§2格林公式及其应用
合集下载
格林公式及其应用

思考:如果L 取负向呢?
证明: 设 D 是 X 型区域,
D {( x , y ) a x b , 1 ( x ) y 2 ( x )}
P ( x , y )dx
L
L1
L2
L3
P ( x , y ) dx
L4
Pdx
L1 a b
Pdx
2( y)
1
x 1( y)
y
D
L3
L4
c
x 2( y)
[
c
D
Q ( x , y ) x
( y)
dx ]dy (把Q( x , y )看作x的函数
x dxdy .
Q
用牛顿 莱布尼兹公式)
如果D既是X型又是Y 型,则
L
P ( x , y ) dx
P y
,
则曲线积分 Pdx Qdy在该区域内与路径无关 .
L
( 2 ) 如果
Q x
P y
在复连通域内成立,则
曲线积分
不一定与路径无关。
前例,
xdy ydx x y
2 2
.
L
( 3)由定理的证明过程可知 u ( x, y)
( x, y) ( x 0 , y0 )
P ( x , y ) d x Q( x , y ) d y .
L3
( L2 , L4上 dx 0)
b a
L1 y ( x ) 2
L2
P ( x , 2 ( x )) dx
b a
P ( x , 1 ( x )) dx
证明: 设 D 是 X 型区域,
D {( x , y ) a x b , 1 ( x ) y 2 ( x )}
P ( x , y )dx
L
L1
L2
L3
P ( x , y ) dx
L4
Pdx
L1 a b
Pdx
2( y)
1
x 1( y)
y
D
L3
L4
c
x 2( y)
[
c
D
Q ( x , y ) x
( y)
dx ]dy (把Q( x , y )看作x的函数
x dxdy .
Q
用牛顿 莱布尼兹公式)
如果D既是X型又是Y 型,则
L
P ( x , y ) dx
P y
,
则曲线积分 Pdx Qdy在该区域内与路径无关 .
L
( 2 ) 如果
Q x
P y
在复连通域内成立,则
曲线积分
不一定与路径无关。
前例,
xdy ydx x y
2 2
.
L
( 3)由定理的证明过程可知 u ( x, y)
( x, y) ( x 0 , y0 )
P ( x , y ) d x Q( x , y ) d y .
L3
( L2 , L4上 dx 0)
b a
L1 y ( x ) 2
L2
P ( x , 2 ( x )) dx
b a
P ( x , 1 ( x )) dx
3.2格林公式及其应用

P Q R d ( Pnx Qny Rnz )dS . x y z
*格林第一公式
1 2 u u ( x , y , z ), v v ( x , y , z ) C ( ) C (), 设 , v v v 记 P u , Q u , R u , 由高斯公式,可得 x y z
于是
1 u(M 0 ) 2 4 a
a
udS .
注 如果 u C() ,则定理可包含与边界相切的球面。
3.极值原理
*物理背景:稳定温度场在动态平衡下,温度分布在 内部不可能有最高点或最低点。
*数学角度证明 定理2.3(极值原理) 对不恒等于常数的调和函数 u ( x, y, z ) ,其在区域 的任何内点上的值不可能达到 它在 上的上界或下界。 证 用反证法证明。设调和函数 u ( x, y, z ) 不恒等于 常数,且在区域 上的上界为m (注:只需证明有上界 情况即可,相反情况,定理自然成立),而 u ( x, y, z ) 在 内某点 M 0 取值 m ,我们来引出矛盾。
y
x
其中 K 表示 中以 M 0 为球心,以 为半径的 小球,边界记 。
1 1 u F )dS dV . 令u F , 则 (u n r r n r \ K
1 1 1 1 1 2 2, 在球面 上,由于 n n r r r r r
4. 第一边值问题解的唯一性及稳定性
u 0, 定理2.4 狄利克雷内问题 的解如果存在, u f
必是唯一的,而且连续地依赖于所给的边界条件 f 。 证 假设有两个调和函数 u1 ( x, y, z) 和 u2 ( x, y, z),它们
格林公式及其应用

L1 L2 L2
Pdx Qdy Pdx Qdy
L2
Pdx Qdy Pdx Qdy 0,
L1 L1 ( L2 ) L2
Pdx Qdy 0
此时L1 ( L2 )为有向闭曲线,故结论成立, 反之也成立.
