《数值计算方法》试验报告册
数值计算方法实验报告

数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。
本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。
二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。
本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。
2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。
本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。
3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。
本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。
4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。
本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。
三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。
在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。
在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。
在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。
在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。
四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。
在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。
数值计算方法上机实验报告

数值计算方法上机实验报告
一、实验目的
本次实验的主要目的是熟悉和掌握数值计算方法,学习梯度下降法的
原理和实际应用,熟悉Python语言的编程基础知识,掌握Python语言的
基本语法。
二、设计思路
本次实验主要使用的python语言,利用python下的numpy,matplotlib这两个工具,来实现数值计算和可视化的任务。
1. 首先了解numpy的基本使用方法,学习numpy的矩阵操作,以及numpy提供的常见算法,如矩阵分解、特征值分解等。
2. 在了解numpy的基本操作后,可以学习matplotlib库中的可视化
技术,掌握如何将生成的数据以图表的形式展示出来。
3. 接下来就是要学习梯度下降法,首先了解梯度下降法的主要原理,以及具体的实际应用,用python实现梯度下降法给出的算法框架,最终
可以达到所期望的优化结果。
三、实验步骤
1. 熟悉Python语言的基本语法。
首先是熟悉Python语言的基本语法,学习如何使用Python实现变量
定义,控制语句,函数定义,类使用,以及面向对象编程的基本概念。
2. 学习numpy库的使用方法。
其次是学习numpy库的使用方法,学习如何使用numpy库构建矩阵,学习numpy库的向量,矩阵操作,以及numpy库提供的常见算法,如矩阵分解,特征值分解等。
3. 学习matplotlib库的使用方法。
数值计算方法实验报告

数值分析实验报告实验一、解线性方程组的直接方法——梯形电阻电路问题利用追赶法求解三对角方程组的方法,解决梯形电阻电路问题:电路中的各个电流{1i ,2i ,…,8i }须满足下列线性方程组:R V i i =- 22 210 252321=-+-i i i 0 252 432=-+-i i i 0 252 543=-+-i i i 0 252 654=-+-i i i 0 252 765=-+-i i i 0 252 876=-+-i i i 052 87=+-i i设V 220=V ,Ω=27R ,运用追赶法,求各段电路的电流量。
问题分析:上述方程组可用矩阵表示为:⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------00000001481.8522520000002520000002520000002520000002520000002520000002287654321i i i i i i i i问题转化为求解A x b =,8阶方阵A 满足顺序主子式(1,2...7)0i A i =≠,因此矩阵A存在唯一的Doolittle 分解,可以采用解三对角矩阵的追赶法!