线,则线段的乘积可转化为向量的数量积,从而简化运算,(要注意向量的夹角)例如:AC AB AC AB ⋅=⋅,AC BC AC BC ⋅=-⋅二、典型例题:例1:如图:,A B 分别是椭圆()2222:10x y C a b a b+=>>的左右顶点,F 为其右焦点,2是,AF FB 的等差中项,3是,AF FB 的等比中项(1)求椭圆C 的方程(2)已知P 是椭圆C 上异于,A B 的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ AP ⊥,并交直线l 于点Q 。
证明:,,Q PB 三点共线解:(1)依题意可得:()()(),0,,0,,0A a B a F c -,AF c a BF a c ∴=+=-2是,AF FB 的等差中项 42AF FB a c a c a ∴=+=++-=A2a ∴=3是,AF FB 的等比中项()()2222AF FB a c a c a c b ∴=⋅=+-=-=23b ∴=椭圆方程为:22143x y += (2)由(1)可得:()()()2,0,2,0,1,0A B F -设():2AP y k x =+,设()11,P x y ,联立直线与椭圆方程可得:()()22222234124316161202x y k x k x k y k x ⎧+=⎪⇒+++-=⎨=+⎪⎩ 2211221612684343A k k x x x k k --∴=⇒=++ ()11212243ky k x k ∴=+=+ 2226812,4343k k P k k ⎛⎫-∴ ⎪++⎝⎭另一方面,因为FQ AP ⊥ 1FQ k k∴=-()1:1FQ y x k ∴=--,联立方程:()1132,2y x Q kk x ⎧=--⎪⎛⎫⇒-⎨ ⎪⎝⎭⎪=-⎩()2,0B()303224BQk k k -∴==--- 22221201234368164243BPkk k k k k k k --+===---+ BQ BP k k ∴=,,B Q P ∴三点共线例2:已知椭圆)0(12222>>=+b a by a x 的右焦点为F ,M 为上顶点,O 为坐标原点,若△OMF 的面积为21,且椭圆的离心率为22. (1)求椭圆的方程;(2)是否存在直线l 交椭圆于P ,Q 两点, 且使点F 为△PQM 的垂心若存在,求出直线l 的方程;若不存在,请说明理由. 解:(1)111222OMFSOM OF bc =⋅⋅==::2c e a b c a ==⇒= 1b c ∴== 2222a b c ∴=+=∴椭圆方程为:2212x y += (2)设),(11y x P ,),,(22y x Q 由(1)可得:()()0,1,1,0M F1MF k ∴=-F 为△PQM 的垂心MF PQ ∴⊥ 11PQ MFk k ∴=-=设:PQ y x m =+由F 为△PQM 的垂心可得:MP FQ ⊥()()1122,1,1,MP x y FQ x y =-=-()()1212110MP FQ x x y y ∴⋅=-+-= ①因为,P Q 在直线y x m =+上1122y x m y x m =+⎧∴⎨=+⎩,代入①可得:()()()1212110x x x m x m -++-+=即0)1)((222121=-+-++m m m x x x x ② 考虑联立方程:2222y x m x y =+⎧⎨+=⎩ 得0224322=-++m mx x . ()22216122203m m m ∆=-->⇒<1243mx x ∴+=-,322221-=m x x .代入②可得: ()2222421033m m m m m -⎛⎫⋅+-⋅-+-= ⎪⎝⎭解得:43m =-或1m =当1=m 时,△PQM 不存在,故舍去当34-=m 时,所求直线l 存在,直线l 的方程为34-=x y小炼有话说:在高中阶段涉及到三角形垂心的性质,为垂心与三角形顶点的连线垂直底边,所以对垂心的利用通常伴随着垂直条件,在解析几何中即可转化为向量的坐标运算(或是斜率关系)例3:如图,椭圆)0(12222>>=+b a by a x 的一个焦点是()1,0F ,O 为坐标原点.(1)若椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(2)设过点F 且不垂直x 轴的直线l 交椭圆于,A B 两点,若直线l 绕点F 任意转动,恒有222OA OB AB +<, 求a 的取值范围.