(完整)上海师范大学高数试题(9)
上海市上海师范大学附中2025届数学高三第一学期期末复习检测试题含解析

上海市上海师范大学附中2025届数学高三第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量a 与向量()4,6m =平行,()5,1b =-,且14a b ⋅=,则a =( )A .()4,6B .()4,6--C .1313⎛⎫ ⎪ ⎪⎝⎭D .1313⎛-- ⎝⎭2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB = A .{}3 B .{}5C .{}3,5D .{}1,2,3,4,5,73.已知函数2()sincos 444f x x x x πππ=,则(1)(2)...(2020)f f f +++的值等于( ) A .2018B .1009C .1010D .2020 4.关于函数22tan ()cos 21tan x f x x x=++,下列说法正确的是( ) A .函数()f x 的定义域为RB .函数()f x 一个递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦C .函数()f x 的图像关于直线8x π=对称D .将函数2y x =图像向左平移8π个单位可得函数()y f x =的图像 5.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的x 的值为1,输出的x 的值为( )A .6481B .3227 C .89 D .16276.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( )A .1225B .1225- C .2425 D .2425-7.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a β⊂,b αβ=,则“//a α”是“//a b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件9.若函数12log,01,()(1)(3),1,x x f x x x x x <⎧⎪=⎨⎪--->⎩函数()()g x f x kx =+只有1个零点,则k 的取值范围是( )A .(1,0)-B .(,0)(1,)-∞⋃+∞C .(,1)(0,)-∞-+∞D .(0,1)10. “1cos 22α=-”是“3k παπ=+,k Z ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件11.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .36 cm 3B .48 cm 3C .60 cm 3D .72 cm 312.复数12z i =+,若复数12,z z 在复平面内对应的点关于虚轴对称,则12z z 等于( ) A .345i +- B .345i + C .34i -+ D .345i -+ 二、填空题:本题共4小题,每小题5分,共20分。
上海师范学校2020年高三数学文下学期期末试卷含解析

上海师范学校2020年高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,则“”是“”的()A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件参考答案:A2. 双曲线中,F2为其右焦点,A1为其左顶点,点B(0,b)在以A1F2为直径的圆上,则此双曲线的离心率为( )A. B. C. D.参考答案:D3. 已知分别是定义在上的偶函数和奇函数,且,则 ( )A.-3 B.-1 C. 1 D.3参考答案:C略4. 设动点在直线上,为坐标原点,以为直角边,为直角顶点作等腰,则动点的轨迹是()A.圆 B.两条平行直线 C.抛物线 D.双曲线参考答案:B略5. 设M(,)为抛物线C:上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则的取值范围是 ( )A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)参考答案:C由题意只要即可,而所以,简单考查抛物线的方程、直线与圆的位置关系、抛物线的定义及几何性质,是简单题。