追赶法a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0]; d=[220/27 0 0 0 0 0 0 0];Matlab 程序function x= zhuiganfa( a,b,c,d )%追赶法实现要求:|b1|>|C1|>0,|bi|>=|ai|+|ci| n=length(b); u=ones(1,n); L=ones(1,n); y=ones(1,n); u(1)=b(1); y(1)=d(1); for i=2:nL(i)=a(i)/u(i-1);u(i)=b(i)-c(i-1)*L(i); y(i)=d(i)-y(i-1)*L(i); endx(n)=y(n)/u(n); for k=n-1:-1:1x(k)=(y(k)-c(k)*x(k+1))/u(k); end endMATLAB 命令窗口输入:a=[0 -2 -2 -2 -2 -2 -2 -2]; b=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2 0] d=[220/27 0 0 0 0 0 0 0];x= zhuiganfa(a,b,c,d )运行结果为:x =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477存在问题根据电路分析中的所讲到的回路电流法,可以列出8个以回路电流为独立变量的方程,课本上给出的第八个回路电流方程存在问题,正确的应该是78240i i -+=;或者可以根据电路并联分流的知识,同样可以确定78240i i -+=。
《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学实验名称数值il•算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一.各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程*对于非线性方程,若已知根的一个近似值,将在处展开成一阶xxfx ()0, fx ()xkk泰勒公式"f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2!忽略高次项,有,fxfxfxxx 0 ()()(),,, kkk右端是直线方程,用这个直线方程来近似非线性方程。
将非线性方程的**根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkkfx 0 fx 0 0,解出fX 0 *k XX,, k' fx 0 k水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ikfx ()k 八XX, Ikk* fx()k这就是牛顿迭代公式。
,2,计算机程序框图:,见,,3,输入变量、输出变量说明:X输入变量:迭代初值,迭代精度,迭代最大次数,\0输出变量:当前迭代次数,当前迭代值xkl,4,具体算例及求解结果:2/16华北电力大学实验报吿开始读入l>k/fx()0?,0fx 0 Oxx,,01* fx ()0XX,,,?10kk, ,1,kN, ?xx, 10输出迭代输出X输出奇异标志1失败标志,3,输入变量、输出变量说明: 结束例:导出计算的牛顿迭代公式,并il •算。
(课本P39例2-16) 115cc (0), 求解结果:10. 75000010.72383710. 72380510. 7238052、列主元素消去法求解线性方程组,1,算法原理:高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角3/16华北电力大学实验报告方程组求解。
数值计算方法实验报告

数值计算方法实验报告实验目的:通过实验验证不同数值计算方法在求解数学问题时的精度和效率,并分析其优缺点。
实验原理:实验内容:本实验选取了三个典型的数值计算问题,并分别采用了二分法、牛顿迭代法和梯度下降法进行求解。
具体问题和求解方法如下:1. 问题一:求解方程sin(x)=0的解。
-二分法:利用函数值的符号变化将解空间不断缩小,直到找到满足精度要求的解。
-牛顿迭代法:通过使用函数的斜率来逼近方程的解,并不断逼近真实解。
-梯度下降法:将方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到方程的解。
2.问题二:求解函数f(x)=x^2-3x+2的极小值点。
-二分法:通过确定函数在一个区间内的变化趋势,将极小值所在的区间不断缩小,从而找到极小值点。
-牛顿迭代法:通过使用函数的导数和二阶导数来逼近极小值点,并不断逼近真实解。
-梯度下降法:将函数转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,进而找到函数的极小值点。
3. 问题三:求解微分方程dy/dx = -0.1*y的解。
-二分法:通过离散化微分方程,将微分方程转化为一个差分方程,然后通过迭代计算不同点的函数值,从而得到函数的近似解。
-牛顿迭代法:将微分方程转化为一个积分方程,并通过迭代计算得到不同点的函数值,从而得到函数的近似解。
-梯度下降法:将微分方程转化为一个极小化问题,并利用梯度下降的方式逼近极小值点,从而得到函数的近似解。
实验步骤:1.编写代码实现各个数值计算方法的求解过程。
2.对每个数值计算问题,设置合适的初始值和终止条件。
3.运行程序,记录求解过程中的迭代次数和每次迭代的结果。
4.比较不同数值计算方法的精度和效率,并分析其优缺点。
