北师版九年级下册数学二次函数的应用教案

合集下载

北师大版九年级数学下册《二次函数的应用》教案及教学反思

北师大版九年级数学下册《二次函数的应用》教案及教学反思

北师大版九年级数学下册《二次函数的应用》教案及教学反思教学目标1.理解二次函数的概念及特性2.掌握二次函数应用实例3.培养学生分析问题、解决问题的能力教学内容1. 二次函数的概念与特性(1)定义二次函数是指自变量的二次方作为函数的函数,它的一般形式为:f(x) = ax^2 + bx + c其中 a、b、c 是常数,且 a ≠ 0。

(2)基本特征•定义域:实数集•值域:当 a > 0 时,二次函数的最小值为 c - (b^2) / (4a) ;当 a < 0 时,二次函数的最大值为 c - (b^2) / (4a)。

•对称轴:x = -b / (2a)•开口方向:当 a > 0 时,二次函数开口向上,当 a < 0 时,二次函数开口向下。

•零点:f(x) = 0 时的 x 值即为二次函数的零点。

2. 二次函数的应用实例(1)求最大值或最小值当一个物理问题能够用二次函数来表达时,可以利用二次函数的特性,求出物理量的最大值或最小值。

(2)求交点二次函数和直线之间的交点可以用来解决几何问题,如交点为两柱面相切的圆的半径等。

教学方法•解释法:通过示例或铺垫讲解二次函数的定义及特性。

•运用法:通过做一些典型题目,让学生理解二次函数的不同特性。

•发散法:通过一些拓展题目,让学生探究二次函数的应用及实际问题的解决。

教学过程1. 拓展题目(10分钟)请学生观察以下二次函数图像,思考不同函数的特点。

当学生了解了不同二次函数的特性并掌握了如何求解二次函数的基本问题后,开始进入二次函数应用问题实战。

2. 例题练习(30分钟)请学生在教师指导下,完成以下例题练习: 1. 某工程公司定价方案为:一个工程的成本为 10000 元,每增加 1 万的工程量,成本额外增加 2400 元。

如果公司想最多减少亏损,最多赚多少? 2. 在 xy 平面内,一个圆心坐标为 (2, 3),一点坐标为 (0, 1)。

当圆与直线 y=2 x-1 相切时,圆的半径为多少? 3. 有一个与 x 轴成 45 度角的光线通过点 P(6, 2) 射向 y 轴的一面镜子,反射之后定位在 Q(0, y) 处,求 y的值。

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。

教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。

三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。

2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。

3.提高学生的数学思维能力,培养学生的数学素养。

四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。

2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。

五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。

2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。

3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。

六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。

2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。

3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。

4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。

5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。

北师大版初三下册数学 2.4 二次函数的应用 教案(教学设计)

北师大版初三下册数学 2.4  二次函数的应用 教案(教学设计)