3、定理2
设区域G是一个单连通域,函数P( x, y )、Q( x, y ) 在G内具有一阶连续偏导数,则曲线积分 Pdx Qdy
Q y2 x2 P 2 2 2 x ( x y ) y 则
L
xdy ydx x y
2 2
0
(2) 原点在D内时
选取适当小的r 0, 作位于D内的圆周l x2 y2 r 2 记L与l所围的闭区域为D1;
即D1为复连通区域,
l的方向取逆时针方向 有 , xdy ydx x y
P 因 连续,故第一式左边 y 2 ( x ) P ( x, y ) P b dy dx y dxdy a 1 ( x ) y D a Px, 2 ( x) Px,1 ( x)dx
b
第一式右边 Pdx Pdx Pdx
第三节
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径 无关的条件 三、二元函数的全微分求积
一、 格林公式
平面单连通区域: 设D为平面区域,如果D内任一闭曲线所围的部
分都属于D,则称D为平面单连通区域,否则称为复连
通区域.
通俗的说,平面单连通区域是不含有“洞”的区
域.
例如 圆形区域: x, y ) x 2 y 2 1} {(
Pdx Qdy
ABPA
Q P x y dxdy Pdx Qdy D3 BCNB
Pdx Qdy Pdx Qdy
L2
Pdx Qdy Pdx Qdy 0,
L1 L1 ( L2 ) L2
Pdx Qdy 0
此时L1 ( L2 )为有向闭曲线,故结论成立, 反之也成立.
3、定理2
设区域G是一个单连通域,函数P( x, y )、Q( x, y ) 在G内具有一阶连续偏导数,则曲线积分 Pdx Qdy
Q y2 x2 P 2 2 2 x ( x y ) y 则
L
xdy ydx x y
2 2
0
(2) 原点在D内时
选取适当小的r 0, 作位于D内的圆周l x2 y2 r 2 记L与l所围的闭区域为D1;
即D1为复连通区域,
l的方向取逆时针方向 有 , xdy ydx x y
P 因 连续,故第一式左边 y 2 ( x ) P ( x, y ) P b dy dx y dxdy a 1 ( x ) y D a Px, 2 ( x) Px,1 ( x)dx
b
第一式右边 Pdx Pdx Pdx
第三节
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径 无关的条件 三、二元函数的全微分求积
一、 格林公式
平面单连通区域: 设D为平面区域,如果D内任一闭曲线所围的部
分都属于D,则称D为平面单连通区域,否则称为复连
通区域.
通俗的说,平面单连通区域是不含有“洞”的区
域.
例如 圆形区域: x, y ) x 2 y 2 1} {(
Pdx Qdy
ABPA
Q P x y dxdy Pdx Qdy D3 BCNB
第三节_格林公式及其应用

第三节_格林公式及其应用
格林公式是一个重要的微积分计算工具,用于计算微分方程在给定边
界条件下的解。
它可以用来解决一类非常有用的问题,例如求解复杂的微
分方程组、积分变分形式的物理问题。
此外,格林公式还可以应用于计算
微分函数在任意区间上的有限性以及在一些特定情况下的无穷性。
格林公式的主要思想是,给定边界以及满足一些条件的控制变量,可
以将一个微分方程组的解表示为不同常量的线性组合。
因此,可以通过解
决有限个简单的常系数非齐次线性微分方程来求解更复杂的微分方程组。
其中,常系数非齐次线性微分对应的格林公式是:
y(t) = A*exp(αt) + B*exp(βt)
其中,A、B是常数,α、β是解的根。
这个公式可以用来求解不同
类型的微分方程,包括拉普拉斯方程、伯努利方程、线性齐次微分方程组等。
应用:
1、求解拉普拉斯方程
拉普拉斯方程是一类重要的常微分方程,它可以用来描述物理系统的
传播过程以及电、热等物理场的扩散等现象。
拉普拉斯方程的一般形式为:y"+αy'+βy=f(t)
这里,α、β是常数,f(t)是一个任意函数。
可以用格林公式来求
解这个方程的解:
y(t) = A*exp(αt) + B*exp(-αt) + [1/α]*∫exp(-αt)f(t)dt
其中,A、B是常数,α是解的根。
2、求解伯努利方程。
《格林公式及其应用》PPT课件

n (cos,cos).
v nds L
(P cos Q cos)ds
L
由格林公式
Pdy Qdx =========
(P Q )d .
