引物设计的原理和程序
引物设计原理

引物设计原理引物设计原理是指利用一种叫做引物的化学物质来控制基因表达的原理。
引物是一种小分子化合物,它可以与DNA或RNA结合,以激活或阻止基因表达。
引物被用于多种应用,包括体外诊断、基因工程、生物技术和分子生物学等。
引物设计是基因工程中一个重要的步骤,它涉及到精心设计、合成和测试引物,以使其能够灵活地与待检测的目标片段结合,并发挥所需的功能。
引物设计的基本原理是:精心设计和合成一种特定的化合物,使其特异性地与感兴趣的目标片段结合,并发挥所需的功能。
引物的作用是将目标片段的复制过程定向激活或阻止,以便达到特定的研究目的。
精心设计引物的基本原理是合成一种适宜大小的化合物,使其能够与特定的目标片段特异性结合,从而激活或阻止特定的基因表达。
要做到这一点,需要考虑三个重要的指标:引物的长度、基序和热稳定性。
引物的长度是指引物的氨基酸数,也就是引物的序列长度。
一般来说,引物的长度应该在18-30个氨基酸之间,这样才能保证引物具有足够的灵敏度和特异性,从而达到最佳的表达效果。
引物的基序决定了它与目标片段的结合特异性。
引物的基序应该完全符合表达目标片段的基序,以确保引物能够特异性地与目标片段结合。
引物的热稳定性决定了它在高温环境中的稳定性,即它能够在高温环境中保持原来的结构和功能。
引物的热稳定性取决于其结构,如基序、碱基对等。
一般来说,引物的热稳定性越高,它在更高的温度下的稳定性就越好。
根据上述原理,引物设计的一般步骤如下:(1)确定目标片段的序列;(2)选择合适的引物长度;(3)设计和合成引物;(4)测试引物的活性和特异性;(5)测试引物的热稳定性;(6)测试引物的灵敏度。
综上所述,引物设计原理是指利用一种叫做引物的化学物质来控制基因表达的原理。
它包括精心设计、合成和测试引物,以使其能够灵活地与待检测的目标片段结合,并发挥所需的功能,从而实现特定的研究目的。
引物设计的原理和程序

1 引物的设计以及初步筛选引物的设计与初步筛选基本上通过一些分子生物学软件和相关网站来完成的,目前运用软件Primer Premier 5 或美国 whitehead 生物医学研究所基因组研究中心在因特网上提供的一款免费在线PCR引物设计程序 Primer 3来设计引物,再用软件Oligo 6进行引物评估,就可以初步获得一组比较满意的引物。
但是对于初学者来说,运用软件和程序来设计引物好象无从着手,其实只要我们掌握了引物设计的基本原则和注意事项,所有问题便迎刃而解。
因为无论是软件还是程序,都是以这些基本原则和注意事项为默认标准来进行引物设计的。
所以,我们在进行引物设计的时候大可不必在软件和程序的参数上花费过多的时间来思考,如果没有特殊要求我们完全可以把一些参数设为默认值。
下面我们主要讨论一下引物设计的原则和注意事项。
①引物的长度一般为15-30 bp,最好在18~24 bp,因为太短易形成错配(F alse priming) 降低特异性,而太长也会降低特异性,并且降低产量[21。
②引物在模板内最好具有单一性,也就是说在模板内部没有错配。
特别是3’端,一定要避免连续4个以上的碱基互补错配。
③引物序列的GC 含量最好在40%一60%,且上下游引物序列GC含量的差异不要太大,3’端最后5个碱基最好不要富含GC,特别是连续3个的G或C。
④DNA双链形成所需的自由能AG,应该以5’端向3’端递减,3’端AG最好不要高于9.0 keaf mol[31。
⑤避免形成稳定的引物二聚体(Dimer and Cross DimeO 和发夹结构(Hairp in),AG高于4.5 keal/mol时易引发上述两种结构的产生。
⑥引物所在的模板区域应该位于外显子区,最好跨越一个内含子区,这样便于对扩增出来的片段进行功能鉴定和表型分析。
⑦如果以DNA为模板设计引物,产物长度在100—600 bp比较理想。
而以m RNA为模板设计引物时,产物长度在150—300 bp比较理想。
PCR引物设计原理及原则

PCR引物设计原理及原则PCR引物设计是聚合酶链反应(Polymerase Chain Reaction,PCR)的关键步骤之一、PCR引物是指PCR扩增反应中作为起始材料的两个DNA片段,通常是20-30个碱基对长的寡核苷酸序列。
PCR引物设计的目的是选择合适的引物序列,以实现特定DNA序列的扩增。
1.特异性:PCR引物应该非常特异地与目标序列相互作用,不与其他非特异性的序列发生非特异性的扩增反应。