6. 若偶函数在上是增函数,则下列关系式中成立的是高考资源A. B.C. D.参考答案:D7. 已知函数f(x)=4x3﹣ax+1存在n(n∈N)个零点对应的实数a构成的集合记为A(n),则()A.A(0)=(﹣∞,3] B.A(1)={2} C.A(2)=(3,+∞)D.A(3)=(3,+∞)参考答案:D【考点】函数零点的判定定理.【分析】令f(x)=0得出a=4x2+,令h(x)=4x2+,判断h(x)的单调性,作出h(x)的函数图象,利用函数图象判断方程h(x)=a的解的个数,从而得出A(n).【解答】解:令f(x)=0得a=4x2+,∴当f(x)有n个零点时,方程a=4x2+有n个不同的解.设h(x)=4x2+,则h′(x)=8x﹣=,∴当x>时,h′(x)>0,当x<0或0时,h′(x)<0.作出h(x)=4x2+的大致函数图象如下:由图象可知当a<3时,h(x)=a只有一解,当a=3时,h(x)=a有两解,当a>3时,h(x)=a有三解.∴A(0)=?,A(1)=(﹣∞,3),A(2)={3},A(3)=(3,+∞).故选D.8. 一个几何体的三视图如图所示,则该几何体的表面积为()A. 3πB. 4πC. 2π+4D.3π+4参考答案:D该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.9. 对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,下列函数中是准偶函数的是 ( )A.B. C. D.参考答案:【知识点】抽象函数及其应用.A 解:对于函数,若存在常数,使得取定义域内的每一个值,都有,则称为准偶函数,∴函数的对称轴是x=a,a≠0,选项B、C、D函数没有对称轴;函数f(x)=cos(x+1),有对称轴,且x=0不是对称轴,选项A正确.故选:A.【思路点拨】由题意判断f(x)为准偶函数的对称轴,然后依次判断选项即可.10. 若.则()A. B. C. D.参考答案:A【分析】利用诱导公式及同角三角函数的商数关系可得,再利用诱导公式及同角三角函数的平方关系化简,求值即可。
2019-2020学年上海师范学校高三数学理期末试题含解析

2019-2020学年上海师范学校高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 当时,复数(为虚数单位)子复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:2.已知函数,(C为复数),则等于A、B、 C、D、参考答案:答案:C解析:∵∴故选C3. 设是虚数单位,若复数为纯虚数,则实数的值为....参考答案:依题意.由复数为纯虚数可知,且,求得.故选.【解题探究】本题主要考查复数的基本概念与复数的运算.解题的关键是利用复数运算法则进行复数的乘法、除法运算,求解时还需要注意理解纯虚数的概念.4. 已知函数f t(x)=﹣(x﹣t)2+t(t∈R),设a>b,f(x)=,若函数y=f(x)﹣x+a﹣b有四个零点,则b﹣a的取值范围是( )A.(﹣∞,﹣2﹣)B.(﹣∞,2﹣) C.(﹣2﹣,0)D.(2﹣.0)参考答案:A【考点】根的存在性及根的个数判断;函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】解方程f a(x)=f b(x)得交点坐标,函数f(x)的图象与直线l:y=x+b﹣a有四个不同的交点,由图象知,点P在l下方,由此解得b﹣a的取值范围.【解答】解:作函数f(x)的图象,且解方程f a(x)=f b(x)得,﹣(x﹣a)2+a=﹣(x﹣b)2+b,解得x=,此时y=﹣(﹣b)2+b=﹣()2+b,即交点坐标为(,﹣()2+b),若y=f(x)﹣x+a﹣b有四个零点,即f(x)﹣x+a﹣b=0有四个根,即f(x)=x+b﹣a,分别作出f(x)与y=x+b﹣a的图象如图:要使函数y=f(x)﹣x+a﹣b有四个零点,即函数f(x)的图象与直线l:y=x+b﹣a有四个不同的交点.