L
D y x
(格林公式的另一种形式)
称函数
为平面向量场 v (P(x, y),Q(x, y))
的散度.物理意义:稳定流体通过某一闭曲线的流量,等
于其散度在该闭曲线所的区域上的二重积分之值.
(x y)dx (x y)dy
( L )
x2 y2
0dxdy 0.
D1
首页
上页
返回
下页
结束
铃
这里(L ) 表示多连通区域 D1的正向边界曲线 .这时L按 逆时针方向,而按顺时针方向.因而
(x y)dx (x y)dy
( L )
x2 y2
(x y)dx (x y)dy (x y)dx (x y)dy,
(x y)dx (x y)dy
L
x2 y2
1 r2
2 [r2 (cost sin t)(sin t) r2 (cost sin t)(cost)]dt
0
2
0 1dt 2.
例 4 设函数u(x,y)在有界闭区域D上有连续的二阶
偏导数,L 为D 的边界且逐段光滑.证明:
u
L
u n
ds
y
x
(x2 y)dx (x y2 sin3 y)dy, AO
oA
(x2 y)dx (x y2 sin3 y)dy
AO
0 x2dx 8 .
2
3
首页
上页
返回
下页
结束
铃
当曲线积分 (x2 y)dx (x y2 sin3 y)dy 与路径无 AB
第二讲格林公式

y x
首页 上页 下页 尾页
❖全微分方程
若方程Pdx Qdy 0的左端是某个函数u(x, y)的 全微分,即
du Pdx Qdy 则称该方程为全微分方程。
u(x, y) C为该方程的通解。
首页 上页 下页 尾页
例 求全微分方程(x2 y2 )dy 2x( y 2x)dx 0。
解 令P(x, y) 2x( y 2x) Q( x, y) ( x2 y 2 )
4) 在 D内,Pdx Qdy 是某个函数u(x, y)的全微分,
即:du Pdx Qdy,(x, y) D
首页 上页 下页 尾页
例 计算 2xydx x2dy,其中L为抛物线 y x2从O(0,0)到 L B(1,1)的一段弧。
解 这里P2xy Qx2
因为
P y
Q x
2x
所以积分
2xydx x2dy 与路径无关
P 2x Q
y
x
可知该方程为全微分方程。 取(x0, y0 ) (0,0)
u(x, y)
x
y
P(x,0)dx Q(x, y)dy
x 4x2dx y (x 2 y2 )dy
0
0
0
0
x 4x2dx
y
(x2
y2 )dy
x2 y 4x3 y3
0
0
3
故方程的通解为
4x3 y3
2u Q . yx x
证毕。
首页 上页 下页 尾页
用格林公式导出的四个等价结论
设 D 为单连通开区域,P(x, y)、Q(x, y) C1(D), 那么,下面四条等价:
1) 在 D内,Q P ; x y
2) 对闭路L D,有 L Pdx Qdy 0;
§2 格林公式及其应用

1 =0,从而 因为 是 基 本 解 , 所 以 ∆ M0 r rM 0 M M0M 由叠加原理, (见引 ∆R( M 0 ) = 0 。由叠加原理, ∆V ( M 0 ) = F ( M 0 ) 。 见引 (
1
力场势函数) 。 力场势函数)
1 F ( M ) 可理解为电荷体密度或质量密度。 称为体位势: 可理解为电荷体密度或质量密度。 − ∆ V ( M 0 ) 称为体位势: 4π
(2.11)
证 明: 将调和函数基本积分公式应用到Γa 上有:
1 ∂ 1 1 ∂u u( M 0 ) = − ∫∫ u r − r dS = 0 4π Γa ∂n r r ∂n
上页 下页 返回