为了实现特异性,引物序列应该在目标序列上具有高度互补性,但是在非特异性序列上没有互补性。
2.合适的长度:PCR引物的长度在20-30个碱基对之间,较短的引物可能无法特异性地与目标序列结合,而较长的引物可能导致PCR反应的效率降低。
3.避免结构性:PCR引物设计中应避免引物之间或引物与模板之间的二级结构形成。
二级结构会干扰PCR反应的进行,降低扩增效率。
4.避免引物间杂交:在PCR反应中,通过引物间的相互作用引发的非特异性扩增会干扰特异性扩增的结果。
因此,在设计PCR引物时,需要避免引物间的互补性。
1.选择位于目标序列上的合适区域进行扩增,通常选择区域位于目标序列上游和下游的相对保守区域。
这样可以确保PCR引物的特异性和稳定性。
2.引物应具有一定的GC含量,一般在40%-60%之间,过低的GC含量会降低PCR反应的特异性和稳定性。
3.引物的两端不应含有重复序列,这样可以避免模板序列的间断扩增。
4.引物的两端应该有相对稳定的酮基或磷酸基,这样可以提高引物的稳定性,确保特异性扩增。
5.避免引物的自身互补性,以防止引物间的二级结构形成。
引物的互补性会干扰PCR反应的进行。
6.引物应避免在末端存在带有杂质的碱基,因为这可能会导致扩增产物的杂交和二级结构形成。
7.引物序列应尽量避开重复序列、富含AT或GC的序列、高度变异的区域和基因座之间的序列相似性较高的区域。
8.引物设计应考虑到引物长度、温度和浓度的相互配合,以保证对目标序列的特异性扩增。
引物设计的原理与方法

引物设计的原理与方法引物设计是指为了在PCR、荧光定量PCR、基因克隆、基因表达、基因测序等分子生物学实验中特异性地扩增DNA序列或检测特定DNA序列而设计的一对或多对寡核苷酸。
引物设计的原理是基于两个核心要素:特异性和效能性。
特异性指引物与目标DNA序列完全互补,没有或只有微小的不匹配,以确保扩增或检测的特异性;效能性指引物的长度、GC含量、无特异结构和互补等因素需要优化,以提高PCR的效率和产物的质量。
1.模板DNA序列分析:通过对目标DNA序列进行分析,选择合适的扩增区域。
可根据目标序列的功能域、暴露度、多样性等特点进行选择。
2.引物长度和GC含量的优化:引物的长度通常在18-25个核苷酸之间,GC含量一般在40%-60%之间。
过长或过短的引物可能导致特异性和效率下降。
3.引物间的特异性检测:使用基因组数据库进行BLAST或其他比对算法的分析,检测引物是否有特异性。
确保引物的特异性是避免非特异扩增或检测的重要因素。
4. 引物设计软件的应用:目前市场上有很多引物设计软件,如Primer3、Beacon Designer、OligoAnalyzer等。
这些软件通过输入目标序列,自动生成引物并进行特异性和效能性的评估和预测。
5.引物的互补性检测:引物间的互补性会导致多聚体的形成,降低PCR效率和特异性。
可以使用软件或实验方法,如熔解曲线分析、聚丙烯酰胺凝胶电泳等,来检测引物间的互补性。
6.实验证明和优化:设计好的引物需要经过实验证明,通过PCR或其他检测方法来验证引物的特异性和效能性。
如果引物不符合要求,可以进行引物的调整和优化。
综上所述,引物设计的原理是基于特异性和效能性,方法包括模板DNA序列分析、引物长度和GC含量的优化、引物间的特异性检测、引物设计软件的应用、引物的互补性检测和实验证明和优化。
这些方法可以帮助科研人员设计特异性和效能性较好的引物,以提高实验的成功率和准确性。
引物设计原理

引物设计原理概述引物设计是在分子生物学和遗传学研究中非常重要的一部分内容。
引物是用于PCR(聚合酶链式反应)、基因克隆和DNA测序等实验中的关键组成部分。
引物的设计必须精确合理,以确保实验的准确性和可重复性。
本文将介绍引物的设计原理以及一些常用的引物设计工具。
引物的定义引物是一段短的DNA或RNA序列,它们与待扩增或待测序的目标序列的两个特定位点相互作用。
在PCR反应中,引物与目标序列的两个末端结合,然后通过聚合酶的作用,在目标序列上合成新的DNA链。
在基因克隆和测序中,引物与目标序列特定区域结合,以实现目标序列的扩增或测序。
引物设计原则引物的设计需要考虑以下几个原则:1. 特异性引物应该具有高度的特异性,即只与目标序列的特定区域相互作用。
这可以通过选择具有较高GC含量的引物来实现,因为高GC含量使引物更稳定,并能够与目标序列更特异地结合。