2.4.1 二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排1课时三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.四、教学难点运用二次函数的知识解决实际问题.五、教学过程(一)导入新课引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:(二)讲授新课活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上.(1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x ==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时 活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.y x x ++π=由 157.4x x y --π=得 2215722()242x x x x S xy x π--ππ=+=+窗户面积 271522x x =-+ 2715225().21456x =--+ 2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时 即当x≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2.(四)归纳小结“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.2.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y,要使△DEF为等腰三角形,m的值应为多少?m5.如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围.(2)生物园的面积能否达到210平方米?说明理由.【答案】1.12.52. 根据题意可得:等腰三角形的直角边为2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积 30202,.322x ==-+当时金属框围成的图形面积最大 )((()2x 602m ,1022103210210m .=--+⨯-=此时矩形的一边长为另一边长为 )2S 3002002m .=-最大3.解: (1)设矩形广场四角的小正方形的边长为x 米,根据题意得4x 2+(100-2x )(80-2x )=5 200,整理,得x 2-45x +350=0,解得:x 1=35,x 2=10,经检验x 1=35,x 2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y 元,广场四角的小正方形的边长为x 米,则 y =30[4x 2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)]即y =80x 2-3 600x +240 000,配方,得y =80(x -22.5)2+199 500.当x =22.5时,y 的值最小,最小值为199 500.所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD 中,∠B=∠C=90°,∴在Rt△BFE 中, ∠1+∠BFE=90°,又∵EF⊥DE, ∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED, ∴BF BE CE CD =, ∴8y x x m-= 即28x x y m -=.⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m-=得关于x 的方程: 28120x x -+=,得1226x x ==,.∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED ,此时, Rt△BFE≌Rt△CED.∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5. 解:(1)依题意,得y=(40-2x)x.∴y=-2x2+40x.x的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x2+40x=210.即x2-20x+105=0.∵ a=1,b=-20,c=105,∴2--⨯⨯<(20)411050,∴此方程无实数根,即生物园的面积不能达到210平方米.六.板书设计2.4.1二次函数的应用探究:例题:“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x (x≤13.5)元,那么销售量可以表示为: 件;每件T恤衫的利润为: 元;所获总利润可以表示为: 元;即y=-200x 2+3 700x-8 000=-200(x-9.25)2+9 112.5∴当销售单价为 元时,可以获得最大利润,最大利润是 元.活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围.(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?【解析】(1)y=50-10x ; (2)w=(180+x-20)y=(180+x-20)(50-10x )=2x 34x 8 000.10-++ (3)因为w=2x 34x 8 000,10-++ 所以x=b -2a=170时,w 有最大值,而170>160,故由函数性质知,x=160时,利润最大,此时订房数y=50- 10x =34,此时的利润为10 880元.例题3 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程,得(5+x)(200-10x)=1 500,解得x1=10,x2=5.因为要顾客得到实惠,5<10,所以x=5. 答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=( x +5)(200-10x)= -10x2+150x+1 000,当x=1507.522(10)ba-=-=⨯-时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m处达到最大高度2.25m.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?4.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.2. 【解析】(1)由题意可知,当x ≤100时,购买一个需5 000元,故y 1=5 000x当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x ≤ 5 000 3 50010025010-+= 即100<x≤250时,购买一个需5 000-10(x-100)元,故y 1=6 000x-10x 2;当x>250时,购买一个需3 500元,故y 1=3 500x;21 5 000x,y 6 000x 10x ,3 500x,⎧⎪=-⎨⎪⎩所以 0x 100100x 250x 250≤≤<≤> 2500080%4000.y x x =⨯=(2) 当0≤x ≤100时,y 1=5 000x ≤500 000<1 400 000;当100<x ≤250时,y 1=6 000x -10x 2=-10(x -300)2+900 000<1 400 000;∴由35001400000x = 得到x=400由40001400000x = 得到350400x =<故选择甲商家,最多能购买400个太阳能路灯3.【解析】建立如图所示的坐标系,根据题意,得,点A(0,1.25),顶点B(1,2.25).设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25. 当y=0时,得点C(2.5,0);同理,点D(-2.5,0).根据对称性,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.4.解析:(1)由题意,得:w = (x -20)·y=(x -20)·(-10x+500)=-10x 2+700x-10 000 当352b x a=-=时,w 有最大值. 答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得21070010 000 2 000.x x -+-=解这个方程,得x 1 = 30,x 2 = 40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.(3)∵10a =-<0∴抛物线开口向下.∴当30≤x≤40时,w≥2 000.∵x≤32,∴当30≤x≤32时,w≥2 000. 设成本为P (元),由题意,得P=20(-10x+500)=-200x+10 000, ∵k=-200<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元.六.板书设计2.4.2二次函数的应用探究:例题2:例题3:“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式;2.根据二次函数的最值问题求出最大利润.。

二次函数的应用 (教学设计) 九年级数学下册(北师大版)

二次函数的应用  (教学设计) 九年级数学下册(北师大版)

