28.格林公式及其应用

合集下载

格林公式及其应用

格林公式及其应用
L1 L2 L2
Pdx Qdy Pdx Qdy
L2
Pdx Qdy Pdx Qdy 0,
L1 L1 ( L2 ) L2
Pdx Qdy 0
此时L1 ( L2 )为有向闭曲线,故结论成立, 反之也成立.
3、定理2
设区域G是一个单连通域,函数P( x, y )、Q( x, y ) 在G内具有一阶连续偏导数,则曲线积分 Pdx Qdy
Q y2 x2 P 2 2 2 x ( x y ) y 则
L
xdy ydx x y
2 2
0
(2) 原点在D内时
选取适当小的r 0, 作位于D内的圆周l x2 y2 r 2 记L与l所围的闭区域为D1;
即D1为复连通区域,
l的方向取逆时针方向 有 , xdy ydx x y
P 因 连续,故第一式左边 y 2 ( x ) P ( x, y ) P b dy dx y dxdy a 1 ( x ) y D a Px, 2 ( x) Px,1 ( x)dx
b
第一式右边 Pdx Pdx Pdx
第三节
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径 无关的条件 三、二元函数的全微分求积
一、 格林公式
平面单连通区域: 设D为平面区域,如果D内任一闭曲线所围的部
分都属于D,则称D为平面单连通区域,否则称为复连
通区域.
通俗的说,平面单连通区域是不含有“洞”的区
域.
例如 圆形区域: x, y ) x 2 y 2 1} {(
Pdx Qdy
ABPA
Q P x y dxdy Pdx Qdy D3 BCNB

高等数学-格林公式及其应用

高等数学-格林公式及其应用
由格林公式知 xdy ydx 0 L x2 10 y 2
(2) L为正方形 x y 1 的正向.
作位于 D内圆周 l : x2 y2 a2 ,
取顺时针方向。
记 D1由 L和 l所围成, 应用格林公式,得
L
xdy x2
ydx y2
xdy ydx Ll x2 y2
xdy ydx l x2 y2
,
0 2
所围面积
1 2 (abcos2 absin2 ) d ab 20 14
例5 计算抛物线 ( x y)2 ax(a 0) 与 x 轴所围成
的面积.
解 ONA为直线 y 0.
曲线 AMO 由函数
y ax x, x [0,a]表示,
M
N
A(a,0)
1
A xdy ydx
计算
L
xdy x2
ydx , y2
(1) L为圆周(x 1)2 ( y 1)2 1的正向.
(2) L为正方形 x y 1的正向.
解 记 L所围成的闭区域为 D,

P
y x2 y2
,
Q
x2
x
y2
,
则当
x2 y2 0
时,有
Q x
y2 x2 ( x2 y2 )2
P .
y
(1) L为圆周(x 1)2 ( y 1)2 1的正向.
高等数学
第二十讲
第三节
第十一章
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径无关的 等价条件
一、 格林公式
区域 D 分类 单连通区域 ( 无“洞”区域 )
L
多连通区域 ( 有“洞”区域 )
D
域 D 边界L 的正向: 域的内部靠左

格林公式的讨论及其应用

格林公式的讨论及其应用

格林公式的讨论及其应用格林公式是矢量分析中的重要定理之一,它描述了向量场在一个闭合曲面上面的流量与该向量场的散度在该闭合曲面所围成的空间体积之间的关系。

格林公式广泛应用于电磁学、流体力学、热力学等领域,下面将对格林公式进行详细讨论及应用。

格林公式可以用数学的方式描述为:对于一个可微的矢量场F,它的散度为div(F),则该矢量场F通过一个闭合曲面S的流量为∬F⋅ds,该闭合曲面S所围成的体积为∭div(F)dV,格林公式表达了这两者之间的关系,即:∬F⋅ds = ∭div(F)dV其中,∬表示曲面积分,∭表示体积积分,F⋅ds表示矢量场F与ds 的内积,div(F)表示矢量场F的散度。

