加样回收试验
加样回收率

加样回收率液色迷人欧阳歌谷(2021.02.01)加标回收率的测定可以反应测试结果的准确度。
进行加标回收率测按时应注意以下问题:1)加标物的形态应和待测物的形态一致。
2)加标量应尽量与样品中待测物含量相近,并注意对样品容积的影响。
3)加标后的测定值不该超出办法的测定上限的90%。
计算办法一: (测定量已含量)/加入量乘以100%计算办法二: 测定量/(已含量+加入量) 乘以100%以上两种计算办法不知哪种是可行的,还是都可以使用?我认为办法一可行,更准确些加样回收率(%)=(测得量一原有量)/加入量x 100%=实际测得加入量/理论加入量办法二不成行加样回收率(%)=测定量/(已含量+加入量)x 100%=实际测得总量/理论总量从误差传递的角度,以第一种为宜我认为办法一可行,版药典一部附录加样回收率也是这样要求的。
关于加样回收率的实验设计:1.高中低三个浓度的选取原则:高浓度应为样品浓度的120%左右、中浓度应为样品浓度的100%左右、低浓度应为样品浓度的80%左右。
2.高中低三个浓度样品的制备:最好采取加入50%量的样品,然后辨别加入70%、50%、30%量的对比品蕴藏液,制成供试样品,每个浓度三份。
3.测定:采取测定办法辨别测定,这个时候要注意你之前制定的标准曲线的规模(线性规模),是否能涵盖这九份样品的浓度规模?也就是说这九份样品的浓度都应该在你的标准曲线规模内。
4.获得测定结果后的结算:应采取你的结果值,也就是每份样品的最终计算结果,而不是测定过程中没有经过计算的数据,因为你的加样回收率要体现的是全部操纵过程的准确与变异水平,其中也包含数据计算。
关于药物定量阐发中加样回收率实验的再探讨回收率包含绝对回收率和相对回收率。
绝对回收率考察的是经过样品处理后能用于阐发的药物的比例。
因为不管是生物基质还是制剂辅料中的药物,经过样品处理都有一定的损失。
做为一个阐发办法,绝对回收率一般要求年夜于50%才行。
回收试验

• 加入标准液的体积最好在整个反应液体积的10%以内。若 稀释过大,误差将发生改变。
八、方法学评价
回收实验: 一般检验方法要求回收率在95%~105%之间,最为理
想的回收率应是100%。回收率接近100%,说明分析方法 对于分析物无论在纯溶液中,还是在复杂的基体环境中, 反应能力是一致的,分析物不受基体效应影响,若回收率 明显偏离100%,说明分析物处于的基体环境不同,反应 能力有明显差别。
1、GOD-POD法测血糖原理: 葡萄糖氧化酶(glucose oxidase,GOD)能将葡萄糖氧化为葡
萄糖酸,并释放出过氧化氢。后者在过氧化物酶(peroxidase, POD)的作用下与色原性氧受体4-氨基安替比林偶联酚缩合成红色 醌类化合物,即Trinder反应。该红色醌类化合物的生成量与葡萄糖 含量成正比。
按下表操作
混匀,置水浴箱37℃,15分钟,505nm空白管调零,722型分光光度计分别测各 管A值。
六、结果计算
回收实验数据处理
1.加入浓度计算: 加入浓度(mmol/L)= 标准液 病浓 人 标 m 样 度 准 标 lm 品 液 l准 量 m 量 液 l 量
2.回收浓度计算:
回收浓度=回收样品测得浓度-基础样品测得浓度
回收实验原理本分析方法正确测定加入常规分析样品的纯分析物的能力用亍测定试验方法的比例系统误差这种误差随分析物的浓度增加而增加指加入物浓度常用样品中其他物质与分析物竞争分析试剂并与之发生反应而引起
回收试验
一、实验目的
1.掌握回收试验的原理和方法。。 2.熟悉本实验操作过程,掌握实验数据处理的方法。
二、实验原理
微量移液器
加样回收率

加样回收率液色迷人加标回收率的测定可以反映测试结果的准确度。
进行加标回收率测定时应注意以下问题:1)加标物的形态应和待测物的形态一致。
2)加标量应尽量与样品中待测物含量相近,并注意对样品容积的影响。