由图象知,点P在下方,所以﹣()2+b<+b﹣a,即()2>,设t=a﹣b,则t>0,则方程等价为>,即t2﹣4t﹣1>0,即t<2,或t>2+,∵t>0,∴t>2+,故b﹣a=﹣t<﹣2﹣,即b﹣a的取值范围是(﹣∞,﹣2﹣),故选:A【点评】本题主要考查根的存在性以及根的个数判断,函数的零点与方程的根的关系,体现了转化的数学思想,利用数形结合是解决本题的关键.5. 下面关于复数的四个结论,正确的是①②③④A.①② B.②③ C.②④D.③④参考答案:C6. 已知是虚数单位,则=A. B. C. D.参考答案:A略7. 若k∈R,则“k>3”是“方程﹣=1表示双曲线”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:A考点:双曲线的标准方程.专题:压轴题.分析:根据双曲线定义可知,要使方程表示双曲线k﹣3和k+3同号,进而求得k的范围即可判断是什么条件.解答:解:依题意:“方程﹣=1表示双曲线”可知(k﹣3)(k+3)>0,求得k>3或k<﹣3,则“k>3”是“方程﹣=1表示双曲线”的充分不必要条件.故选A.点评:本题主要考查了双曲线的标准方程.解题时要注意讨论焦点在x轴和y轴两种情况.8. 在△ABC中,已知,,则的值为()A.B.C.D.参考答案:【知识点】平面向量数量积的运算.F3【答案解析】D 解析:∵=,∴sinA=;∴cosA=±∴==4×1×(±)=±2,故选:D.【思路点拨】先根据三角形的面积公式可求得A的正弦值,从而可求得余弦值,根据向量的数量积运算可得到的值.9. 若二次函数y=ax2(a>0)的图象与不等式组表示的平面区域无公共点,则实数a的取值范围为()A.(,2)B.(,)C.(0,)∪(,+∞)D.(0,)∪(2,+∞)参考答案:D【考点】简单线性规划.【专题】函数思想;数形结合法;不等式.【分析】先画出满足条件的平面区域,求出临界点的坐标,从而求出a的范围即可.【解答】解:画出满足条件的平面区域,如图示:,将A(1,2)代入y=ax2,解得:a=2,将B(3,2)代入y=ax2,解得:a=,若二次函数y=ax2(a>0)的图象与不等式组表示的平面区域无公共点,则a∈(0,)∪(2,+∞),故选:D.【点评】本题考查了二次函数的性质,考查简单的线性规划问题,考查数形结合思想,是一道基础题.10. 已知集合,,则()A. B.{ } C.{ } D.{}参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 已知某几何体的三视图如右图所示,则该几何体的外接球体积为___________.参考答案:【知识点】由三视图求面积、体积G2由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其四个顶点是以俯视图为底面,以2为高的三棱柱的四个顶点,故其外接球,即为以俯视图为底面,以2为高的三棱柱的外接球,由底面两直角边长分别为,,故相当于棱长分别为,,2的长方体的外接球,故满足,所以,几何体的外接球的体积为,故答案为:.【思路点拨】由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,求出其外接球的半径,代入体积公式,可得答案.12. 设函数的最大值为M,最小值为m,则M+m=____________.参考答案:2略13. 记为不超过实数的最大整数,例如,,,.设为正整数,数列满足,,现有下列命题:①当时,数列的前3项依次为5,3,2;②对数列都存在正整数,当时总有;③当时,;④对某个正整数,若,则.其中的真命题有_________.(写出所有真命题的编号)参考答案:①③④略14. 已知、是方程的两根,且、,则;参考答案:答案:15. 某同学为了研究函数的性质,构造了如图所示的两个边长为的正方形和,点是边上的一个动点,设,则.那么,可推知方程解的个数是_________个参考答案:216. 设奇函数的定义域为R,且周期为5,若,则实数a 的取值范围是参考答案:17. 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知,,则b+c的最大值为.参考答案:6在中,∵,∴整理可得:,∴,∴,∴,∴,可得:,∴由余弦定理可得:,∴解得:,∴,当且仅当时,.故答案为:.三、解答题:本大题共5小题,共72分。
(NEW)上海师范大学数理学院861高等代数历年考研真题汇编(含部分答案)