2.4.2二次函数的应用教学设计
服装厂生产某品牌的T恤衫成本是每件10元.根据
市场调查、以单价13元批发给经销商,经销商愿
意经销5000 件、并表示单价每降价0.1元,愿意
多经销 500件. 你能帮助厂家分析,批发单价是多
少时可以获利最多吗?
降价前:
1、每件T恤衫成本;
批发价;销售量;
利润;
降价后:
2、每件T恤衫成本; 批发价;销售量;
利润;
解:
典例精析
某旅社有客房120间,每间房的日租金为160 元时、
每天都客满.经市场调查发现,如果每间客房的日
租金增加1元,那么客房每天出租数会减少6间.
不考虑其他因素,旅馆将每间客房的日租金提高到
多少元时,客房日租金的总收入最高?
涨价前:
1、每间客房日租金 ; 出租量 ;
总收入;
涨价后:
2、每间客房日租金 ; 出租量 ; 总收入;
解:
想一想:
自变量x的取值范围如何确定?
营销规律是价格上升,销量下降,因此只要考虑销
量就可以,故120-6x≥0,且x ≥0,因此自变量的
取值范围是0 ≤x ≤20.
(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
6.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.
(1)求y与x的函数关系式;
(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)。

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计

2024北师大版数学九年级下册2.3.2《确定二次函数的表达式》教学设计一. 教材分析《确定二次函数的表达式》是北师大版数学九年级下册第2章3.2节的内容。

本节课主要让学生掌握二次函数的通用形式,了解二次函数的各个系数与函数图象的关系,为后续学习二次函数的性质打下基础。

教材通过实例引导学生从实际问题中抽象出二次函数模型,进一步探究二次函数的性质。

二. 学情分析九年级的学生已经学习了函数的基本概念,对一次函数、二次函数有一定的了解。

但学生在确定二次函数表达式方面存在困难,难以把握二次函数的各个系数与函数图象的关系。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出二次函数模型,并通过观察、操作、猜想、验证等方法,让学生体会二次函数的性质。

三. 教学目标1.让学生掌握二次函数的通用形式;2.使学生了解二次函数的各个系数与函数图象的关系;3.培养学生解决实际问题的能力;4.引导学生运用数形结合的方法探究二次函数的性质。

四. 教学重难点1.重点:二次函数的通用形式,二次函数的各个系数与函数图象的关系;2.难点:确定二次函数表达式,二次函数的性质。

五. 教学方法1.情境教学法:通过实际问题引出二次函数模型,激发学生兴趣;2.观察法:让学生观察二次函数图象,发现其性质;3.操作法:让学生动手操作,验证二次函数的性质;4.讨论法:分组讨论,培养学生的合作能力。

六. 教学准备1.课件:制作课件,展示二次函数的图象和性质;2.练习题:准备一些有关二次函数的练习题,巩固所学知识;3.板书:准备黑板,书写关键知识点。

七. 教学过程1.导入(5分钟)教师通过展示一个实际问题,引导学生从实际问题中抽象出二次函数模型。

例如:抛物线与x轴相交于A、B两点,且AB=2,求抛物线的解析式。

2.呈现(10分钟)教师展示二次函数的图象,让学生观察并描述二次函数的性质。

引导学生关注二次函数的顶点、开口方向、对称轴等关键点。

3.操练(10分钟)教师引导学生分组讨论,让学生动手操作,验证二次函数的性质。

2.4 二次函数的应用 -九年级下册数学教案教案(北师大版)

2.4 二次函数的应用 -九年级下册数学教案教案(北师大版)

2.4 二次函数的应用 - 九年级下册数学教案(北师大版)一、教学目标1.理解二次函数的实际应用场景;2.掌握二次函数的图像特征及其对应的实际含义;3.能够解决与二次函数有关的实际问题。

二、教学重点1.二次函数图像的特征理解;2.实际问题与二次函数的联系。

三、教学难点1.运用二次函数解决实际问题;2.分析实际问题与二次函数图像之间的关系。

四、教学方法1.探究法:通过展示实际生活中的问题,引导学生理解二次函数的应用;2.讲解结合实例:通过教师讲解二次函数的图像特征和实际应用问题,帮助学生全面理解知识点;3.引导学生完成练习:通过练习题的完成,巩固学生对二次函数应用的掌握。