3)加标后的测定值不应超过方法的测定上限的90%。
计算方法一: (测定量-已含量)/加入量乘以100%计算方法二: 测定量/(已含量+加入量) 乘以100%以上两种计算方法不知哪种是可行的,还是都可以使用?我认为方法一可行,更准确些加样回收率(%)=(测得量一原有量)/加入量x 100%=实际测得加入量/理论加入量方法二不可行加样回收率(%)=测定量/(已含量+加入量) x 100%=实际测得总量/理论总量从误差传递的角度,以第一种为宜我认为方法一可行,2005年版药典一部附录加样回收率也是这样要求的。
关于加样回收率的实验设计:1.高中低三个浓度的选取原则:高浓度应为样品浓度的120%左右、中浓度应为样品浓度的100%左右、低浓度应为样品浓度的80%左右。
2.高中低三个浓度样品的制备:最好采用加入50%量的样品,然后分别加入70%、50%、30%量的对照品储备液,制成供试样品,每个浓度三份。
3.测定:采用测定方法分别测定,这个时候要注意你之前制定的标准曲线的范围(线性范围),是否能涵盖这九份样品的浓度范围也就是说这九份样品的浓度都应该在你的标准曲线范围内。
4.得到测定结果后的结算:应采用你的结果值,也就是每份样品的最终计算结果,而不是测定过程中没有经过计算的数据,因为你的加样回收率要体现的是全部操作过程的准确与变异程度,其中也包括数据计算。
关于药物定量分析中加样回收率实验的再探讨?回收率包括绝对回收率和相对回收率。
绝对回收率考察的是经过样品处理后能用于分析的药物的比例。
因为不论是生物基质还是制剂辅料中的药物,经过样品处理都有一定的损失。
做为一个分析方法,绝对回收率一般要求大于50%才行。
它是在空白基质中定量加入药物,经处理后与标准品的比值。
加样回收实验

3. 含量测定及溶出量测定除检测限、 定量限外,其它都要求。
(十)各种含量测定方法对效能指标的要 求
1. 容量分析法:用原料药精制品(含量 >99.5%)或对照品考察方法的精密度,相 对标准差一般应不大于0.2%;进行回收 率试验。回收率一般在99.7~100.3%之 间。
仪器分析:通过测定一组空的 样品的背景信号后计算标准差S。以 1OS来估算定量限度。(以定量限度 制备的样品来验证)
非仪器分析:通过分析己知被测 物浓度的样品并确定一个样品中被 测物可被准确和精密测定出的最低 浓度(量)。
(五)专属性(specificity ) (选择 性):
指有其他成分(杂质、降解物、辅料 等)可能存在情况下采用的方法能准确测 定出被测物的特性,能反映该方法在有共 存物时对供试物准确而专属的测定能力, 是指该法用于复杂样品分析时是否受到相 互干扰程度的度量。
指有其他成分杂质降解物辅料等可能存在情况下采用的方法能准确测定出被测物的特性定出被测物的特性能反映该方法在有共能反映该方法在有共存物时对供试物准确而专属的测定能力是指该法用于复杂样品分析时是否受到相互干扰程度的度量
第三节 药品质量标准分析方法验证
一、目的
证明所采用的分析方法适合于相 应的检测要求。
二、用途 (一)药品质量标准起草时,分析方法 需经验证。 (二)药物生产方法变更、制剂的组分 变更、原分析方法进行修订时,分析方 法需经验证。
结果不受影响的承受程度,为常规检验提
供依据。是衡量实验室和工作人员之间在
正常情况下实验结果重现性的尺度。 分析方法重现性的测定是通过在不同
的实验室内不同的实验者对同一样品的分 别测试而获得的。(获得的这种再与正常 检定下的精密度进行比较,从而确定该法 的耐用性,或称粗放度)
加样回收率

加样回收率液色迷人加标回收率的测定可以反映测试结果的准确度。
进行加标回收率测定时应注意以下问题:1)加标物的形态应和待测物的形态一致。
2)加标量应尽量与样品中待测物含量相近,并注意对样品容积的影响.3)加标后的测定值不应超过方法的测定上限的90%。