2003年上海师范大学444高等代数考研真题(含答 案)
2002年上海师范大学438高等代数考研真题(含答 案)
2001年上海师范大学432高等代数考研真题
第2部分 其他院校高等代数最新真题
2016年华南理工大学864高等代数考研真题
2016年湘潭大学832高等代数考研真题
2016年中山大学868高等代数考研真题
第2部分 其他院校高等代数最新真题 2016年华南理工大学864高等代数考研真题 2016年湘潭大学832高等代数考研真题 2016年中山大学868高等代数考研真题
第1部分 上海师范大学高等代数考研真题
2007年上海师范大学高等代数考研真题
2005年上海师范大学461高等代数考研真题(含答 案)
目 录
第1部分 上海师范大学高等代数考研真题 2007年上海师范大学高等代数考研真题 2005年上海师范大学461高等代数考研真题(含答案) 2004年上海师范大学448高等代数考研真题(含答案) 2003年上海师范大学444高等代数考研真题(含答案) 2002年上海师范大学438高等代数考研真题(含答案) 2001年上海师范大学432高等代数考研真题
2020年上海师范学校高一数学理上学期期末试卷含解析

2020年上海师范学校高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 对数式中,实数的取值范围是()A. B. C. D.参考答案:C2. 直线当变动时,所有直线都通过定点()A.(0,0)B.(0,1)C.(3,1)D.(2,1)参考答案:C3. 设函数,则下列说法中正确的是()A.在区间内均有零点.B.在区间内均无零点.C.在区间内有零点,在内无零点.D.在区间内无零点,在内有零点.参考答案:D略4. 设等差数列{a n}满足,,S n是数列{a n}的前n项和,则使得{S n}取得最大值的自然数n是()A.4 B. 5 C.6 D.7参考答案:B5. 要使与轴的两个交点分别位于原点的两侧,则有()A. B. C. D.参考答案:D6. 已知,,则的值为().A. B. C. D.参考答案:A【分析】根据角的范围可知,;利用同角三角函数的平方关系和商数关系构造方程可求得结果.【详解】由可知:,由得:本题正确选项:A7. 已知函数f(x)的定义域为(0,1),则函数f(2x+1)的定义域为( )A.(﹣1,1)B.C.(﹣1,0)D.参考答案:B考点:函数的定义域及其求法.专题:函数的性质及应用.分析:直接由2x+1在函数f(x)的定义域内求解x的取值集合得答案.解答:解:∵函数f(x)的定义域为(0,1),由0<2x+1<1,得.∴函数f(2x+1)的定义域为.故选:B.点评:本题考查了函数的定义域及其求法,考查了复合函数的定义域,是高考常见题型,属基础题,也是易错题8. 半径为的球内接一个正方体,则该正方体的体积是().[来源:学&科&网]A. B. C. D.参考答案:C略9. 已知x∈[-π,π],则“x∈”是“sin(sin x)<cos(cos x)成立”的()A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件参考答案:C试题分析:当x∈时,sinx+cosx≤所以0≤sinx<-cosx≤于是sin(sinx)<sin(-cosx)=cos(cosx),充分性成立.取x=-,有sin(sinx)=sin(-)=-sin<0cos(cosx)=cos(-)=cos>0所以sin(sinx)<<cos(cosx)也成立,必要性不成立故选C考点:三角函数的性质,充要条件10. 函数的部分图象如图所示,则函数表达式为()A. B.C. D.参考答案:D由图象可以看出,,则,将点代入中,得,,又函数表达式,故选D.二、填空题:本大题共7小题,每小题4分,共28分11. 函数的最小值为.参考答案:12. 函数的定义域是.参考答案:令且,得,解得,故填.13. 等差数列{a n}的首项a1=1,且a2是a1和a6的等比中项,那么公差d= _________ .参考答案:0或314. 给出下列命题:①是幂函数;②函数在上有3个零点;③的解集为;④当时,幂函数的图象与两坐标轴不相交;其中真命题的序号是(写出所有正确命题的编号).参考答案:②④15. 关于x的方程= p x有4个不同的实数根,则p的取值范围是。
【全国百强校】上海市上海师范大学...

