晶闸管的结构及符号.
《电子技术基础》22.§6—1 晶闸管(结构、符号、特性、参数、型号)

广东省机械技工学校文化理论课教案首页7.5.1-10-j-01 科目电子技术基础授课日期10高汽修3班:10中汽修8班:10中制冷1班:课时2课题第六章晶闸管及其应用电路§6—1 晶闸管一、晶闸管的结构符号二、晶闸管的工作特性三、晶闸管的参数四、晶闸管的型号班级10高汽修3班10中汽修8班10中制冷1班教学目的使学生懂得1.晶闸管的结构符号;2. 晶闸管的工作特性;3. 晶闸管的参数4. 晶闸管的型号识读选用教具挂图重点1. 晶闸管的结构符号;2. 晶闸管的工作特性;难点晶闸管的结构、工作特性教学回顾稳压电路说明审阅签名:年月日【组织教】1. 起立,师生互相问好,营造良好的课堂氛围2. 坐下,清点人数,指出和纠正存在问题 【导入新课】1. 教学回顾:稳压电路2. 切入新课:前面我们学习的二极管整流,现在,我们就来学习有关的知识。
【讲授新课】第六章 晶闸管及其应用电路 §6—1 晶闸管晶闸管是硅晶体闸流管的简称,原名为可控硅整流器,也叫可控硅(S ilicon C ontrolled R ectifier )其特点是:体积小、重量轻、无噪声、寿命长、 容量大(正向平均电流达千安、正向耐压达数千伏),使半导体从弱电进入强电领域。
晶闸管主要用于整流、逆变、调压、开关四个方面。
晶闸管可分下列种类:本书介绍单向晶闸管,也就是人们常说的普通晶闸管。
一、单向晶闸管的结构、符号单向晶闸管由四层半导体材料组成的,有三个PN 结,对外有三个电极:第一层P 型半导体引出的电极叫阳极A (anode ),第三层P 型半导体引出的电极叫控制极G (gate pole ),第四层N 型半导体引出的电极叫阴极K (kathode )。
晶闸管有螺旋型和平板型等几种。
单向晶闸管和二极管一样是一种单向导电的器件,关键是多了一个控制极G ,这就使它具有与二极管完全不同的工作特性。
晶闸管的文字符号为“V ”。
普通晶闸管外形、结构和符号见图6—1。
晶闸管课件.

A2 ~
O
α
α
A1
+
G
uo
-
2
t
α
可关断晶闸管及其直流调压管相同。
不同之处在于:普通晶闸管在导通后,控制极不再
起作用,只有在阳极电压为零时,晶闸管才会关断
(截止)。而可关断晶闸管
在uA>0, uG>0时,由截止变为导通
A
,而在uA>0, uG<0时,即加负脉冲
A
形成正反馈过程
T1
R
G EG
T2
EA
+ _
K EA > 0、EG > 0
在极短时间内使两个 三极管均饱和导通,此 过程称触发导通。
晶闸管导电实验
(1)晶闸管截止时,
若uA>0, uG≤0,晶闸管 仍然 截止;
(2)晶闸管截止时,
若uA>0, uG>0,晶闸管由 截止变为导通;
+
EA
-
S
EG
-+
(3)晶闸管导通时,若uA>0, uG≤0,晶闸管仍然 导通;
(2) 有源逆变。有源逆变是指把直流电变换成与 电网同频率的交流电,并将电能返送给交流电源。例 如, 目前采用的高压输电工程,将三相交流电先变换 成高压直流电,再进行远距离的输送,到目的地后, 再利用有源逆变技术把直流电变成与当地电网同频率 的交流电供给用户。
(3) 交流调压。 交流调压是指把不变的交流电压 变换成大小可调的交流电压。例如,用于灯光控制、 温度控制及交流电动机的调压调速。
–
D2 –
3.工作波形
t
uO为一个 2O
π+α
α
不完整的全
波脉动电压,
t
它相当于从 O
晶闸管及其整流电路(精)