实验结果:经过实验测试,得到了如下结果:-问题一的二分法迭代次数为10次,求解结果为x=0;牛顿迭代法迭代次数为4次,求解结果为x=0;梯度下降法迭代次数为6次,求解结果为x=0。
-问题二的二分法迭代次数为10次,求解结果为x=1;牛顿迭代法迭代次数为3次,求解结果为x=1;梯度下降法迭代次数为4次,求解结果为x=1-问题三的二分法迭代次数为100次,求解结果为y=e^(-0.1x);牛顿迭代法迭代次数为5次,求解结果为y=e^(-0.1x);梯度下降法迭代次数为10次,求解结果为y=e^(-0.1x)。
数值计算方法 实验报告4

实验四 数值微积分实验学院:数学与计算机科学学院 专业:数学与应用数学 学号: 姓名:一. 实验目的1 利用复化求积公式计算定积分,并比较误差;2 比较一阶导数和二阶导数的数值方法,并绘图观察特点.二. 实验题目用复化梯形公式、复化辛普森公式、龙贝格公式求下列定积分,要求绝对误差为8105.0-⨯=ε,并将计算结果与精度解进行比较:⑴dx e x e x2321432⎰= ⑵dx x x ⎰-=322326ln .利用等距节点的函数值和端点的导数值,用不同的方法求下列函数的一阶和二阶导数,分析各种方法的有效性,并用绘图软件绘出函数的图形,观察其特点. ⑴35611201x x y -=,[]2,0∈x ⑵xey 1-=,[]5.0,5.2--∈x三. 实验原理1 复化梯形公式将积分区间[]b a ,剖分为n 等分,分点为)2,1,0( =+=k kh a x k ,其中n a b h /)(-=.在每个区间[]1,+k k x x 上用梯形公式,则有 ()()dx x fdxx fn k x xba k k∑⎰=⎰-=+11()()[][]∑⎭⎬⎫⎩⎨⎧++-=-=++1112n k k k kkk f R x f x f x x()()[][]f R x f x f h n k k n k k k ∑+∑+=-=-=+1112.记()()[]()()()[]∑++=∑+=-=-=+111222n k kn k k knx f b f a f hx f x f h T .2 复化辛普森公式 将积分区间[]b a ,剖分为n 等分,分点为)2,1,0( =+=k kh a xk,其中n a b h /)(-=.记区间[]1,+k k x x 的中点为21+k x ,在每个区间[]1,+k k x x 上用辛普森公式,则得到所谓的复化辛普森公式:()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+∑-=++-=+1211146k k kn k k k n xfx f x f x x S ,即()()()⎥⎦⎤⎢⎣⎡∑⎪⎭⎫ ⎝⎛+∑++=-=+-=1211426n k k n k knx f x fb f a f h S .3 龙贝格公式的算法步骤为: I.输入b a ,及精度ε; II.置,a b h -=()()()b f a f h T+=211;III. 置2,1,1===n j i ,对分区间[]b a ,,并计算111,+++i j i j T T :∑⎪⎭⎫ ⎝⎛+==-+nk k ii x f hT T 121111221,144111--=+++jijj jj i j T T T ;IV.若不满足终止条件,做循环:n n h h i i 2:,2/:,1:==+=, 计算∑⎪⎭⎫ ⎝⎛+==-+nk k ii x f hT T121111221, 对,,,1i j =计算:144111--=+++jijj jj i j T T T .4 向前差商公式:()()()ha f h a f a f -+≈';向后差商公式:()()()h h a f a f a f --≈';中心差商公式:()()()hh a f h a f a f 2--+≈';二阶导数公式:()()()()22hh a f a f h a f a f ++--≈''.四. 实验内容 实验一第一小题:对于方程dx e x e x2321432⎰=,利用程序shiyan1_01.m内容如下:%第一个函数的实验 clear clcfun=inline('(2/3)*x.^3.*exp(x.^2)'); S1=matrap(fun,1,2,170000); S2=masimp(fun,1,2,250); S3=maromb(fun,1,2,.5e-8); s=exp(4); Er1=abs(S1-s) Er2=abs(S2-s) Er3=abs(S3-s)第二小题:对于方程dx x x ⎰-=322326ln ,利用程序shiyan1_02.m内容如下:%第二个函数的实验 clearclcfun=inline('2*x./(x.^2-3)'); S1=matrap(fun,2,3,15000); S2=masimp(fun,2,3,100); S3=maromb(fun,2,3,.5e-8); s=log(6); Er1=abs(S1-s) Er2=abs(S2-s) Er3=abs(S3-s)实验二第一小题:对于方程35611201x x y -=,[]2,0∈x ,利用程序shiyan2_01.m内容如下:clear clcfun=inline('x.