1.流体力学中的应用格林公式在流体力学中有着广泛的应用。

例如,可以通过格林公式计算流体在一个闭合曲面上的流量,这对于流体的体积流量和质量流量的计算有重要意义。

另外,格林公式还可以用来推导流体的连续性方程和Navier-Stokes方程等重要方程。

2.电磁学中的应用格林公式在电磁学中也有着重要的应用。

例如,可以利用格林公式计算电磁场在一个闭合曲面上的通量,这对于计算电场和磁场的电荷和磁荷的分布有着重要意义。

此外,通过格林公式还可以推导出麦克斯韦方程组中的一些重要方程,如高斯定律、安培环路定理等。

3.热力学中的应用格林公式在热力学中也有着重要的应用。

例如,可以通过格林公式计算热场在一个闭合曲面上的通量,这对于计算热量的传递和热功的计算有着重要意义。

此外,格林公式还可用于推导出热传导方程等重要方程。

除了上述应用之外,格林公式还广泛应用于流场分析、电磁场分析、电力系统分析等领域。

在实际应用中,可以利用格林公式对复杂的问题进行推导和计算,从而得到更加精确的结果。

总结起来,格林公式是矢量分析中的重要定理之一,描述了向量场在一个闭合曲面上面的流量与该向量场的散度在该闭合曲面所围成的空间体积之间的关系。

它在流体力学、电磁学、热力学等领域都有重要的应用。

格林公式的应用

格林公式的应用

格林公式的应用
1.什么是格林公式?
格林公式是指由英国数学家格林提出的用来计算某一多项式在
某一点的近似值的公式,它是一个多项式的近似值计算公式。

格林公式是基于抛物线(parabola)近似曲线在一定范围内拟合某多项式,其实际应用中是以三次多项式来近似计算出某多项式在某一点的近
似值。

2.格林公式的应用
(1)求解曲线的稳定点:格林公式可用来计算曲线的稳定点,即一阶导数为0时的值。

(2)优化函数:格林公式可用于优化函数,如果给定函数的一阶和二阶导,可利用格林公式求得函数的极值点。

(3)数值积分:格林公式也用于数值积分,能够准确而快速地求得曲线的积分值。

(4)对称函数:格林公式可用于求解对称函数的极值点,比如圆形的半径等。

(5)曲线拟合:格林公式也可以用于曲线拟合来确定某一多项式在某一点的值,从而降低计算的复杂度。

- 1 -。

《格林公式及其应用》PPT课件

《格林公式及其应用》PPT课件

n (cos,cos).
v nds L
(P cos Q cos)ds
L
由格林公式
Pdy Qdx =========
(P Q )d .
L
D y x
(格林公式的另一种形式)
称函数
为平面向量场 v (P(x, y),Q(x, y))
的散度.物理意义:稳定流体通过某一闭曲线的流量,等
于其散度在该闭曲线所的区域上的二重积分之值.
(x y)dx (x y)dy
( L )
x2 y2
0dxdy 0.
D1
首页
上页
返回
下页
结束

这里(L ) 表示多连通区域 D1的正向边界曲线 .这时L按 逆时针方向,而按顺时针方向.因而
(x y)dx (x y)dy
( L )
x2 y2
(x y)dx (x y)dy (x y)dx (x y)dy,
(x y)dx (x y)dy
L
x2 y2
1 r2
2 [r2 (cost sin t)(sin t) r2 (cost sin t)(cost)]dt
0
2
0 1dt 2.
例 4 设函数u(x,y)在有界闭区域D上有连续的二阶
偏导数,L 为D 的边界且逐段光滑.证明:
u
L
u n
ds
y
x
(x2 y)dx (x y2 sin3 y)dy, AO
oA
(x2 y)dx (x y2 sin3 y)dy
AO
0 x2dx 8 .
2
3
首页
上页
返回
下页
结束

当曲线积分 (x2 y)dx (x y2 sin3 y)dy 与路径无 AB

格林公式及其应用格林公式

格林公式及其应用格林公式

格林公式及其应用格林公式格林公式是向量分析中的一个重要定理,也被称为格林-斯托克斯定理。

它是由爱尔兰数学家乔治·格林在19世纪提出的,用于计算一个曲线或曲面上的环流和散度之间的关系。

格林公式的应用非常广泛,可以用来求解流体力学、电磁学和热力学等领域的问题。

下面将介绍格林公式的表达形式,以及它在常见问题中的具体应用。

1.格林公式的表达形式格林公式有两种常见的表达形式,一种是针对平面区域的格林公式,另一种是针对空间曲线的格林公式。

下面将分别介绍这两种格林公式的表达形式。

1.1平面区域的格林公式若D是一个紧致的平面区域,边界为C(C是一个简单、逐段光滑的曲线),向量函数F(x,y)=(P(x,y),Q(x,y))在区域D中具有二阶连续偏导数,则有如下格林公式:∬D(∂Q/∂x-∂P/∂y)dxdy=∮C(Pdx+Qdy)其中,∂P/∂y和∂Q/∂x分别表示P和Q对y和x的偏导数,dxdy表示在D中的面积元素,Pdx+Qdy表示沿着边界C的曲线元素。