计算方法一: (测定量-已含量)/加入量乘以100%计算方法二:测定量/(已含量+加入量) 乘以100%以上两种计算方法不知哪种是可行的,还是都可以使用?我认为方法一可行,更准确些加样回收率(%)=(测得量一原有量)/加入量x 100%=实际测得加入量/理论加入量方法二不可行加样回收率(%)=测定量/(已含量+加入量) x 100%=实际测得总量/理论总量从误差传递的角度,以第一种为宜我认为方法一可行,2005年版药典一部附录加样回收率也是这样要求的。
关于加样回收率的实验设计:1.高中低三个浓度的选取原则:高浓度应为样品浓度的120%左右、中浓度应为样品浓度的100%左右、低浓度应为样品浓度的80%左右。
2.高中低三个浓度样品的制备:最好采用加入50%量的样品,然后分别加入70%、50%、30%量的对照品储备液,制成供试样品,每个浓度三份。
3.测定:采用测定方法分别测定,这个时候要注意你之前制定的标准曲线的范围(线性范围),是否能涵盖这九份样品的浓度范围?也就是说这九份样品的浓度都应该在你的标准曲线范围内。
4.得到测定结果后的结算:应采用你的结果值,也就是每份样品的最终计算结果,而不是测定过程中没有经过计算的数据,因为你的加样回收率要体现的是全部操作过程的准确与变异程度,其中也包括数据计算。
关于药物定量分析中加样回收率实验的再探讨回收率包括绝对回收率和相对回收率.绝对回收率考察的是经过样品处理后能用于分析的药物的比例.因为不论是生物基质还是制剂辅料中的药物,经过样品处理都有一定的损失.做为一个分析方法,绝对回收率一般要求大于50%才行。
它是在空白基质中定量加入药物,经处理后与标准品的比值。
《加样回收实验》课件

实验意义二
02
通过加样回收实验,可以发现实验室检测方法中存在的问题和
不足,促进实验室不断完善和改进检测技术。
实验意义三
03
加样回收实验有助于提高实验室的检测水平和质量意识,增强
实验室的竞争力和信誉度。
实验局限性及展望
实验局限性一
实验局ቤተ መጻሕፍቲ ባይዱ性二
加样回收实验需要耗费较多的时间和人力 ,对于大规模的检测任务可能存在一定的 挑战。
加样回收
加样量确定
回收率计算
根据实验目的和要求,确定合适的加 样量。
根据实验结果,计算加样回收率,评 估加样效果。
加入标准品
将已知浓度的标准品加入到样品中, 确保加样均匀。
结果计算
数据记录
详细记录实验过程中的数据,包 括样品处理前后的浓度、加样量
等。
数据处理
根据记录的数据,进行必要的计 算和处理,得出实验结果。
结果分析
对实验结果进行分析,评估加样 回收实验的准确性和可靠性。
04
CATALOGUE
结果分析
数据处理
数据清洗
去除异常值、缺失值和重复数据,确保数据准确 性和可靠性。
数据转换
将数据转换为适合分析的格式,如百分比、比例 等。
数据分组
根据实验目的和要求,将数据分成不同的组或类 别,以便进行比较和分析。
THANKS
感谢观看
结果解读
解读实验结果
根据实验数据和图表,分析实验结果是否符合预期,并解释可能 的原因。
对比分析
将实验结果与相关文献或之前的实验结果进行比较,分析异同点并 解释原因。
推断结论
根据实验结果和对比分析,推断出实验的结论,并指出其适用范围 和局限性。
加样回收试验

加标回收综述资料

加标回收试验的定义和步骤加标回收试验的定义和步骤可以简单表述如下:“在测定样品时,于同一样品中加入一定量的标准物质进行测定,将测定结果扣除样品的测定值,计算回收率。
”从该定义和方法步骤可知,加标回收率的实质是所加入的标准物质的量被某检测方法实际测得的百分率。
通常的具体做法是:准备两份完全一致的样品,向其中一份添加标准物质,随后,将这两份样品按相同的检测方法进行检测,依据两个样品检测结果和标准物质添加量计算加标回收率,根据回收率结果评价方法和操作的准确性。
回收率计算公式为:加标试样是由原样和标准物质溶液混合后组成的,其总浓度等于原样在加标试样中形成的浓度值与加入的标准物质在加标试样中形成的浓度值之和。