解:(1)由图可得:10,3M b ⎛⎫⎪⎝⎭由正三角形性质可得:3,6MF MFO k π∠==-133013MFb k -∴==-- 3b ∴= 2224a b c ∴=+=∴椭圆方程为:22143x y += (2)设():1l y k x =-,()()1122,,,A x y B x y222OA OB AB +<222cos 02OA OB ABAOB OA OB+-∴∠=<AOB ∴∠为钝角12120OA OB x x y y ∴⋅=+<联立直线与椭圆方程:()()222222222222211y k x b x a k x a b b x a y a b=-⎧⎪⇒+-=⎨+=⎪⎩,整理可得:()222222222220a kb x a k x a k a b +-+-=22222212122222222,a k a k a b x x x x a k b a k b -∴+==++()()()22221212121211y y k x x k x x k x x k ∴=--=-++2222222222222222222222a k a b a k k b a b k k k k a k b a k b a--=⋅-⋅+=++= 22222222212122220a k a b k b a b k x x y y a k b -+-∴+=<+2222222220a k a b k b a b k -+-<恒成立即()2222222k a b a b a b +-<恒成立22220a b a b ∴+-<221b a =-()2222110a a a ∴---<解得:12a +>a ∴的取值范围是12⎛⎫++∞ ⎪⎝⎭例4:设,A B 分别为椭圆()222210x y a b a b+=>>的左、右顶点,椭圆长半轴的长等于焦距,且椭圆上的点到右焦点距离的最小值为1(1)求椭圆的方程;(2)设P 为直线4x =上不同于点()4,0的任意一点, 若直线,AP BP 分别与椭圆相交于异于,A B 的点,M N ,证明:点B 在以MN 为直径的圆内 解:(1)依题意可得2a c =,且到 右焦点距离的最小值为1a c -= 可解得:2,1a c ==b ∴=∴椭圆方程为22143x y += (2)思路:若要证B 在以MN 为直径的圆内,只需证明MBN ∠为钝角,即MBP ∠为锐角,从而只需证明0BM BP ⋅>,因为,A B 坐标可求,所以只要设出AM 直线(斜率为k ) ,联立方程利用韦达定理即可用k 表示出M 的坐标,从而BM BP ⋅可用1k 表示。
即可判断BM BP ⋅的符号,进而完成证明 解:由(1)可得()()2,0,2,0A B -,设直线,AM BN 的斜率分别为k ,()11,M x y ,则():2AM y k x =+ 联立AM 与椭圆方程可得:()2223412y k x x y =+⎧⎪⎨+=⎪⎩,消去y 可得:()2222431616120k x k x k +++-= 2211221612684343A k k x x x k k --∴=⇒=++11212243ky kx k k ∴=+=+,即2226812,4343k k M k k ⎛⎫- ⎪++⎝⎭设()04,P y ,因为P 在直线AM 上,所以()0426y k k =+=,即()4,6P k()22216122,6,,4343k k BP k BM k k ⎛⎫-∴== ⎪++⎝⎭2222232124060434343k k k BP BM k k k k -∴⋅=+⋅=>+++MBP ∴∠为锐角, MBN ∴∠为钝角 M ∴在以MN 为直径的圆内例5:如图所示,已知过抛物线24x y =的焦点F 的直线l 与抛物线相交于,A B 两点,与椭圆2233142y x +=的交点为,C D ,是否存在直线l 使得AF CF BF DF ⋅=⋅若存在,求出直线l 的方程,若不存在,请说明理由 解:依题意可知抛物线焦点()0,1F ,设:1l y kx =+AF CF BF DF ⋅=⋅ AF DF BFCF∴=,不妨设AF DF BFCFλ==则,AF FB DF FC λλ==设()()()()11223344,,,,,,,A x y B x y C x y D x y()()1122,1,,1AF x y FB x y ∴=--=- ()()3344,1,,1CF x y FD x y =--=-1234x x x x λλ-=⎧∴⎨-=⎩ 考虑联立直线与抛物线方程:2214404y kx x kx x y=+⎧⇒--=⎨=⎩ ()1222122144x x x k x x x λλ+=-=-⎧⎪∴⎨=-=-⎪⎩ ,消去2x 可得:()2214k λλ-=-- ① 联立直线与椭圆方程:()222216314634y kx x kx x y =+⎧⇒-+=⎨+=⎩,整理可得:()2236610kx kx ++-=()3442234426136136k x x x k x x x k λλ⎧+=-=-⎪⎪+∴⎨⎪=-=-⎪+⎩()22213636k k λλ-∴=--+ ② 由①②可得:22236436k k k -=-+,解得:211k k =⇒=±所以存在满足条件的直线,其方程为:1y x =±+例6:在平面直角坐标系xOy 中,已知抛物线()220x py p =>的准线方程为12y =-,过点()4,0M 作抛物线的切线MA ,切点为A(异于点O ),直线l 过点M 与抛物线交于两点,P Q ,与直线OA 交于点N (1)求抛物线的方程 (2)试问MN MN MPMQ+的值是否为定值若是,求出定值;若不是,请说明理由解:(1)由准线方程可得:1122p p -=-⇒= ∴抛物线方程:22x y =(2)设切点()00,A x y ,抛物线为212y x ='y x ∴= ∴ 切线斜率为0k x =∴ 切线方程为:()000y y x x x -=-,代入()4,0M 及20012y x =可得:()200142x x x -=-,解得:00x =(舍)或08x = ()8,32A ∴ :4OA y x =设:4PQ x my =+,,,M P N Q 共线且M 在x 轴上11P Q N N N N P Q PQ P Q y y MNMNy y y y MP MQ y y y y y y ⎛⎫+∴+=+=+=⋅ ⎪ ⎪⎝⎭ 联立PQ 和抛物线方程:()222424x y my y x my ⎧=⇒+=⎨=+⎩,整理可得:()2282160m y m y +-+= 222816,P Q P Qm y y y y m m -∴+=⋅= 再联立,OA PQ 直线方程:416414N y x y x my m =⎧⇒=⎨=+-⎩ 22281621614P Q N P Q m y y MN MN m y MP MQ y y mm -+∴+=⋅=⋅=- 例7:在ABC 中,,A B的坐标分别是()),,点G 是ABC 的重心,y 轴上一点M 满足GM ∥AB ,且MC MB =(1)求ABC 的顶点C 的轨迹E 的方程(2)直线:l y kx m =+与轨迹E 相交于,P Q 两点,若在轨迹E 上存在点R ,使得四边形OPRQ 为平行四边形(其中O 为坐标原点),求m 的取值范围 解:(1)设(),C x y 由G 是ABC 的重心可得:,33x y G ⎛⎫ ⎪⎝⎭ 由y 轴上一点M 满足平行关系,可得0,3y M ⎛⎫ ⎪⎝⎭由MC MB =可得:=化简可得:()221026x y y +=≠C ∴的轨迹E 的方程为:()221026x y y +=≠(2)四边形OPRQ 为平行四边形OR OP OQ ∴=+设()()1122,,,P x y Q x y ()1212,R x x y y ∴++R 在椭圆上()()22121236x x y y ∴+++=()()22221122121233626xy x y x x y y +++++= ①因为,P Q 在椭圆上,所以221122223636x y x y ⎧+=⎪⎨+=⎪⎩,代入①可得: 121212126212633x x y y x x y y ++=⇒+=- ②联立方程可得:()22222326036y kx m k x kmx m x y =+⎧⇒+++-=⎨+=⎩ 212122226,33km m x x x x k k -∴+=-=++ ()()()2222121212122363m k y y kx m kx m k x x km x x m k -∴=++=+++=+代入②可得:2222222636332333m m k m k k k --⋅+=-⇒=+++ ()2223260kx kmx m +++-=有两不等实根可得:()()222244360k m k m ∆=-+->,即2236180m k -++>,代入2223k m =- ()22236231800m m m ∴-+-+>⇒>另一方面:22230m k -=≥2322m m ∴≥⇒≥或2m ≤-6,,22m ⎛⎡⎫∴∈-∞+∞ ⎪⎢⎝⎦⎣⎭例8:已知椭圆()2222:10x y C a b a b +=>>的离心率为12,直线l 过点()()4,0,0,2A B ,且与椭圆C 相切于点P(1)求椭圆C 的方程(2)是否存在过点()4,0A 的直线m 与椭圆交于不同的两点,M N ,使得23635APAM AN =⋅若存在,求出直线m 的方程;若不存在,请说明理由解(1)12c e a == ::2a b c ∴= ∴椭圆方程化为:22222221341243x y x y c c c+=⇒+=l 过()()4,0,0,2A B∴设直线1:12422x y l y x +=⇒=-+ 联立直线与椭圆方程:2223412122x y c y x ⎧+=⎪⎨=-+⎪⎩消去y 可得:2221342122x x c ⎛⎫+-+= ⎪⎝⎭ 整理可得:222430x x c -+-=l 与椭圆相切于P()2444301c c ∴∆=--=⇒=∴椭圆方程为:22143x y +=,且可解得31,2P ⎛⎫⎪⎝⎭(2)思路:设直线m 为()4y k x =-,()()1122,,,M x y N x y ,由(1)可得:31,2P ⎛⎫ ⎪⎝⎭,再由()4,0A 可知2454AP =,若要求得k (或证明不存在满足条件的k ),则可通过等式23635AP AM AN =⋅列出关于k 的方程。