同时,通过在引物的3’末端引入一些限制性内切酶位点,还可以进一步确保引物的特异性。
2. 避免组内和组间杂交在引物设计过程中,需要避免引物之间的互相杂交以及引物与非目标序列的互相杂交。
互相杂交可能导致非特异性扩增产物的产生,影响实验结果的准确性。
为了避免这种情况的发生,引物设计时需要借助生物信息学工具进行引物比对和引物间互相比对的分析,以确保引物之间没有相互重叠的区域。
3. 合适的长度和温度引物的长度和温度也是引物设计中需要考虑的因素。
通常,引物的长度在18-30个碱基对之间,过长或过短的引物都会导致不理想的扩增效果。
此外,引物的熔点温度(Tm)应该在50-65摄氏度之间,以保证PCR反应的成功进行。
4. 避免引物自身二聚体和非特异性扩增引物自身的二聚体和引物与非特异序列的互相作用可能会导致非特异性扩增,影响实验结果的准确性。
为了避免这种情况的发生,我们需要使用生物信息学工具进行引物序列的分析,确保引物本身不会发生相互结合以及与非特异序列发生结合的情况。
引物设计工具在引物设计中,有许多生物信息学工具可以帮助我们进行引物的选择和优化。
引物设计的详细步骤

引物设计的详细步骤详细步骤如下:步骤一:了解引物设计的基本原理引物设计是指为特定的DNA序列设计一对合适的引物,以便在PCR反应中扩增目标DNA序列。
引物是PCR反应的关键组成部分,引物的选择和设计对于PCR扩增的成功率和特异性非常重要。
因此,了解引物设计的基本原理对于有效设计合适的引物至关重要。
步骤二:确定PCR反应的目标序列在设计引物之前,我们需要确定PCR反应的目标序列,即我们需要扩增的DNA区域。
这个目标序列可以是已知的基因序列,也可以是未知的区域。
确定目标序列后,我们可以继续设计引物。
步骤三:确定引物的一些基本参数在设计引物之前,我们需要确定一些基本的参数,以便帮助我们选择合适的引物。
这些参数包括引物的长度、GC含量、Tm值以及避免二聚体形成等。
引物长度:通常来说,引物的长度应在18-25个核苷酸之间。
过长的引物可能导致不特异的扩增产物的形成,而过短的引物则可能导致低扩增效率。
GC含量:引物的GC含量对于引物的稳定性和特异性有影响。
在正常情况下,引物的GC含量应在40%-60%之间。
Tm值:引物的Tm值是指引物在PCR反应中的解离温度。
Tm值过低可能导致非特异的扩增产物的形成,而Tm值过高则可能导致低扩增效率。
避免二聚体形成:在设计引物时,我们还需要考虑引物之间的互补性以及避免引物形成二聚体。
引物之间的互补性可能导致引物形成二聚体,从而降低PCR反应的效率和特异性。
步骤四:选择合适的引物设计工具目前有很多在线引物设计工具可供选择,例如NCBI Primer-BLAST、OligoAnalyzer等。
这些工具可以根据输入的目标序列帮助我们快速选择合适的引物。
此外,还可以使用一些商业引物设计软件,如Primer Premier等。
步骤五:进行引物特异性分析设计好引物后,我们需要进行引物特异性分析,确保引物只扩增目标序列而不扩增其他非特异性产物。
这可以通过BLAST或其他相似性工具来完成。
特异性分析的目的是排除可能存在的非特异性扩增产物,以确保PCR反应的准确性和特异性。
设计引物的实验报告

一、实验目的1. 掌握引物设计的原理和方法。
2. 学习利用生物信息学工具进行引物设计。
3. 了解引物在PCR实验中的应用。
二、实验原理引物是一段单链DNA或RNA,作为PCR反应的起始模板,与模板DNA链互补结合,从而在PCR反应中引导DNA的复制。
引物设计是PCR实验成功的关键因素之一。
三、实验材料1. 生物信息学工具:Primer Premier 5.0、Primer BLAST、OligoCalc等。
2. 实验样品:待扩增的DNA模板。
3. 其他:PCR试剂、DNA序列、引物合成等。
四、实验步骤1. 选择目标基因序列根据实验目的,选择合适的基因序列。
在本实验中,以某基因的cDNA序列为模板。
2. 利用生物信息学工具进行引物设计(1)打开Primer Premier 5.0软件,输入基因序列。
(2)设置引物设计参数,如:引物长度、Tm值、GC含量、引物间距离等。
(3)进行引物设计,得到多个引物序列。
(4)利用Primer BLAST和OligoCalc等工具对设计出的引物进行筛选,排除同源序列和二级结构。
3. 引物合成将筛选出的引物序列提交给引物合成公司,合成引物。