【全国百强校】上海市上海师范大学...一、填空题(本大题共有14题,每题4分,满分56分.)1.集合{}*|03,A x x x N =≤<∈的真子集的个数是 .【答案】3【解析】试题分析:{}*|03,={1,2}A x x x N =≤<∈,真子集个数22-1=3,所以答案应填:3.考点:集合的子集概念.2.命题“如果,a b 都是奇数,那么a b +是偶数”的逆否命题是 .【答案】如果a b +不是偶数,那么,a b 不都是奇数【解析】试题分析:命题的条件和结论否定后交换,所以答案应填:如果a b +不是偶数,那么,a b 不都是奇数.考点:逆否命题. 3.已知函数()922-=x x x f ,()3-=x x g ,()33+=x x x h ,则()()()=+x h x g x f .【答案】(3)x x ≠±考点:函数的定义域.4.已知集合{223}A y y x x ==--,集合{}2213B y y x x ==-++,则AB = .【答案】[4,14]-【解析】试题分析:由2223=1)44y x x x =----≥-(,22213(1)1414y x x x =-++=--+≤,知 A B =[4,14]-,所以答案应填:[4,14]-.考点:1、集合;2、二次函数值域.5.函数2()|1|||f x x x a =-+-(常数a R ∈),若(2)1f =,则(1)f = .【答案】3【解析】试题分析:(2)1f =得:4a =,故(1)3f =,所以答案应填:3.考点:函数概念.6.已知全集{}0,1,2,3,4,5U =,且{}1,2U BC A =,{}5U A C B =,{}0,4U U C A C B =,则集合A = .【答案】{3,5}考点:1、集合的交集2、集合的补集.7.已知集合{|A a =关于x 的方程211x a x +=-有唯一实数解,}a R ∈,用列举法表示集合 A = .【答案】51,1,4??--【解析】试题分析:由211(1)(1)x a x a x x x ++==--+,当1x a x +=-或1x a x +=+时,方程有一解,当21x a x +=-有一解时,0?=,54a =-,所以答案应填:51,1,4??--.考点:含参分式方程.8. 对于集合,A B ,定义运算:{}A B x x A x B -=∈?且,()()A B AB B A ?=--.若{}1,2A =, {}2,B x x x Z =<∈,则A B ?= .【答案】{}1,0,2-【解析】试题分析:{}1,2A =,{}2,{1,01}B x x x Z =<∈=-,,()(){2}{1,0}{1,0,2}A B B A --=-=-,所以答案应填:{}1,0,2-.考点:集合的运算.9. 已知全集U R =,实数,a b 满足0a b >>,集合{|},{|}2a b M x b x N x x a +=<<=<<,则U M C N = .【答案】(b考点:集合的交集、补集.10.已知关于x 的不等式022>++c x ax 的解集为)21,31(-,其中,a c R ∈,则关于x 的不等式 022>-+-a x cx 的解集是 .【答案】)3,2(-【解析】试题分析:由不等式022>++c x ax 的解集为)21,31(-知211321 6a c a-=-+=-??,解得122a c =-??=?,所以022>-+-a x cx 即为260x x -++>,解得23x -<<,所以答案应填:)3,2(-.考点:1、一元二次不等式;2、一元二次方程.【思路点晴】本题主要考查的是含参一元二次不等式的解法,属于中档题.解题时一定注意不等式的解集端点与相应方程的关系,即端点是方程的根,再根据根与系数关系得出a ,c ,从而解出022>-+-a x cx 的解集.11.对于实数x ,若1,n x n ≤<+规定[]x n =()n Z ∈,则不等式[][]2420210x x -+<的解集是.【答案】【解析】。
2024年上海高考真题数学(含解析)

2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
上海市上海师范大学附属中学2024-2025学年高三上学期10月月考数学试卷