1.2空间曲线的格林公式若S是一个有向光滑曲面,它的边界为C(C是一个简单、光滑的曲线),向量函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))在曲面S内具有连续偏导数,则有如下格林公式:∯S(∂R/∂y-Q)dydz+(∂P/∂z-R)dzdx+(∂Q/∂x-P)dxdy=∮C(Pdx+Qdy+Rdz)其中,∂P/∂z、∂Q/∂x和∂R/∂y分别表示P、Q和R对z、x和y的偏导数,dydz、dzdx和dxdy表示在S内的面积元素,Pdx+Qdy+Rdz表示沿着边界C的曲线元素。

2.格林公式的应用格林公式具有广泛的应用,在流体力学、电磁学、热力学等领域都能够找到它的身影。

下面将以几个例子来说明格林公式的具体应用。

2.1流体力学中的应用格林公式在流体力学中常常用于计算流体的环流和散度。

例如,可以利用格林公式来推导速度势函数和流函数之间的关系,进而求解流场中的速度分布。

格林公式及其应用【高等数学PPT课件】

格林公式及其应用【高等数学PPT课件】

解: 为了使用格林公式, 添加辅助线段 区域为D , 则
它与L 所 围
原式
例5. 验证 数 , 并求出它.
证: 令
在右半平面 ( x > 0 ) 内存在原函
则 由定理 2 可知存在原函数

例6. 设质点在力场

移动到
作用下沿曲线 L : 求力场所作的功W
解:

则有
可见, 在不含原点的单连通区域内积分与路径无关.
第十一章
第三节 格林公式及其应用
一、格林公式
二、平面上曲线积分与路径无关的 等价条件
一. Green公式 闭曲线L的正向: 当沿此方向前进时,L所 围的区域 总在左边.
(Green公式)
格林公式 推论: 正向闭曲线 L 所围区域 D 的面积
例如, 椭圆
所围面积
例1 解
例2. 计算
其中D 是以 O(0,0) , A(1,1) ,

1) 计算曲线积分时, 可选择方便的积分路径;
2) 求曲线积分时, 可利用格林公式简化计算,
若积分路径不是闭曲线, 可添加辅助线;
3) 可用积分法求d u = P dx + Qdy在域 D 内的原函数:
取定点
及动点
则原函数为

例4. 计算
其中L 为上半
圆周
从 O (0, 0) 到 A (4, 0).
定理2. 设D 是单连通域 , 函数
在D 内
具有一阶连续偏导数, 则以下四个条件等价:
(1) 沿D 中任意光滑闭曲线 L , 有
(2) 对D 中任一分段光滑曲线 L, 曲线积分
ቤተ መጻሕፍቲ ባይዱ
与路径无关, 只与起止点有关.