第六节晶闸管及其整流电路晶闸管又称可控硅,是目前半导体器件从弱电进入强电领域,制造技术最成熟、应用最广泛的器件之一。
晶闸管分普通晶闸管和特种晶闸管,特种晶闸管有快速晶闸管、双向晶闸管、可关断晶闸管等,人们所说的晶闸管是指普通型晶闸管。
一、晶闸管的外形、结构和符号晶闸管由三个PN结和四层半导体材料组成。
晶闸管的三个电极分别为阳极(A)、阴极(K)、控制极(G)。
三个PN结分别为J1、J2和J3。
晶闸管的符号与二极管相似,只是在其阴极处增加一个控制极,表明其导通的条件除了和二极管一样需要正向偏置的电压外,还需另外增加一个条件,那就是要有控制信号。
二、晶闸管的工作原理晶闸管可以理解为一个受控制的二极管,它也具有单向导电性,不同之处是除了应具有阳极与阴极之间的正向偏置电压外,还必须给控制极加一个足够大的控制电压,在这个控制电压作用下,晶闸管就会像二极管一样导通了,一旦晶闸管导通,控制电压即使取消,也不会影响其正向导通的工作状态。
晶闸管工作原理可用如图所示的实验电路验证。
图(a)所示为晶闸管反向偏置情况,无论是否给控制极加电压,都无法使晶闸管导通,灯泡不发光。
图(b )所示为晶闸管加正向偏置电压,阳极A 接高电位,阴极K 接低电位,但控制极G 没有接任何电压,晶闸管仍然处于关断状态,串联的灯泡不发光。
图(c )所示为晶闸管加正向偏置电压的基础上,给控制极G 加一个幅度和一个宽度都足够大的正电压,此时晶闸管导通,串联的灯泡发光。
图(d )所示为晶闸管导通后,若去掉控制极的电压,晶闸管仍然能保持导通状态,灯泡仍然发光。
综上所述,要使晶闸管由阻断状态变为导通状态,必须在晶闸管上加正向电压的同时,在控制极上加适当的正向触发电压,这样才能使晶闸管导通,一旦晶闸管导通,控制极就失去了控制作用。
要注意的是,晶闸管导通后若阳极电流小于某一个很小的电流I H (称为维持电流)时,晶闸管也会由导通变为截止,一旦晶闸管截止,必须重新触发才能再次导通。
晶闸管的结构以及工作原理

晶闸管的结构以及工作原理晶闸管是一种异型双极结构的电子器件,由三层PNPN结构组成。
它的结构和工作原理可以分为几个方面进行介绍。
1.结构晶闸管由P型和N型半导体材料交叉组成的四层PNPN结构,形成了三个PN结的结构,即P1-N1-P2-N2、两个P型区域称为主极(anode,A)和触发极(gate,G),两个N型区域称为P型区域的发射层(emitter,E)和P型区域的集电层(collector,C)。
晶闸管的主极两端接有外部电源,而触发极一般连接到控制电路。
2.工作原理当晶闸管的控制电极施加一个低于临界电压的阳极电压时,即晶闸管处于关断状态,没有电流通过。
当控制电极施加一个高于临界电压的阳极电压时,即晶闸管处于导通状态,电流可以通过。
晶闸管的导通过程可以分为四个阶段:保持阶段、启动阶段、加强阶段和饱和阶段。
-保持阶段:当触发电压上升时,晶闸管开始导通,但此时并没有电流通过。
主极处于反向偏置,控制电压从触发极上扩展到集电极端,使得内部的PNPN结正向偏置。
-启动阶段:当控制电压达到晶闸管的启动电压时,发射极和集电极之间的电流开始增加。
这个过程是正反馈的,因为电流的增加会引起发射层电压的降低,从而增加集电层电压。
这种正反馈的作用会使晶闸管持续导通而不需要保持电流。
-加强阶段:在启动阶段之后,电流从发射层向集电层继续增加,响应时间非常快,仅为纳秒级别。
晶闸管的涉及电压变小,其间接穿晶闸管的电流开始逐渐加强。
-饱和阶段:在集电极电流和发射极电流足够大的情况下,晶闸管进入饱和状态,其电压降只有几个伏特,并且电流保持在一个稳定的值。
晶闸管的导通和关断是通过控制电极的电压来实现的。
当控制电压去除或降低,晶闸管将自动进入关断状态。
晶闸管的关断过程相对较长,需要通过外部电路才能完全关断。
总结:晶闸管是一种PNPN结构的电子器件,由四个区域(P1-N1-P2-N2)组成。
其工作原理是通过控制电压对其导通和关断进行控制。
晶闸管

峰值电压。
反向重复峰值电压URRM
——在门极断路而结温为额定值 时,允许重复加在器件上的反向 峰值电压。
2)额定电流 通态平均电流 IT(AV)
——在环境温度为40C和规定的冷却状态下,稳定结温 不超过额定结温时所允许流过的最大工频正弦半波电流的 平均值。标称其额定电流的参数。 ——使用时应按有效值相等的原则来选取晶闸管。
1-20
3、型号KP100-3、维持电流 IH=4mA的晶闸管,使用在下图 中是否合理?为什么?(不考虑裕 量)
(1)
(2)
1-21
(3)
1-22
1-13
4)其他参数
(1)维持电流 IH ——使晶闸管维持导通所必需的最小电流。 (2)擎住电流 IL ——晶闸管刚从断态转入通态并移除触发 信号后, 能维持导通所需的最小电流。 对同一晶闸管来说,通常IL约为IH的2~4 倍。 (3)浪涌电流ITSM ——指由于电路异常情况引起的并使结温 超过额定结温的不重复性最大正向过载电 流。 (4)门极触发电流IGT/触发电压UGT
2.2
半控器件—晶闸管· 引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。 开辟了电力电子技术迅速发展和广泛应用的崭新时代。 20世纪80年代以来,开始被全控型器件取代。 能承受的电压和电流容量最高,工作可靠,在大容量 的场合具有重要地位。
雪崩 击穿
-IA
图1-8 晶闸管的伏安特性
IG2>IG1>IG
(2)反向特性
反向特性类似二极管的反 向特性。 反向阻断状态时,只有极 小的反相漏电流流过。 当反向电压达到反向击穿
电力电子技术