上海市上海师范大学附属中学2024-2025学年高三上学期10月月考数学试卷一、填空题1.函数()f x =2.已知0a >. 3.已知幂函数()f x 的图象经过点13,9⎛⎫⎪⎝⎭,求(3)f -=.4.若1sin 3α=,则cos(2)πα-=.5.已知集合{|3sin ,}M y y x x =∈=R ,{|||}N x x a =<,若M N ⊆,则实数a 的取值范围是. 6.设a ,b ∈R .已知关于x 的不等式250ax x b -+>的解集为21,34⎛⎫- ⎪⎝⎭,则不等式250ax x b ++<的解集为.7.已知锐角α的顶点为原点,始边为x 轴的正半轴,将α的终边绕原点逆时针旋转π6后交单位圆于点1,3P y ⎛⎫- ⎪⎝⎭,则sin α的值为.8.已知()()()()1f x x x a x b =+++.若()y f x =为奇函数,则()0f '=.9.如图,某同学为测量鹳雀楼的高度MN ,在鹳雀楼的正东方向找到一座建筑物AB ,高约为37m ,在地面上点C 处(,,B C N 三点共线)测得建筑物顶部A ,鹳雀楼顶部M 的仰角分别为30o 和45o ,在A 处测得楼顶部M 的仰角为15o ,则鹳雀楼的高度约为m .10.对于函数()f x 和()g x ,设(){}|0x f x α∈=,(){}|0x g x β∈=,若存在α,β,使得1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数()1e 2x f x x -=+-与()21g x x ax =-+互为“零点相邻函数”,则实数a 的取值范围是.11.若函数()y f x =的图像上存在不同的两点M x 1,y 1 和N x 2,y 2 ,满足1212x x y y +≥()y f x =具有性质P ,给出下列函数: ①()sin f x x =;②()x f x e =;③1(),(0,)f x x x x=+∈+∞;④()||1f x x =+.其中其有性质p 的函数为(填上所有正确序号).12.已知函数()ln 1f x b x =--,若关于x 的方程()0f x =在2e,e ⎡⎤⎣⎦上有解,则22a b +的最小值为.二、单选题13.已知a b ∈R ,且0ab ≠,则“22a b >”是“11a b<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件14.设函数()sin f x x =,若对于任意5π2π,63α⎡⎤∈--⎢⎥⎣⎦,在区间[0,]m 上总存在唯一确定的β,使得()()0f f αβ+=,则m 的值可能是( )A .π6B .π3C .2π3 D .5π6 15.已知在ABC V 中,0P 是边AB 上一定点,满足023P B AB =u u u r u u u r,且对于边AB 上任意一点P ,都有00PB PC P B P C ⋅≥⋅u u u r u u u r u u u r u u u r,则ABC V 是( )A .钝角三角形B .直角三角形C .锐角三角形D .无法确定16.设函数,()2,2x x P f x x x M x∈⎧⎪=⎨+∈⎪⎩其中,P M 是实数集R 的两个非空子集,又规定(){(),},(){(),}A P y y f x x P A M y y f x x M ==∈==∈∣∣,有下列命题:①对任意满足P M ⋃=R 的集合P 和M ,都有()()A P A M ⋃=R ; ②对任意满足P M ⋃≠R 的集合P 和M ,都有()()A P A M ⋃≠R , 则对于两个命题真假判断正确的是( )A .①和②都是真命题B .①和②都是假命题C .①是真命题,②是假命题D .①是假命题,②是真命题三、解答题17.已知向量3sin ,,(cos ,1)4a x b x ⎛⎫==- ⎪⎝⎭r r .(1)当a b r r∥时,求tan 2x 的值;(2)设函数()2()f x a b b =+⋅r rr ,且π0,2x ⎛⎫∈ ⎪⎝⎭,求()f x 的值域.18.已知函数()22x x af x =+其中a 为实常数.(1)若()07f =,解关于x 的方程()5f x =; (2)判断函数()f x 的奇偶性,并说明理由.19.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y (万元)随投资收益x (万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数()f x 模型制定奖励方案,试用数学语言表述公司对奖励函数()f x 模型的基本要求;(2)现有两个奖励函数模型:①()2150xf x =+;②()ln 2f x x =-;问这两个函数模型是否符合公司要求,并说明理由?20.已知函数()y f x =的定义域为区间D ,若对于给定的非零实数m ,存在0x ,使得()()00f f x x m =+,则称函数()y f x =在区间D 上具有性质()P m .