由此可知,公式中的“加标试样测定值”应为加标试样的总质量值(在体积一致的情况,可以用总浓度值),而“试样测定值”应为原样在加标试样的质量值(在体积一致情况,可以用浓度值),两者均可由实验测定数据直接给定。
“加标量”应为标准物质在加标试样的总体积中形成的质量值(在体积一致的情况,可以用浓度值),由添加标准物质浓度、体积或质量直接给出。
回收率试验用于质量控制的原理相对比较简单。
回收率是添加待测物质标准物质后,通过方法测定结果计算得到该物质的测定值与添加操作步骤实际添加该物质量的百分率值。
由于添加标准物质的含量是可依据添加标准物质纯度和质量(或溶液体积)准确计算获得的,这样,加标试样测定值即可反映该测试方法或操作是否存在问题。
从理论上讲,一个准确可靠的方法,一个熟练的操作人员进行回收率试验,回收率的结果应在合理的范围内,回收率的平均值应接近100%,否则说明方法可能存在系统误差。
多次测定回收率的标准偏差也应处在某一水平。
任何某次测定回收率结果的异常偏差或波动可能反映该次测定结存在问题。
因此,根据回收率的结果可监控测试结果的质量。
回收率试验的作用(1)评价方法的准确度方法的准确度(accuracy)是指测量值和真值之间的符合程度,是评价方法的最重要指标之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现在一般都用第二种方法,又分两种添加方法:1 添加样品中含量一半的80%、100%和120%,每个两份2 添加样品中含量一半的50%、100%和150%,每个两份。
这两种都可以的计算时添加后测得的含量与原来样品的含量一半之差作分子,添加的含量做分母,并计算这6个结果的RSD,小于3%即可。
关于加样回收率的讨论已有报道[1-3],虽对加样回收率的两种计算方法均从不同侧面做了较透彻的讨论与选择,但均忽略了原样品(实际样品)中待测组分含量确定的方法及其误差性质对回收率结果可靠性的影响,有必要做进一步的探讨作为补充。
设原样品中待测组分的真实量为Xo,待测组分纯品标准加入的真实量为Yo,为统一讨论,我们把Yo的获得及加入过程也看为一种测量,那么,Xo、Yo及其总量的测得量分别为X、Y和Z,它们的测量误差分别为EX、EY和EZ,则目前回收率R有如下两种计算方法依据测得Xo的方法不同分以下两种情况讨论。
1成熟方法包括药典法及可靠的文献法。
由于选用的方法成熟可靠,测量误差小,则EX可忽略,而且Yo的获得及加入过程一般是可靠的,Ey亦可忽略,则(1)、(2)式可分别简化为(3)、(4)式:两式中,R唯一地与测量误差EZ相关,理论上讲,可以用来检验拟订方法的准确度。
2拟订方法同上讨论,Ey可以忽略,但由于X0是按拟订方法测得的,故EX不可盲目忽略,则(1)、(2)式可分别简化为(5)、(6)式:R并不唯一地与EZ相关,还与测定原样品中Xo的误差EX有关,是否可以用来检验拟订方法的准确度需要做进一步的讨论。
测量误差按其性质分为两类:偶然误差和系统误差,系统误差又包括恒定误差和比例误差。
偶然误差可以通过增加试验次数来消除,本文不做更深讨论,而系统误差却会给测定带来固定方向的偏差。
2.1系统误差为恒定误差:此时EX=EZ,所以(5)、(6)式可写为(7)、(8)式:即在该情况下,无论拟订方法的误差多大,回收率均为100%。
结果显然是不可靠的。
2.2系统误差为比例误差:设比例误差的比例系数为E,则EX=E·Xo,EZ=E·(Xo+Yo),则(5)、(6)式可分别写成(9)、(10)式:回收率的实质是单位真实量的测得量,而E是单位真实量的测量误差,所以R应等于1+E,此时,用(9)式计算回收率是可靠的,而用(10)式计算,R随Xo/(Xo+Yo)的值变化而变化,当且仅当Xo/(Xo+Yo)=0,即Xo=0或Yo为无穷大时,R=1+E。