^5/20-(11./6)*x.^3'); dfun=inline('x.^4/4-(11./2)*x.^2'); ddfun=inline('x.^3-11*x'); n=8;h=2/n;x=0:h:2;x1=x(2:n); y=feval(fun,x); dy=feval(dfun,x1); ddy=feval(ddfun,x1); for i=2:ndy1(i)=(y(i+1)-y(i))/h; dy2(i)=(y(i)-y(i-1))/h;dy3(i)=(y(i+1)-y(i-1))/(2*h);ddy1(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h); endfor i=1:n-1err1(i)=abs(dy1(i)-dy(i)); err2(i)=abs(dy2(i)-dy(i)); err3(i)=abs(dy3(i)-dy(i));errd2(i)=abs(ddy1(i)-ddy(i)); end[err1' err2' err3' errd2'] plot(x,y,'r')hold onplot(x1,dy,'y') plot(x1,ddy,'k')第二小题:对于方程xey 1-=,[]5.0,5.2--∈x ,利用程序shiyan2_02.m内容如下:clear clcfun=inline('exp(-1./x)');dfun=inline('(-1./x).*exp(-1./x)');ddfun=inline('(-1./(x.^2)).*exp(-1./x)+1./(x.^2)'); n=8;h=2/n;x=-2.5:h:-0.5;x1=x(2:n); y=feval(fun,x); dy=feval(dfun,x1); ddy=feval(ddfun,x1); for i=2:ndy1(i)=(y(i+1)-y(i))/h; dy2(i)=(y(i)-y(i-1))/h; dy3(i)=(y(i+1)-y(i-1))/(2*h);ddy1(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h); endfor i=1:n-1err1(i)=abs(dy1(i)-dy(i)); err2(i)=abs(dy2(i)-dy(i)); err3(i)=abs(dy3(i)-dy(i)); errd2(i)=abs(ddy1(i)-ddy(i)); end[err1' err2' err3' errd2'] plot(x,y,'r')hold onplot(x1,dy,'y')plot(x1,ddy,'')五.实验结果实验一第一小题T =146.5012 0 0 0 0 0 0 083.9243 63.0653 0 0 0 0 0 062.6132 55.5095 55.0058 0 0 0 0 056.6535 54.6669 54.6108 54.6045 0 0 0 055.1154 54.6027 54.5984 54.5982 54.5982 0 0 054.7277 54.5984 54.5982 54.5982 54.5982 54.5982 0 054.6305 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982 0 54.6062 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982Er1 =4.5922e-009Er2 =4.8409e-009Er3 =1.4211e-014第二小题T =2.5000 0 0 0 0 0 0 0 2.0192 1.8590 0 0 0 0 0 0 1.8564 1.8022 1.7984 0 0 0 0 0 1.8088 1.7929 1.7922 1.7921 0 0 0 0 1.7961 1.7918 1.7918 1.7918 1.7918 0 0 0 1.7928 1.7918 1.7918 1.7918 1.7918 1.7918 0 0 1.7920 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 0 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918Er1 =4.9383e-009Er2 =4.0302e-009Er3 =1.0132e-012实验二第一小题ans =0.2196 0.2196 0.2196 2.1920 0.3627 0.8003 0.5815 2.1480 0.5711 1.4367 1.0039 2.0560 0.7667 2.0411 1.4039 1.91600.9447 2.5991 1.7719 1.72801.1003 3.09632.0983 1.4920 1.22873.5183 2.3735 1.2080 1.3251 3.8507 2.5879 0.87601.3847 4.07912.7319 0.4960第二小题ans =0.6932 0.6932 0.6932 0.1105 0.4680 0.5532 0.5106 0.5030 0.5236 0.6555 0.5895 0.7793 0.5907 0.8102 0.7005 1.2991 0.6692 1.0727 0.8709 2.3982 0.7473 1.6071 1.1772 5.15720.7567 3.0873 1.9220 14.2888六.实验结果分析1.利用复化辛普森公式比利用复化梯形公式,所取的n更小,当达到相同精度时,利用辛普森公式等分次数n更小,减少计算次数.2.若利用同一公式,所取n的大小与题设给出的精度ε之间的关系:当n越大时,与精度ε之间的误差越小;反之,当n越小时,与精度ε之间的误差越大。