五、教学过程1. 导入(5分钟)教师通过提出一个简单的实际问题,引导学生思考二次函数的应用场景。

例如:某个物体从地面上抛出,其高度与时间的关系是什么样的?学生可以先自由发挥,然后与同桌讨论,最后集体讨论。

2. 概念讲解(15分钟)教师针对二次函数的应用场景,介绍二次函数的基本概念,包括函数的定义、二次函数的一般形式以及二次函数的图像特征。

教师通过绘制函数图像和给出具体实例,帮助学生理解二次函数的图像特征。

3. 实际问题解决(25分钟)教师给出一些实际问题,让学生运用所学的二次函数知识解决。

例如:问题一:小明在一年前购买了一块地,当时的价格是每平方米2000元。

经过一年的发展,该地区的房价每年以4%的比例上涨,请问一年后该地的房价是多少?问题二:某校图书馆每天新增的书籍数量满足二次函数y = 2x^2 + 3x + 5(x表示天数,y表示新增的书籍数量),请问第10天图书馆新增了多少书籍?学生在解决问题的过程中,需要分析问题,确定自变量和因变量,并运用二次函数的相关知识进行解答。

4. 练习与巩固(15分钟)教师让学生独立完成一些练习题,巩固所学知识。

例如:练习题一:已知二次函数图像上的两个点的坐标分别为(1,4)和(2,9),求该二次函数的函数表达式。

北师大版九年级数学24二次函数的应用教案

教学目标:1.知识目标:了解二次函数的概念和特点;了解二次函数的图像特点和性质;能够应用二次函数解决实际问题。

2.能力目标:培养学生的分析问题、解决问题的能力;培养学生的数学建模能力。

3.情感目标:培养学生的实际应用数学的兴趣和积极性;培养学生的团队合作和交流能力。

教学重点:学习二次函数的概念、图像、性质以及应用。

教学难点:培养学生的数学建模能力和如何将所学的数学知识应用到实际问题中。

教学准备:教学课件、笔记本电脑、白板和黑板、学生练习册。

教学过程:Step1:导入新课(5分钟)通过展示一张全班同学的身高与年龄的关系图表,引出问题:这样的关系可以用一个函数来表示吗?Step2:观察实例(10分钟)通过实例引入二次函数的概念和特点。