但前者回收率试验实质上已是模拟样品回收率,而后者已变为纯品回收率试验,均不在本文讨论范围之内。
上面讨论的是两种极端情况,而在实际工作中,测量误差既包括恒定误差,又包括比例误差,文献认为:“仪器由于灵敏度等原因,测量一般为恒定误差,而方法误差也不全为比例误差,”另外,由于操作者造成的误差也往往表现为恒定误差,如对滴定终点指示剂变色的判断等。
这说明目前定量研究的误差多属恒定误差,所以用拟订方法测定原样品中待测组分的含量后计算回收率的方法并不可靠。
因此,虽然目前绝大多数药物分析工作者在做加样回收率计算时均使用(1)式,认为测得总量减去原样品测得量后即可消除原样品中待测组分含量及其测量误差的影响,但却未考虑到并非所有情况下均适用,反而会因此获得一个不真实的回收率,错误判断拟订方法的准确度。
例:我们把某一测定方法假设为一根容量足够大的刻度吸量管,首先我们假设它有恒定误差,它的Oml刻度处实为10ml,其余部分准确,即本吸量管有一10ml的恒定误差,下面结合上述讨论对该吸量管(即某一测定方法)的准确度做一个检验。
设X0=20ml,Y0=10ml,则EZ=-10ml。
如用(3)、(4)式计算:(3)R=1+(-10)/10=0%(4)R=1+(-10)/(20+10)=67%如用(5)、(6)两式计算:(5)R=[10+(-10)-(-10)]/10=100%(6)R=(20+10)+(-10)/20+10+10=100%由上可见,对于一个设定的明显有很大误差的测定方法,用拟订方法测定X0后计算却得出了“理想”的回收率数据,可见如此计算在测定存在恒定误差的情况下是不可靠的;而用成熟方法测定X0后,均得出方法不准确的结论,但用两式计算,结果明显不同,我们认为造成这一现象的原因是对于每次测定来说,由于误差恒定,(3)式把本应该由整个测定样品负担的误差均加在了测定样品的一部分,即Y0上,导致相对误差增大,也因此用(4)式计算比前者相对误差小,更接近100%(无论EZ的正与负);同时,我们还可发现当Y0变化时,R也在不断变化,那么,虽然从数学的角度来看,(4)式的计算是合理的,但到底加入量y0为多少时及选择哪种计算方法回收率计算的结果是可靠的呢?关于加样回收率试验中Y0为多少合适尚无统一说法,相对于原样品取量中待测组分的含量,Y0为其几分之一至数倍的都有,从设计方法上考虑,有的是数份回收率试验中均加入统一量的Y0,有的是Y0各不相同并形成一个梯度差,也有的Y0相同而原样品的取量不同等等,并且的确由于加样量不同得到了不同的回收率结果。
我们认为在某个拟订方法的操作中,原样品的质量及其取样量是相对恒定的,那么该方法应存在一个“实际回收率”,即实际工作中,对样品中的X。
用拟订方法测得X后,X/X0的值,做为上例中的样品,X0=20ml,EZ=10ml,那么“实际回收率”就应为[20+(-10)]/20=50%,这是最具有实际意义的数据,所以,无论加样量为多少或何种计算方法,回收率能够达到这一数据的即是正确的加样量及正确的计算方法,由此计算出的数据就是可靠的数据。
对于(4)式,Yo无论多大,R总是以50%为起点(即以1+EZ/Xo为起点),随Y0的增大,R无限接近100%,显然不能选择这种计算方法,更无从谈及加样量的问题;而用(3)式计算,R以负无穷大为起点(即以1+EZ/Yo为起点),随Yo的增大,R无限接近100%,当Yo=Xo时,R=50%,恰好与“实际回收率”相等。
所以,当测量误差为恒定误差时,应选用(3)式计算,Yo应同原样品中待测组分的含量相等或接近。
如果Yo小于原样品的含量,会夸大其误差,可能导致拟订方法失败的结论,而如果随意加大Yo,也可能会掩盖拟订方法的误差,给将来的进一步工作埋下隐患,两种情况下均会得到不可靠的回收率数据,应尽量避免。
关于该吸量管为比例误差的情况可如上设定讨论,此不赘述。
此时用(4)式或(9)式计算,结果是相同的,而对于纯品加入量Y0要求不很严格,只是不宜大小。