《格林公式及其应用》课件

《格林公式及其应用》课件

特殊型格林公式
特殊形式的格林公式适用于计算具有特殊形 状的曲线或曲面上的积分,如圆形、椭圆形 等。
格林公式的应用
1 线积分的计算
通过格林公式,我们可以计算曲线上的积分,从而得到与曲线相关的物理量,如流量、 环流等。
2 面积的计算
利用格林公式,我们可以计算平面上的闭合曲线所围成的面积,为测量和计算提供了方 便。
3 体积的计算
基于格林公式,我们可以计算由曲线围成的立体图形的体积,为求解三维图形的体积提 供了便利。
格林公式的计算方法
1
极坐标系下的计算方法
当曲线在极坐标系下表达时,我们可以利用极坐标的性质,简化格林公式的计算 过程。
2
直角坐标系下的计算方法
当曲线在直角坐标系下表达时,我们可以借助直角坐标系的符号和定义,求解格 林公式中的各个参数。
格林公式及其应用
本课件介绍格林公式的形式、应用场景及计算方法,以及灵活应用格林公式 的技巧。让我们一起探索格林公式的奥秘!
什么是格林公式
格林公式是一个在向量分析中常用的定理,它将二重积分与线积分、面积积分联系起来。了解它的基本 原理对于理解多变量微积分至关重要。
格林公式的形式
一般型格林公式
一般形式的格林公式在计算线积分与面积积 分时特别有用,它将曲线的内部区域与曲线 的边界联系起来。
例题分析
给定一个曲线和一个区域,我们将应用格林公式来计算相关的积分和物理 量,以解决问题。
总结
格林公式的优势与不足
格林公式在解决某些问题中非常有用,但在特定场景下可能有其局限性,我们需理解其应用ቤተ መጻሕፍቲ ባይዱ范围和限制。
如何灵活应用格林公式
学习了格林公式的基本原理和计算方法后,我们可以尝试将其巧妙应用于实际问题中,创造 性地解决难题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