(1)判断函数()2f x x =在区间[]1,1-上是否具有性质12P ⎛⎫ ⎪⎝⎭,并说明理由;(2)若函数()sin f x x =在区间()()0,0>n n 上具有性质4P π⎛⎫⎪⎝⎭,求n 的取值范围;(3)已知函数()y f x =的图像是连续不断的曲线,且()()02f f =,求证:函数()y f x =在区间[]0,2上具有性质13P ⎛⎫⎪⎝⎭.21.已知函数()e (,1),()(,)k x f x x k k g x cx m c m =∈≥=+∈N R ,其中e 是自然对数的底数.(1)当1k =时,若曲线()y f x =在1x =处的切线恰好是直线()y g x =,求c 和m 的值; (2)当1k =,e m =-时,关于x 的方程()()f x g x =有正实数根,求c 的取值范围:(3)当2,1k m ==-时,关于x 的不等式2()e ()f x ax bx g x -≥+≥对于任意[1,)x ∈+∞恒成立(其中,a b ∈R ),当c 取得最大值时,求a 的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微积分下》作业1答案学院 专业 年级班级 姓名 学号一、单选题(20×3)1.=-⎰dx x 21 ( B )A. ⎰⎰-+-121)1()1(dx x dx x B.⎰⎰-+-1021)1()1(dx x dx xC.⎰⎰-+-121)1()1(dx x dx x D.⎰⎰-+-121)1()1(dx x dx x2.下列各式中积分值为零的是( B )A.dx x ⎰-112B.dx x x ⎰-11 C.dx x ⎰-1121D. dx x ⎰-+112413.⎰=π(sin xdx x A )A.πB.π-C.π2D.π2-⎰=πsin xdx x ⎰-π0cos x xd ⎰+-=ππ0cos 0cos xdx x x =πππ=+0sin x4.下列不等式中正确的是( B )A.dx x dx x ⎰⎰≤1132 B.dx x dx x ⎰⎰≥1132C.dx x dx x ⎰⎰≤212123 D.dx x xdx ⎰⎰≥21212在]1,0[上32x x ≥∴dx x dx x ⎰⎰≥11325.若='=⎰-)(()(x a dt te x axt ϕϕ为常数),则( A )A.xxe -- B. xxe- C. a xae e--+- D. a x ae e ---dt te dt te x xat axt⎰⎰---==)(ϕ x xe x --=')(ϕ6.=⎰dx x x e)sin(ln 11( C )A.1sin 1-B.11sin -C.1cos 1-D.11cos -=⎰dx x xe)sin(ln 11)(ln )sin(ln 1⎰ex d x =11cos 1)cos(ln +-=-ex7.下列广义积分dx xe x ⎰+∞-0的值是( A )A. 1B. 2C.3D. 4解:dx xe x⎰+∞-0=0limbx b xde -→+∞-⎰=0lim []bxb x b xe e dx --→+∞-+⎰=0lim []1x b b e -→+∞-=8.函数⎰-=xdt t x f 02)1()(.( B )A.有极小值有极大值,在在11-==x x B. 有极大值有极小值,在在11-==x x . C. 有极大值有极大值,在在11-==x x D.有极小值有极小值,在在11-==x x1)(2-='x x f 令0)(='x f 得1±=x x x f 2)(='' 02)1(>=''f 有极小值在1=x02)1(<-=-''f 有极大值在1-=x9.=-⎰dx xx 124( C )A.)23(41--B. )23(41+- C.32- D.23- )4(4121421212x d x dx x x ---=-⎰⎰=230142212+-=-⋅-x10.若=≠=-⎰k k dx x x k则,0,0)32(02( A )A.1B.-1C.23-D.230)1(0)32(2323202=-=-=-=-⎰k k k k k xx dx x x k1,,0==k k当1=k =-⎰dx x x )32(12001)()32(3212=-=-⎰x x dx x x 11.⎰='+=22)(,)1ln()(x x f dt t x f 则( D )A.)1ln(4+xB. )1ln(2+x C. )1ln(22+x x D. )1ln(24+x x)1ln(22]1)ln[()(422+=⋅+='x x x x x f12.=⎰dx xe x 2102( C )A.121+-e B.2141+-e C.41 D.41-410414210212121221022*********2=-=-==⎰⎰⎰x x x xxe e dx e xe e xd dx xe13. 