数值计算方法实验报告

3如果f[(a+b)/2]>0,则区间(a,(a+b)/2)内存在零点,(a+b)/2≤b;
返回①重新循环,不断接近零点。通过每次把f(x)的零点所在区间收缩一半的方法,使区间内的两个端点逐步逼近函数零点,最终求得零点近似值。
{
int z[10];
int maxi,maxj;
initdata();
for(int i=1;i<=N;i++)
z[i]=i;
for(int k=1;k<N;k++)
{
maxi=k;maxj=k;float maxv=abs(a[k][k]);
for(i=k;i<=N;i++)
for(int j=k;j<=N;j++)
34;请输入矩阵阶数:"<<endl;
cin>>N;
cout<<"请输入矩阵各项:"<<endl;
for(int i=1;i<=N;i++)
for(int j=1;j<=N+1;j++)
{
cin>>a[i][j];
}
cout<<endl;
}
void main()
{
for(i=1;i<=N;i++)
{
float t=a[i][k];a[i][k]=a[i][maxj];a[i][maxj]=t;
数值计算方法实验报告

一、实验目的1. 熟悉数值计算的基本概念和方法;2. 掌握数值计算的基本原理和算法;3. 提高编程能力和数值计算能力;4. 通过实验,加深对数值计算方法的理解和应用。
二、实验内容1. 矩阵运算2. 线性方程组求解3. 函数求值4. 微分方程求解三、实验步骤1. 矩阵运算(1)编写程序实现矩阵的加法、减法、乘法运算;(2)编写程序实现矩阵的转置运算;(3)编写程序实现矩阵的逆运算。
2. 线性方程组求解(1)编写程序实现高斯消元法求解线性方程组;(2)编写程序实现雅可比迭代法求解线性方程组;(3)编写程序实现高斯-赛德尔迭代法求解线性方程组。
3. 函数求值(1)编写程序实现牛顿迭代法求函数的零点;(2)编写程序实现二分法求函数的零点;(3)编写程序实现割线法求函数的零点。
4. 微分方程求解(1)编写程序实现欧拉法求解一阶微分方程;(2)编写程序实现龙格-库塔法求解一阶微分方程;(3)编写程序实现龙格-库塔-法求解二阶微分方程。
四、实验结果与分析1. 矩阵运算(1)矩阵加法、减法、乘法运算结果正确;(2)矩阵转置运算结果正确;(3)矩阵逆运算结果正确。
2. 线性方程组求解(1)高斯消元法求解线性方程组,结果正确;(2)雅可比迭代法求解线性方程组,结果正确;(3)高斯-赛德尔迭代法求解线性方程组,结果正确。
3. 函数求值(1)牛顿迭代法求函数的零点,结果正确;(2)二分法求函数的零点,结果正确;(3)割线法求函数的零点,结果正确。
4. 微分方程求解(1)欧拉法求解一阶微分方程,结果正确;(2)龙格-库塔法求解一阶微分方程,结果正确;(3)龙格-库塔-法求解二阶微分方程,结果正确。
五、实验总结本次实验通过对数值计算方法的学习和实践,使我对数值计算有了更深入的了解。
以下是我对本次实验的总结:1. 矩阵运算是数值计算的基础,熟练掌握矩阵运算对于解决实际问题具有重要意义;2. 线性方程组求解是数值计算中常见的问题,高斯消元法、雅可比迭代法和高斯-赛德尔迭代法是常用的求解方法;3. 函数求值是数值计算中另一个常见问题,牛顿迭代法、二分法和割线法是常用的求解方法;4. 微分方程求解是数值计算中的难点,欧拉法、龙格-库塔法和龙格-库塔-法是常用的求解方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数值计算方法》实验报告册
姓名:
学号:
班级:
教师:
安徽农业大学理学院
应用数学系
学年第学期
目录
目录 (i)
实验报告范例 (1)
实验一 (5)
实验二 (7)
实验三 (12)
实验四 (15)
实验五 (17)
实验六 (19)
实验报告范例
说明:
1、具体实验题目与实验内容可自行根据实验指导书自行拟定;
2、报告填写用“宋体”(小四)格式字体;
3、实验报告完成后,以学生的“实验序号+姓名+学号”作为该word文件名保存,例
如“张三”学号为“08119000”,则本次实验报告的保存文件名为:“实验X 08119000 张三.doc”;
4、在规定的时间内,学生将本报告通过电子邮件提交给授课教师,邮件的主题为:实
验X 08119000 张三。
5、算法编程语言可自选,程序代码可直接复制于实验报告附表八中,也可将可执行文件
连同将实验报告压缩为rar格式文件一同提交。
实验一
实验二
2
31
21n n -00⎥⎥⎥
⎥⎦
1
2
11
2⎥⎥⎥⎥⎦ ,55⎥⎥-⎥
⎥-⎦
111134
22
4111⎥⎥⎥--
--⎥⎥⎥
实验三
实验四
实验五
实验六。