称(x, y)是方程的积分因子.
例: ydx xdy 0 不是全微分方程.
取(x, y)
1 y2
,
ydx xdy y2
0是全微分方程 .
即: d( x ) 0, x C是方程通解. 1 , 1 , 1
y
y
x2 xy x2 y 2
也是该方程积分因子30
例1: 求微分方程通解 (x2 2xy y2 )dx (x2 2xy y2 )dy 0
1. P Q 在D内恒成立. y x
du Pdx Qdy,
由定理的条件,有 P Q .
y x
23
例1:计算 (e y x)dx (xe y 2 y)dy, L
L : 过o(0,0), A(0,1)及B(1,2)所决定的圆周的一段弧 .
y
解: P e y x; Q xe y 2y
20
3a2 8
2 sin 2 2tdt
0
3a 2
8
16
三、平面曲线积分与路径无关条件
设P(x,y),Q(x,y)是定义在平面域D上的有界函数,
如果对于D内的任意两点A,B以及D内 从点A到点B的任意两条曲线 , L1 L2
y
Pdx Qdy L1
BD A
O
x
17
定理 :
1. P Q 在D内恒成立. y x
L
L1 L2
Pdx Qdy
L1 L2 ABBA
(Q P )dxdy x y D 8
Q P
( )dxdy P(x, y)dx Q(x, y)dy
x y
L
D
可记为: x y dxdy ÑL P(x, y)dx Q(x, y)dy
DP Q
格林公式实质:
给出了沿闭曲线的第二类曲线积分与二重积分的关系
2) : L 为x2 y2 4的边界正向.
D
O
不能直接用格林公式. 老办法!
x
x 2cos
L
:
y
2 sin
,
0 2
xdy ydx
L x2 y2
2 2 cos 2 cosd 2sin (2sin )d
0
4
2
xdy ydx 1 xdy ydx 1
L x2 y2 4 L
y x
x a cos
直接算,老办法! (x y)dx (x y)dy
L : y a sin ,
L
x2 y2
0 2
2 a(cos sin ) (asin )d a(cos sin ) a cosd
0
2
a2 d
2
0 a2
ห้องสมุดไป่ตู้
a2
(其它方法?)
12
例4:计算
L
xdy x2
0
0
3
3
通解:x3 x2 y xy2 y3 C
31
3
3
称u(x, y)是Pdx Qdy的一个原函数.
全微分方程
称 P( x, y)dx Q( x, y)dy 0 1
或恰当方程
1 的通解为: u(x, y) C
28
2.由前面定理知 :
P Q y x
存在u(x, y), 使du Pdx Qdy.
P(x, y)dx Q(x, y)dy 0是全微分方程.
同理可证 u Q( x, y) .
21
y
D(x0, y)
y•
• A( x0 , y0 )
O
y
Q(x, y)dy y0 x
P(x, y)dx. x0
u使得 : du Pdx Qdy成立。
• B(x, y)
• C(x, y0 )
x
22
4.存在二元可微函数 u(x, y), 使du Pdx Qdy.
4
dt
4
3
2
14
利用格林公式计算平面图形的面积
A
1 2
L
xdy
ydx
.
15
例5:利用曲线积分计算星形线
y
解: S 1
x y (1
a cos3 t a sin3 t
1)dxdy
所围图形的面积.
P y, Q x
2D
o
x 1 ( y)dx xdy 2L
3a2 2 (sin4 t cos2 t cos4 t sin2 t)dt
ydx y2 ,
其中:L由点A( , )经曲线y cos x到点B( , )
解:
L1
:
x
2 cos t
y 2 sin t
xdy ydx
L x2 y2
y L1
LZ
o
x
xdy ydx xdy ydx
LL1 x2 y2
L1 x2 y2
A
B
0
xdy ydx
5
L1 x2 y2
10.3 格林公式及其应用 一、连通区域 二、格林公式 三、曲线积分与路径无关的条件 四、二元函数的全微分求积
1
一、连通区域
1.连通区域 : D内任意两点都可用 D内折线连接起来.
设 平面区域D是由闭曲线L围成的连通区域 , 如果 D内任一闭曲线所围成的 区域都包含于 D , 则称 D 为单连通区域,否则 称为复连通区域 .
A(0,1)
B(1,2)
P e y Q ,
o C(1,0) x
y
x
积分与路径无关 .
(e y x)dx (xe y 2 y)dy L
(e y x)dx (xe y 2y)dy (e y x)dx (xe y 2y)dy
OC
CB
1
(e
0
x)dx
0
2 0 (e y 2 y)dy e2 7
10
例2:计算 (e x sin y my)dx (e x cos y m)dy, L L : x2 y 2 ax顺时针方向的上半圆 . 繁! y 解:可直接利用第二类曲线积分的计算方法.
补上AO,方向A O,使积分变成封闭的.
o
A(a,0) x P ex sin y my Q ex cos y m
4.存在二元可微函数 u(x, y), 使du Pdx Qdy.
证:
y
M(x, y)
M0 (x0, y0 )
D
下面证明
O
x
20
由偏导数的定义,有
y
xx
P(x, y)dx x
M(x, y)
D M0 (x0, y0 )
M1 ( x x, y)
O
x
由定积分中值定理,得 P(x x, y) x, (0 1).
ydx y2 ,
其中:L由点A( , )经曲线y cos x到点B( , )
解:若不换路径,计算困难!
P
y x2 y2
,
Q
x2
x
y2
P y2 x2 Q y (x2 y2 )2 x
补充路径:
y L1
LZ
o
x
A
B
L1 :以原点为圆心,2为半径的圆,逆时针方向 13
例4:计算
L
xdy x2
x y
L
D
其中 L 是 D的取正向的边界曲线 .
4
证明:
先证:ÑL Pdx
D
P y
dxdy
(1) D是单连通区域,
y L2 : y 2 (x)
L
D既是"X型"又是"Y型"区域.
L1 : y 1(x)
oa
bx
D是"X型"区域 D={(x, y) | 1(x) y 2 (x), a x b}
0
0
2
24
例2 计算 xdy ydx , L x2 y2 1) : L 为1 x2 y2 4的边界正向.
2) : L 为x2 y2 4的边界正向.
3) : L为任意包含原点的封闭 曲线,逆时针方向.
解1:
y L1
D
L2
O
x
xdy
ydx
格林公式
0
.
L x2 y2
25
例2 计算 xdy ydx , L x2 y2 y L 解2:
D
P y
dxdy
d
y
L1
:
x
1
(
y)
c
D也是"Y型"区域,
o
D {(x, y) |1( y) x 2 ( y), c y d}
同理可证 :
ÑL Qdy
D
Q x
dxdy
两式相加得:
L
D
L2 : x 2 ( y)
x
6
y
L3
D3
L5
D1
o
区域D不满足上述特点.
将 D 分成三个区域 D1, D2 , D3 .
(ex sin y my)dx (ex cos y m)dy L
(ex sin y my)dx (ex cos y m)dy
L AO
(ex sin y my)dx (ex cos y m)dy
AO
mdxdy
(ex sin 0 m0)dx 0 1 ma2
D
AO
8
4
2dxdy 2
D
26
例2 计算 xdy ydx , L x2 y2
3) : L为任意包含原点的封闭 曲线,逆时针方向.
y
L D
解3:
L1
同理 : 不能直接用格林公式.
O
x 取:L1 : x2 y2 a2包含在L内,顺时针.
x a cos
L1
相关文档
最新文档