4. PCR实验(1)配制PCR反应体系,包括:引物、模板DNA、dNTPs、DNA聚合酶等。
(2)设置PCR反应程序,如:预变性、变性、退火、延伸等。
(3)进行PCR反应,观察扩增结果。
五、实验结果与分析1. 引物设计结果根据实验目的,设计出以下引物:上游引物:5'-ATCGTACGCTAGGCTG-3'下游引物:5'-CGTCTGACGACGTCAGT-3'2. PCR扩增结果通过PCR实验,成功扩增出目标基因片段。
六、实验结论1. 通过生物信息学工具进行引物设计,可提高引物设计的准确性和效率。
2. 合适的引物是PCR实验成功的关键,设计引物时需考虑多种因素。
3. 本实验成功设计并合成引物,为后续的PCR实验奠定了基础。
引物设计的原理与程序

引物设计的原理与程序引物设计是一项用于DNA或RNA扩增的关键技术,它在分子生物学和遗传学的研究中起着重要作用。
引物设计的原理是通过合成、设计一对互补序列的引物,在PCR(聚合酶链式反应)等技术中,使其能够高度特异地结合到目标DNA/RNA的特定区域,从而引导扩增反应的发生。
为了实现引物的高精确性和特异性,人们依据一些特定的规则和算法来设计引物,其中最常用的是吉布斯自由能最小化法和龙格-库塔法(Runge-Kutta algorithm)等。
引物设计程序可以粗略地分为以下几个步骤:1.目标序列选择:首先,根据实验需求和研究目的选择一个适当的目标序列,该序列通常来自于已知序列数据库或文献报道。
2.引物长度和Tm值的设定:确定所需的引物长度以及Tm值(熔解温度),Tm值通常在50-60℃之间。
引物长度的选择可以考虑到特定的实验条件,如扩增反应中的嵌合效应和引物的特异性。
3.引物序列设计:根据目标序列,设计一对能够互补结合到目标DNA/RNA特定片段的引物。
引物的设计一般应满足以下几个条件:a.引物长度一般为18-25个核苷酸,长度相似,所取的GC含量相似;b.引物之间的互补碱基序列长度差异不大,理想情况下应相同,差异尽量不超过2个碱基;c.引物的GC含量应在40%-60%之间,根据需要可以适量调整;d.引物不能含有重复序列、空白区域、内部多聚物等;e. 引物的3'端应尽可能避免GCgc和ATat碱基对的设计。
4. 引物的特异性分析:在引物设计过程中,需要进行特异性分析,确保引物与非目标序列无法结合。
利用生物信息学工具,如BLAST(Basic Local Alignment Search Tool)可以进行引物与已知序列数据库的比对,评估引物的特异性。
需要注意的是,引物设计的复杂性和准确性会受到许多因素的影响,如目标序列的长度、目标序列中的GC含量、所选择的引物长度和Tm值等。
因此,在引物设计过程中需要结合多个因素综合考虑,进行合理的设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引物的设计以及初步筛选引物的设计与初步筛选基本上通过一些分子生物学软件和相关网站来完成的,目前运用软件Primer Premier 5 或美国 whitehead 生物医学研究所基因组研究中心在因特网上提供的一款免费在线PCR引物设计程序 Primer 3来设计引物,再用软件Oligo 6进行引物评估,就可以初步获得一组比较满意的引物。
但是对于初学者来说,运用软件和程序来设计引物好象无从着手,其实只要我们掌握了引物设计的基本原则和注意事项,所有问题便迎刃而解。
因为无论是软件还是程序,都是以这些基本原则和注意事项为默认标准来进行引物设计的。
所以,我们在进行引物设计的时候大可不必在软件和程序的参数上花费过多的时间来思考,如果没有特殊要求我们完全可以把一些参数设为默认值。
下面我们主要讨论一下引物设计的原则和注意事项。
①引物的长度一般为15-30 bp,最好在18~24 bp,因为太短易形成错配(F alse priming) 降低特异性,而太长也会降低特异性,并且降低产量[21。
②引物在模板内最好具有单一性,也就是说在模板内部没有错配。
特别是3’端,一定要避免连续4个以上的碱基互补错配。
③引物序列的GC 含量最好在40%一60%,且上下游引物序列GC含量的差异不要太大,3’端最后5个碱基最好不要富含GC,特别是连续3个的G或C。
④DNA双链形成所需的自由能AG,应该以5’端向3’端递减,3’端AG最好不要高于9.0 keaf mol[31。