1 1 1 ∂ 1 在Γa 上 = , r = − 2 ,所以 r a ∂n r a 1 ∂u 1 ∂u r r ∫∫ r ∂n dS = a ∫∫ ∂n dS = 0 Γa Γa
1 1 1 ∂u ∂ 1 1 ∂u − ∫∫∫ ∆udΩ = ∫∫ u r − r dS + 2 ∫∫ udS − ∫∫ r dS r ∂n r r ∂ n ε Γε ∂n ε Γε Ω\ Kε Γ
ε ε ε
上页 下页 返回
1 ∂u 1 ∂u dS , 即 u∗ 和 udS , r = 记u = 2 ∫∫ r 2 ∫∫ 4πε Γε ∂n 4πε Γε ∂n
当 u 是Ω 内的调和函数, M 0 ≠ Ω ,则由格林第二公式 有:
∂ 1 u( M ) r ∫∫ ∂n rM 0 M Γ
1 ∂u( M ) − r dS = 0 r ∂n M0M
当 u 是 Ω 内的调和函数,M 0 ∈ ∂Ω = Γ ,类似基本积分公 内的调和函数, 式的推导, 式的推导,记 Γε′ = Γε I Ω , Γ ′ = Γ \ K ε ,则有
1
力场势函数) 。 力场势函数)
1 F ( M ) 可理解为电荷体密度或质量密度。 称为体位势: 可理解为电荷体密度或质量密度。 − ∆ V ( M 0 ) 称为体位势: 4π
(2.11)
证 明: 将调和函数基本积分公式应用到Γa 上有:
1 ∂ 1 1 ∂u u( M 0 ) = − ∫∫ u r − r dS = 0 4π Γa ∂n r r ∂n
上页 下页 返回
1 1 1 ∂ 1 在Γa 上 = , r = − 2 ,所以 r a ∂n r a 1 ∂u 1 ∂u r r ∫∫ r ∂n dS = a ∫∫ ∂n dS = 0 Γa Γa
1 1 1 ∂u ∂ 1 1 ∂u − ∫∫∫ ∆udΩ = ∫∫ u r − r dS + 2 ∫∫ udS − ∫∫ r dS r ∂n r r ∂ n ε Γε ∂n ε Γε Ω\ Kε Γ
ε ε ε
上页 下页 返回
1 ∂u 1 ∂u dS , 即 u∗ 和 udS , r = 记u = 2 ∫∫ r 2 ∫∫ 4πε Γε ∂n 4πε Γε ∂n
当 u 是Ω 内的调和函数, M 0 ≠ Ω ,则由格林第二公式 有:
∂ 1 u( M ) r ∫∫ ∂n rM 0 M Γ
1 ∂u( M ) − r dS = 0 r ∂n M0M
当 u 是 Ω 内的调和函数,M 0 ∈ ∂Ω = Γ ,类似基本积分公 内的调和函数, 式的推导, 式的推导,记 Γε′ = Γε I Ω , Γ ′ = Γ \ K ε ,则有
格林公式及其应用

P dxdy
b
dx
2 ( x) P dy
D y
a
1( x) y
y
b
a{P[ x,2( x)] P[ x,1( x)]}dx.
L2 : y 2( x)
D
Pdx Pdx Pdx
L
L1
L2
L1 : y 1( x)
Oa
bx
b
a
a P[ x,1( x)]dx b P[ x,2( x)]dx
L l
xdy ydx 4x2 y2
0,
于是I
L
xdy ydx 4x2 y2
l
xdy ydx 4x2 y2
1 a2
xdy ydx
l
2 a2
(l所围的椭圆区域的面积)
2 a2
a2π 2
π.
感谢下 载
I1 I2
由格林公式
I1
D
Q x
P y
dxdy
D
(b
a)dxdy
(b
a)
πa 2 2
由于OA在x轴上, y 0, dy 0,
故I2
2a
(bx)dx
2a 2b,
0
于是
I
I1
I2
π 2
2 a 2b
πa3. 2
(2)简化二重积分
例4 计算 e y2dxdy, D :以O(0,0), A(1,1), B(0,1)
线y 2ax x2到点O(0,0)的有向弧段.