如:地的年降雨量与年龄的关系,画出折线图后发现可以用二次函数来表示。

再通过其他实例,引出二次函数的概念。

Step3:探究二次函数的性质(15分钟)通过对二次函数的图像进行观察,引导学生探究二次函数的性质,如:对称轴、最值等。

并引导学生通过公式推导出二次函数的顶点公式。

Step4:应用二次函数解决实际问题(20分钟)通过几个实际问题的讨论,引导学生用二次函数解决问题。

如:商品的价格随着销售量的增加而减少,通过观察实例图形和函数表达式,同学们挑战应用二次函数来计算销售量与价格之间的关系。

Step5:创设情境,讨论二次函数的应用(20分钟)通过讨论几个生活中的实际问题,让学生团队合作,尝试应用二次函数来解决问题。

如:设计跳水平台的高度与得分的关系,设计电梯的运行时间与楼层的关系等。

Step6:总结(10分钟)总结二次函数的概念、图像、性质以及应用,并适时进行提问和解答。

布置课后作业:完成练习册上的相关习题。

教学反思:本节课通过观察实例、探究性质、应用解决实际问题,培养了学生的分析问题和解决问题的能力,同时也培养了他们的数学建模能力和实际应用数学的兴趣。

课堂气氛活跃,学生的思维得到了很好的锻炼。

北师大版九年级数学下册教案:2.4二次函数的应用

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对二次函数在实际问题中应用的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
学生小组讨论的环节,我尽量让自己成为一个引导者和协助者,而不是单纯的讲解者。我发现这样的角色转变能鼓励学生们更积极地思考和表达,但同时也暴露出一些问题:部分学生在分析问题时思路不够清晰,对二次函数的理解还不够深入。这提示我在今后的教学中,需要更多关注学生的思维过程,培养他们的逻辑思维能力。
另外,我也意识到在教学难点和重点的把握上,还要进一步加强。对于二次函数图像的变换、顶点的应用等难点,我应该准备更多的例子和练习,让学生在实践中逐步攻克这些难关。
3.重点难点解析:在讲授过程中,我会特别强调二次函数的图像特点和解题步骤这两个重点。对于难点部分,比如顶点的物理意义和图像变换,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次函数相关的实际问题,如最大高度、最小距离等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如抛小球来观察其运动轨迹,从而直观感受二次函数的性质。
北师大版九年级数学下册教案:2.4二次函数的应用
一、教学内容
北师大版九年级数学下册教案:2.4二次函数的应用
1.二次函数在实际问题中的应用。
2.利用二次函数解决最大(小)值问题,包括距离、面积、利润等。
3.探索二次函数图像与实际问题之间的关系。

北师大版数学九年级下册2.4《二次函数应用》教案2

北师大版数学九年级下册2.4《二次函数应用》教案2一. 教材分析北师大版数学九年级下册2.4《二次函数应用》是学生在学习了二次函数的图象与性质的基础上进行的一节应用性较强的课程。

本节课主要让学生学会如何运用二次函数解决实际问题,进一步巩固二次函数的知识。

教材通过生活中的实例,引导学生运用二次函数的知识解决实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图象与性质有一定的了解。

但是,学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题。

因此,在本节课中,教师需要引导学生将实际问题与二次函数知识相结合,提高学生的数学应用能力。

三. 教学目标1.让学生掌握二次函数在实际问题中的应用方法。

2.培养学生将实际问题转化为数学问题的能力。

3.提高学生的数学应用意识,培养学生的数学素养。

四. 教学重难点1.重点:二次函数在实际问题中的应用方法。

2.难点:如何将实际问题转化为二次函数问题。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生感受二次函数在实际问题中的应用。

2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:学生分组讨论,共同解决问题,提高学生的团队协作能力。

六. 教学准备1.准备相关的生活实例,用于引导学生思考。

2.准备多媒体教学设备,用于展示实例和讲解。

七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抛物线形篮球架的高度与投篮命中率的关系,引导学生思考如何运用二次函数知识解决实际问题。

2.呈现(10分钟)教师给出几个实际问题,如汽车油耗与行驶距离的关系,让学生尝试将实际问题转化为二次函数问题。

学生在小组内讨论,共同解决问题。

3.操练(15分钟)教师给出一些实际问题,让学生独立解决。

学生通过解决问题,进一步巩固二次函数在实际问题中的应用方法。

4.巩固(5分钟)教师针对学生解决问题的过程进行讲评,指出不足之处,并给出正确的解决方法。

北师大版九年级数学下册:第二章 2.4.2《二次函数的应用》精品教案

北师大版九年级数学下册:第二章 2.4.2《二次函数的应用》精品教案一. 教材分析《二次函数的应用》是北师大版九年级数学下册第二章第四节的一部分。

这部分内容主要让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

教材通过生动的例题和练习题,使学生掌握二次函数图像的特点,学会通过二次函数图像解决实际问题。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题。

因此,在教学过程中,教师需要帮助学生建立实际问题与二次函数之间的联系,提高学生运用数学知识解决实际问题的能力。

三. 教学目标1.让学生掌握二次函数图像的特点,了解二次函数在实际生活中的应用。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生对数学的兴趣,培养学生的创新意识。

四. 教学重难点1.教学重点:让学生掌握二次函数图像的特点,学会通过二次函数图像解决实际问题。

2.教学难点:如何将实际问题转化为二次函数问题,如何引导学生运用数学知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,培养学生的数学思维。