⑤避免形成稳定的引物二聚体(Dimer and Cross DimeO 和发夹结构(Hairp in),AG高于4.5 keal/mol时易引发上述两种结构的产生。
⑥引物所在的模板区域应该位于外显子区,最好跨越一个内含子区,这样便于对扩增出来的片段进行功能鉴定和表型分析。
⑦如果以DNA为模板设计引物,产物长度在100—600 bp比较理想。
而以m RNA为模板设计引物时,产物长度在150—300 bp比较理想。
⑧5’ 端对PCR影响不太大,可以引进修饰位点和标记物[2]。
只要掌握了以上原则和注意事项,我们可以在软件和程序设计的一组引物中筛选出几对我们需要的目标引物。
Primer Premier 5和Oligo 6可以在/soft/下载,primer3的主页位置在。
2 引物的二次筛选引物的二次筛选是指在初次筛选出的几对引物中进一步筛选出适合我们进行特异、高效PCR扩增的那对引物。
本步应注意以下两点,一是得到的一系列引物分别在Genebank中进行回检。
也就是把每条引物在比对工具(/blas t/) 的blastnr中进行同源性检索,弃掉与基因组其它部分同源性比较高的引物,也就是有可能形成错配的引物。
一般连续10 bp以上的同源有可能形成比较稳定的错配,特别是引物的3’端应避免连续5-6 bp的同源。
二是以mRNA为模板设计引物时要先利用生物信息学的知识大致判断外显子与内含子的剪接位点(例如/GENESCAN.html的GENESCAN工具或者GeneParser软,然后弃掉正好位于剪接位点的引物。
3 引物的最终评估当我们经过初次筛选和二次筛选后得到的那对引物便可以用于合成,合成后我们经过PCR扩增可以对引物进行最终的评估。
一是PCR扩增的特异性和效率。
经过PCR条件优化后能否获得特异性条带,即无目的条带之外的多余条带。
另外,PCR产物的量是否足够,即无不出带和条带很弱的现象。
二是以DNA为模板设计引物时,PCR扩增产物是否与预期PCR产物大小相当。
如果相差太大G 于100 b ,有可能是错配产物。
三是是否形成引物二聚体带。
我们结合引物最终评估和测序的结果可以对引物设计的成败做出鉴定,为我们以后进行引物设计积累宝贵经验。
4 用比较基因组学分离新基因时引物设计的注意事项扩增已知基因时经过初次筛选和二次筛选后得到的引物基本上能够满足要求,但是当运用比较基因组学分离新基因时,设计引物还应注意以下两点:① 模板的选择。
如果以DNA为模板设计引物,首先在Genebank中找到与待分离新基因同源的其它物种的该基因。
利用/blast/的Blast工具和 /elustalw/的Clustalw工具把已检索到的基因进行同源性比较,根据比较基因组定位的原理,选择研究深入、标记稠密的人和哺乳动物(如小鼠)保守功能基因DNA序列设计引物[51,该引物区段要求在各物种间绝对保守,差异不要大于2 bp,特别是3’端必须完全同源。
如果以电脑克隆策略获得的待分离物种新基因的EST一重叠群为模板设计引物,要求ESTs与信息探针之间同源性大于80%,长度大于100 bp,并且避免在EST的并接部位和可能的外显子与内含子剪接位点处设计引物。
②引物序列最好位于相临的外显子区且至少距离外显子与内含子剪接处25 bD以上,这样便于对扩增出来的片段进行功能鉴定和表型分析。
PCR技术的基本原理⑴PCR技术的基本原理:该技术是在模板DNA、引物和四种脱氧核糖核苷酸存在下,依赖于DNA聚合酶的酶促合成反应。
DNA聚合酶以单链DNA为模板,借助一小段双链DNA来启动合成,通过一个或两个人工合成的寡核苷酸引物与单链DNA模板中的一段互补序列结合,形成部分双链。
在适宜的温度和环境下,DNA聚合酶将脱氧单核苷酸加到引物3´-OH末端,并以此为起始点,沿模板5´→3´方向延伸,合成一条新的DNA互补链。
PCR反应的基本成分包括:模板DNA(待扩增DNA)、引物、4种脱氧核苷酸(dNTPs)、DNA聚合酶和适宜的缓冲液。
类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的高温变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的低温退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的适温延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