解 Q e x cos y a, x P ex cos y b, y
y
D
O
Ax
Q x
P y
b
a,
添加辅助线OA,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若u F (M ),则当M0 时:
(2.7)
u(M0)41u(M)nrM 10MrM 10Mu(n M )dSM
1
4
F rM (M 0M)dM
(2.8)
上页 下页 返回
补:二维空间上的基本积分公式以及调和函数的 基本积分公式
设是 R2中的有界开集, ,u C 2 () C1(),
M
0
)
,lim 0
( 4
)
2
1 ,上式两边令 2
0,
得
u n 1 r 1 r n u d S 2 u (M 0)
上页 下页 返回
综上所述,设 是以足够光滑的曲面 为边界的有界 区域,u u( x, y, z) C 2 () C1(),若u 0,则:
u n rM 1 0M rM 1 0M n u dM S 4 0 2 u u ((M M 0 0) )( ((M M M 0 0 0 )))
上页 下页 返回
从而有:
u(M0)41u(M)nrM 10MrM 10Mu(nM )dS
11
ud
4 rM0M
基本积分公式
当u是内的调和函数时,即u 0时,若M0 ,则
u (M 0) 4 1 u (M ) n rM 1 0 M rM 1 0 M u (n M ) dS
上界,即M0
,
s.t .
u( M 0
)
m
max u( M
M
),下面
将证明,u在内恒为m 从而引出矛盾。
以M0为球心,任意R为半径作球K ,使 得K 。记K SR。
上页 下页 返回
若SR上有函数值小于m 的点,则在此点的某领域内函 数值均小于m ,由平均值定理,
1
mu(M 0)4a2SRudS m
上页 下页 返回
记u
1 ()
udS ,
u n
1
()
nudS ,其中
()表
示
的面积,即
u和
u n
分别为
u和
nu在
上的
平均值,则
u n 1 r 1 r n u d S (2 )u ( ) n u
因为lim u 0
u(
1
4
F rM (M 0M)dM
作为 M 0的函数,记
上页 下页 返回
R (M 0 ) 4 1 u (M ) n r M 1 0 M r M 1 0 M u (n M ) dM S
V(M 0)41F rM (M 0M)dM
因为 1 rM 0 M
是
基
本
解
,
通区域
\
K 中,v
r
1
M0M
0。
K
在复连通区域 \ K中对上述函数u和
v 应用 Green 第二公式,得
\K u 1 r 1 r u d u n 1 r 1 r n u dS(2.5)
其中 1 1 。 r rM0M
上页 下页 返回
(2 .5 )式 左 u 边 1 1 u d 1 u d
上页 下页 返回
定理 2.5 调和方程狄利克雷外问题 u 0 (out of ) u f (on )
的解如果存在,必是唯一的。
(2)
证明:
设 u1 ,
u2
都是
(2) 的解,且
lim
r
ui
(
x,
y,
z)
0
,
(i
1,
2)。令v
u1
u2 ,则v
0,v
0 ,lim v r
0。
设 M 0是外的任一点, 以M 0为心,作半径为 R 的球
这显然不可能。所以u在SR上恒为m 。 同理,u在以M 0为球心,任意r,(r R)为半径的球面Sr 上恒为m ,从而在整个K 上恒等于常数m 。 对M1 ,如图作折线与球面,可得 u(M1 ) m 。所以u(M ) m ,(M )。
□
上页 下页 返回
推论 1 在有界区域 内调和,且在 上为 连续的函数必在边界 上取到其最大值和最小值。
§2 格林公式及其应用
1. 格林(Green)公式 2. 平均值定理 3. 极值原理 4. 第一边值问题解的唯一性及稳定性
1.格林公式
1) 格林公式的推导
高斯公式: A d A d S (A n )dS
由于 uv uv u v,则由高斯公式可得
格林第一公式: u ( v)d u n v d S u v d
定理 2.1 设u C 2 () C1(),u 0 (in ),则
nudS
0。
证明 格林第二公式中取u为所给调和函数,v 1,
则得