结果。
我们认为在某个拟订方法的操作中,原样品的质量及其取样量是相对恒定的,那么该方法应存在一个“实际回收率”,即实际工作中,对样品中的X。
用拟订方法测得X后,X/X0的值,做为上例中的样品,X0=20ml,EZ=10ml,那么“实际回收率”就应为[20+(-10)]/20=50%,这是最具有实际意义的数据,所以,无论加样量为多少或何种计算方法,回收率能够达到这一数据的即是正确的加样量及正确的计算方法,由此计算出的数据就是可靠的数据。
对于(4)式,Yo无论多大,R总是以50%为起点(即以1+EZ/Xo为起点),随Y0的增大,R无限接近100%,显然不能选择这种计算方法,更无从谈及加样量的问题;而用(3)式计算,R以负无穷大为起点(即以1+EZ/Yo为起点),随Yo的增大,R无限接近100%,当Yo=Xo时,R=50%,恰好与“实际回收率”相等。
所以,当测量误差为恒定误差时,应选用(3)式计算,Yo应同原样品中待测组分的含量相等或接近。
如果Yo小于原样品的含量,会夸大其误差,可能导致拟订方法失败的结论,而如果随意加大Yo,也可能会掩盖拟订方法的误差,给将来的进一步工作埋下隐患,两种情况下均会得到不可靠的回收率数据,应尽量避免。
关于该吸量管为比例误差的情况可如上设定讨论,此不赘述。
此时用(4)式或(9)式计算,结果是相同的,而对于纯品加入量Y0要求不很严格,只是不宜大小。
关于药物定量分析中加样回收率实验的再探讨回收率包括绝对回收率和相对回收率。
绝对回收率考察的是经过样品处理后能用于分析的药物的比例。
因为不论是生物基质还是制剂辅料中的药物,经过样品处理都有一定的损失。
做为一个分析方法,绝对回收率一般要求大于50%才行。
它是在空白基质中定量加入药物,经处理后与标准品的比值。
标准品为流动相直接稀释而来,而不是同样品一样处理。
若一样,只是不加基质来处理,可能会有很多影响因素被此屏蔽掉。
如全部转移有机相时只转移了98%等。
也就因此失去了绝对回收率的考察初衷。
相对回收率严格来说有两种。
一种是回收试验法,一种是加样回收试验法。
前者是在空白基质中加入药品,标准曲线也是同此,这种测定用得较多,但有标准曲线重复测定的嫌疑。
第二种是在已知浓度样品中加入药物,来和标准曲线比,标准曲线也是在基质中加药物。
相对回收率主要考察准确度。
准确度系指用该方法测定的结果与真实值或认可的参考值之间接近的程度。
有时也称真实度。
一定的准确度为定量测定的必要条件,因此涉及到定量测定的检测项目均需要验证准确度,如含量测定、杂质定量试验等。
准确度应在规定的范围内建立,对于制剂一般以回收率试验来进行验证。
试验设计需考虑在规定范围内,制备3个不同浓度的试样,各测定3次,即测定9次,报告已知加入量的回收率(%)或测定结果平均值与真实值之差及其可信限。
1.含量测定原料药可用已知纯度的对照品或符合要求的原料药进行测定,或用本法所得结果与已建立准确度的另一方法测定的结果进行比较。
制剂可用含已知量被测物的各组分混合物进行测定。
如不能得到制剂的全部组分,可向制剂中加入已知量的被测物进行测定,必要时,与另一个已建立准确度的方法比较结果。
一般制剂的含量测定的回收率是向辅料中加入处方量80%、100%、120%已知含量的主药,按含量测定的方法测定。
溶出度测定方法的回收率按处方量50%、80%、100%加入主药进行测定。
2.杂质定量试验杂质的定量试验可向原料药或制剂中加入已知量杂质进行测定。
如果不能得到杂质,可用本法测定结果与另一成熟的方法进行比较,如药典方法或经过验证的方法。
如不能测得杂质的相对响应因子,可在线测定杂质的相关数据,如采用二极管阵列检测器测定紫外光谱,当杂质的光谱与主成分的光谱相似,则可采用原料药的响应因子近似计算杂质含量(自身对照法)。
并应明确单个杂质和杂质总量相当于主成分的重量比(%)或面积比(%)。