2.利用多媒体辅助教学,展示二次函数图像,让学生更直观地了解二次函数的特点。

3.采用分组讨论的教学方法,鼓励学生合作交流,提高学生的团队协作能力。

六. 教学准备1.准备相关的实际问题,用于引导学生转化为二次函数问题。

2.准备多媒体教学课件,展示二次函数图像。

3.准备练习题,巩固学生对二次函数应用的掌握。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如抛物线运动、物体运动等,引导学生思考这些问题是否可以转化为二次函数问题。

让学生认识到二次函数在实际生活中的重要性。

2.呈现(10分钟)教师利用多媒体课件,展示二次函数图像的特点,如开口方向、顶点坐标、对称轴等。

同时,教师通过举例讲解,让学生了解如何从实际问题中提取二次函数的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2.4.二次函数的应用----最大面积
[教学目标]
1. 通过对生活中实际问题的研究,体会建立数学建模的思想。

2. 通过实际问题与二次函数关系的探究,掌握利用顶点坐标解决最大面积。

3. 能够反思解决问题的基本策略,形成个人解决问题的风格。

.
[教学重点与难点]
重点: 对生活中实际问题与二次函数关系的探究,建立数学建模.
难点: 如何把生活中实际的最大面积问题转化为二次函数最大值的数学问题。

温故知新
1. 二次函数的顶点式是: (0≠a );
2. 二次函数c bx ax y ++=2的顶点坐标公式是:=h ,=k ;
3.把二次函数y =x x 304
32+-化为顶点式为:y = , 当x = 时,y 有最 值为 . 合作探究(1) 如图,在一个直角三角形的内部作一个矩形ABCD , 其中AB 和AD 分别在两直角边上.
问题1:⊿FDC 、⊿CBE 与⊿FAE 相似吗?为什么? 问题2:如果设矩形的一边AB =x m ,那么AD
答 ∵BC∥AD,
∴∠CBE=∠FAE=
又∵∠E=
∠E
∴△CBE ∽ .
∴EB EA =BC AF
. 又∵EA=40, AB =x ,EB = ,
∴4040x -=30
BC . ∴BC= .
∴AD=BC = .
问题3:设矩形的面积为y m 2,则当x 取什么值时, y 有最大值,最大值是多少?.
答:在矩形ABCD 中
∵AB=x ,AD =
∴y= = ,(填顶点式) ∴当x = 时,y 有最大值, y 最大= .
问题4:如果设矩形的一边AD =x m ,,那么AB 边的长度如何表示?设矩形的面积为y m 2,
则当x 取什么值时, y 有最大值,最大值是多少?.(学生模仿问题2、3的思路完成) 答:∵D C∥A B ,
∴∠FDC=∠FAE=
2 又∵∠F=∠F
∴△FDC ∽ . ∴AE
DC FA FD =.
又∵FA=30, AD =x ,FD = ,
∴40
3030DC x =-.
∴DC = .
∴AB =DC = .
在矩形ABCD 中,∵A D =x ,AB =
∴y= = ,(填顶点式) ∴当x = 时,y 有最大值, y 最大= .
感悟:
(1) 基本策略是:把最大面积问题转化为数学问题(即二次函数最大值问题),
(2) 只要把建立的二次函数化为顶点式或代入顶点坐标公式中即可得到最大值.
(3) 可以设AB =x ,也可以设AD =x ,每个人有各自解决问题的风格。

合作探究(2)
某建筑物的窗户如图1所示,它的上半部是半圆,下半部
是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15 m ,
当x 等于多少时,窗户通过的光线最多(结果精确到0.01 m )?
此时,窗户的面积是多少?
分析:x 为半圆的半径,2x 是矩形的较长边,因此x 与半圆面积
和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形
和半圆的面积之和最大。

解:∵4y +4x +3x +πx =7x +4y +πx =15
∴y = ∴面积S =212
x π+2xy = = (填一般式)。

(这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.)
回顾解决问题的过程,小结:
(1)把最大面积问题转化为数学问题——————即二次函数最大值问题,
(2)把建立的二次函数化为顶点式或代入顶点坐标公式中即可得到最大值。

作业:课本P64的EX2,EX3
图1。

相关文档
最新文档