u ndS
0。
□
由此定理可知,诺伊曼内问题
u
u n
0 g
(in ) 有解
(on )
的必要条件为 gdS 0。
上页 下页 返回
2.平均值定理
定理 2.2(平均值公式) 设 u(M )在某区域 内
推论 2 设u及v 都是内的调和函数,且在 上连续。如果在 的边界 上成立着不等式 u v , 那么在内上述不等式也成立;并且只有在 u v 时, 在 内才会有等号成立的问题。
上页 下页 返回
4.第一边值问题解的唯一性和稳定性
定理 2.4 调和方程狄利克雷问题
u 0 (in ) u f (on )
\K r r
r \K
(2.5)式右 边 un 1 r1 r n u dS
K
un 1 r1 r n u dSun 1 r1 r n u dS
注意到在
上,
1 r
1
,n
1 r
r
1 r
1 r2
1 2
\K 1 r u d u n 1 r 1 r n u d S 1 2 u d 1 S n u dS
v 0。(见P73 习题 1)称 v 1 为三维拉普拉斯 rM 0 M
方程的基本解。
设 u u( x, y, z) C 2 () C1() , M0 ( x0 , y0 , z0 ) 是 内一定点。
上页 下页 返回
为利用
Green
第二公式,取
充分小,使得以
M
为球心,
0
半径为的球 K 的球面与的边界不相交,则在复连
调和,M0是 中任一点,则对以 M0为中心、a 为半径 完全落在区域 的内部的球面 a ,成立
1
u(M0 ) 4a 2 a udS
(2.11)
证明: 将调和函数基本积分公式应用到a 上有:
u(M0 )
1 4
a
u n
1 r
1 r
nudS
0
上页 下页 返回
在
a
上
1 r
1 a
,n
1 r
1 a2
格林第二公式:u ( v) v( u )d u n v v n u dS
其中n是 的单位外法向量。
上页 下页 返回
2)调和函数的积分表达式
考察函数
1
1
v(x, y,z)
rM 0 M
( x x0 )2 ( y y0 )2 (z z0 )2
容易验证,当 M ( x, y, z) M0 ( x0 , y0 , z0 ) 时,
(1)
的解如果存在,必是唯一的,并且连续依赖于所给的
边界条件 f。 证明: 设u1,u2都是(1)的解,则v u1 u2满足
v 0,v 0,由定理 2.3,v 0。 若 u1 , u2 分别是问题 (1)当 f f1 和 f f2 的解,且 f1 f2 ,满足由定理 2.3, u1 u2 。 □
上页 下页 返回
记u
1 42
udS
,
nu
1 42
nudS
,即 u 和
nu
分别为u
和
nu在
上的平均值,则
\K 1 r u d u n 1 r 1 r n u d 4 S u 4 n u
令 0,则
1 r u d u n 1 r 1 r n u d S 4 u (M 0 )
所
以
M0
1 rM 0 M
0
,
从
而
R(M0 ) 0。由叠加原理,V (M0 ) F (M0 )。(见引
力场势函数)。
V
(
M
0
)称为体位势:
1 4
F
(
M
)可理解为电荷体密度或质量密度。
利用体位势,可将泊松方程的求解问题通过叠加原理化为调和方
程的求解问题。
上页 下页 返回
4)调和方程的诺伊曼内问题有解的必要条件
则对M 0 ,有
u(M0)21u(M)n lnrM 10MlnrM 10Mu(n M )dM s
1
1
2lnrM0Mu dM
当u是内的调和函数时,即u 0时,若M0 ,则
有 u (M 0 ) 2 1 u (M ) n lr n M 1 0 M lr n M 1 0 M u (n M ) d M s
上页 下页 返回
3) 泊松方程
利用基本积分公式(2.8)很容易导得泊松方程的一个
特解表达式。
事 实 上 , 设 有 函 数 u(M ) C 2 () C1() , 满 足
u F ,其中F C 0 (),由(2.8),对M0
u(M0)41u(M)nrM 10MrM 10Mu(n M )dSM
,所以
1 u 1 u
a
r
n dS
a
a
ndS
0
u(M0 )
1 4
a
u
n
1 r
dS
1 4a 2
a
udS
从而(2.11)成立。 □