⑵PCR的反应动力学:PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。
反应最终的DNA 扩增量可用Y=(1+X)n计算。
Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。
平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。
反应初期,靶序列DNA 片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA 片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应” ,这种效应称平台期数、PCR 扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。
大多数情况下,平台期的到来是不可避免的。
⑶PCR扩增产物:可分为长产物片段和短产物片段两部分。
短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。
短产物片段和长产物片段是由于引物所结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3'端开始延伸,其5'端是固定的,3' 端则没有固定的止点,长短不一,这就是“长产物片段”。
进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。
引物在与新链结合时,由于新链模板的5'端序列是固定的,这就等于这次延伸的片段3'端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的“短产物片段”。
不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计,这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。
引物设计的原理和程序(多图)一、设计原理1、择合适的靶序列:设计引物之前,必须分析待测靶序列的性质,选择高度保守,碱基分布均匀的区域进行引物设计。
2,、长度:一般来说,寡核苷酸引物长度为15~30bp.3、Tm值:引物的Tm值一般控制在55~60℃,尽可能保证上下游引物的Tm值一致,一般不超过2℃。
若引物中的G+C含量相对偏低,则可以使引物长度稍长,而保证一定的退火温度。
4、(G+C)含量:有效引物中(G+C)的比例一般为40~60%。
5、碱基的随机分布:引物中四种碱基的分布最好是随机的,不存在聚嘌呤和聚嘧啶,尤其在引物的3 '端不应超过3个连续的G或C.6、引物自身:引物自身不存在连续4个碱基以上的互补序列,如回文结构,发夹结构等,否则会影响到引物与模板之间的复性结合,尤其避免3'末端的互补。
二、引物设计操作流程序列下载↓同源性比较↓引物设计筛选1、序列查找根据所需检测的病原体或者待检特定基因,在/pubmed 网址查询有关序列。
2,同源性比较主要有两种方法1)在/blast/blast.cgi 网址进行在线的两两比较。
2)采用OMIGA, PCGENE等软件进行两两或多序列比较。
①打开OMIGA软件,导入(import)下载存盘的纯文本序列文件:②选择待比较的多条序列,右键点击"align sequences"命令;③等待计算机处理,直至状态显示排列结束,点击"alignment"显示结果;④"alignment"结果,相同碱基以同色标记三、引物设计与筛选Primer Premier 5.0软件为例,进行引物设计和筛选的操作示范1、打开软件,调入序列2、选择路径,选择序列文件名,加入右框3、序列文件显示如图,点击"primer";4、按照引物设计的原理,设定引物的各种参数,点击"确定"进行引物搜寻;5、等待引物搜寻,显示结束后,点击"确定",进入下一页;6、按照搜寻结果显示,逐条分析,在主窗口中检查该引物对的二级结构情况,依次筛选引物设计软件oligo应用图解[ 2008-04-24 22:44:11 | Author: colacat ]在专门的引物设计软件中,“Oligo”是最著名的。
它的使用并不十分复杂,但初学者容易被其复杂的图表吓倒。
Oligo 5.0的初始界面是两个图:Tm图和ΔG 图;Oligo 6.0的界面更复杂,出现三个图,加了个Frq图。