设)(x f 在],[b a 上可导,且.0)(>'x f 若⎰=xadt t f x ,)()(φ则下列说法正确的是( C )A.)(x φ在],[b a 上单调减少B. )(x φ在],[b a 上单调增加C. )(x φ在],[b a 上为凹函数D. )(x φ在],[b a 上为凸函数)()(x f x ='φ 0)()(>'=''x f x φ14.下列广义积分收敛的是( C ) A .dx x ⎰11B.dx x ⎰1021C.dx x⎰101 D.dx x x ⎰10lndx x⎰11=2012lim 0=++→εεx15.设='-=⎰)4(,1)(sin 02πf dt t x f x则( A )A.21B.21- C.2 D.2-x x x f cos )(sin 1)(2-='16.=-⎰-→3)1(lim2x dt e xt x ( B )A.0B.31 C.31- D.∞ =-⎰-→3)1(lim2x dt e xt x 2031lim 2x e x x -→-x x e x x 6)2(lim 20-⋅-=-→31=17.⎰=+12)2ln(dx x x dx d ( C ) A.)2ln(2x + B.2ln 3ln - C.0 D.222xx+ 常数的导数为零 18.当0→x 时,⎰-xdt t 0)1(cos 与n x 是同阶无穷小量,则n 的值为( C )A.1B.2C.3D.4nxx x dt t ⎰-→0)1(cos lim101cos lim-→-=n x nx x c x n n x n x =--=-→20)1(sin lim (c 为常数) 12=-∴n3=⇒n19.若[]x 表示不超过x 的最大整数,则积分[]dx x ⎰4的值为( D )A.0 B2 C.4 D.6当x ∈)4,0(,⎪⎪⎩⎪⎪⎨⎧<≤<≤<≤<≤=433322211100][x x x x x[]dx x ⎰40⎰⎰⎰⎰=+++=121324363210dx dx dx dx20.定积分dx x ⎰+190381 作适当的变化后应等于( A )A.⎰323xdx B⎰33xdx C.⎰23xdx D.⎰193xdx令t x =+38 二、计算题(10×4) 1. 计算dxx ⎰-121解:令sin x t =dx x ⎰-1021=sin t=220cos tdt π⎰dt t ⎰+=20212cos π40202sin 4122πππ=+=t t 2. 计算dx x⎰+411t =dx x⎰+411=2021t dt t +⎰=2012(1)1dt t -+⎰=202[ln 1]42ln3t t -+=- 3.计算dx x ⎰-3124解:dx x ⎰-3124=232212(4)(4)x dx x dx -+-⎰⎰=3323121(4)(4)433x x x x -+-=4. 计算dx x ⎰π20sin解:⎰⎰⎰-+=ππππ0220)sin (sin sin dx x xdx dx x =4][cos ]cos [20=+-πππx x5.计算dx e x x 223-⎰解:令2u x =dx e x x 223-⎰=4012u ue du -⎰=44001[2u u ue e du ---+⎰=4401[4]2u e e ---- =441[41]2e e ----+=41522e -- 6.计算dx x x ⎰π2cos解:dx x x ⎰π02cos =02sin 2sin 022x x x dx ππ-⎰=24cos 2402x πππ+=-7.计算广义积分dx x⎰-111解:dx x⎰-111=10lim (1)x εε+-→-⎰=100lim[2εε+-→-= 8.计算dx e x ⎰-2ln 01t = 2ln(1)x t =+dx e x ⎰-2ln 01=120ln(1)td t +⎰=12021t t dt t ⋅+⎰=12012(1)1dt t-+⎰ =102[]2(1)242tarctgt ππ-=-=- 9.计算极限dt tt xxx )1sin (1lim 030-⎰→ 解:⎰-→x x dt t t x 030)1sin (1lim =2031sin lim xx xx -→=303sin lim x x x x -→=2091cos lim x x x -→=x x x 18sin lim 0-→ =181-10.计算广义积分⎰--31)3)(1(x x dx解:⎰--31)3)(1(x x dx =⎰-+→→---++ηεηε31200)2(1)2(lim x x d =ηεηε-+→→-++3100)]2[arcsin(lim x=)]1arcsin()1[arcsin(lim 00---++→→εηηε=22ππ+=π。