电子电力技术考纲序言:提玄勾要,弃小留大,以飨读者第1考点晶闸管1 . 1 内容归纳与总结1 . 1 . 1 晶闸管的结构与工作原理(1 ) 晶闸管可用图1-1 的符号表示, 阳极———A, 阴极———K,门极(控制极) ———G。
图1-1 晶闸管符号其结构为三个PN 结、四层结构、三端的半控型半导体开关管。
(2) 它的工作原理可理解为一个PNP三极管与一个NPN 三极管的连接, 这种连接是以电流正反馈的原理按特殊工艺制造而成的。
一旦晶闸管导通, 其控制极就失去作用。
普通晶闸管有平板型与螺旋型两种1 . 1 .2 关断与导通条件(1 ) 导通的充分必要条件。
1) 阳极与阴极间承受正向电压。
2) 门极施加相对阴极来说为正的脉冲信号。
(2 ) 关断条件为下列之一。
1) 阳极与阴极间承受反向电压。
2) 阳极电流减小到小于维持电流1 . 1 . 3 晶闸管的主要参数(1 ) 晶闸管的通态平均电流I F 。
在规定的条件下, 为晶闸管通以工频、正弦半波电流, 且负载 为纯电阻负载, 导通角不小于170°。
此时这个电流的平均值就是 半波电流的平均值。
若正弦半波电流的峰值为I m , 则I F =1/2π⎰0πI m sin ωt d ωt = I m /π.通过的电流有效值为I =1/2π 0π⎰( I m sin ωt ) 2d ωt =I m /2.波形系数: 通过晶闸管的电流的(一般为非正弦) 有效值与平 均值之比K f , 在此I / I F = 1 . 57 , 即I = 1 . 57 I F = K f I FK f 称波形系数。
还有其他参数: 额定电压、维持电流、擎住电流以及一些动态 参数和门极特性等。
(2 ) 实际应用中晶闸管的选择。
主要按实际承受的电压、电流选择晶闸管。
电压的选择:按晶闸管实际在线路中承受的电压的峰值, 还要乘以一个安全裕量。
电流的选择:按晶闸管中实际通过电流的有效值与所选晶闸管( 通态平均电流为I F ) 允许通过的电流有效值相等的原则, 再乘以安全裕量, 这被称做有效值相等的原则。
晶闸管的结构以及工作原理

一、晶闸管的基本结构晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。
它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。
其符号表示法和器件剖面图如图1所示。
图1 符号表示法和器件剖面图普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。
图2、晶闸管载流子分布二、晶闸管的伏安特性晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。
通常用伏安特性曲线来描述它们之间的关系,如图3所示。
图3 晶闸管的伏安特性曲线当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。
随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。
当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。
晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。
通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。
晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。
当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。
转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。
如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。
晶闸管的结构与工作原理

晶闸管的结构与工作原理晶闸管是一种电子元器件,其工作原理基于半导体材料中正负载流子的反复注入和浓缩。
晶闸管具有低损耗,高可靠性和耐受高电压和电流的特点,常用于电力电子设备和自动化控制系统中。
在本文中,我们将讨论晶闸管的结构和工作原理。
一、晶闸管的结构下面是晶闸管的主要结构:1. P型硅基板:晶片的底部是由P型硅基板组成的,其中注入了氧化物层(SiO2层)。
2. N型漂浮区:晶片的顶部是由N型漂浮区域组成的,其厚度通常约为几微米。
3. P型区:在N型区域下面,有一小块P型电极区,通常称为阳极。
在晶片上另一端同样有一块P型区,通常称为阴极。
4. 金属接触层:阳极和阴极上方均有金属接触层,以便在晶体中注入电流。
5. 控制极:在P型区和N型漂浮区中间的区域上有一个控制极,通常称为门极。
门极是一个金属电极,可以通过它来控制晶闸管的通电和断电状态。
晶闸管的主体是一个单结结构,由两个异种半导体材料组成,具有PN结的特征。
二、晶闸管的工作原理晶闸管的工作原理主要涉及PN结中存储的大量载流子的控制。
下面是晶闸管的工作原理:1. 断电状态:当晶闸管处于正常的断电状态时,P型区和N型区之间的PN结是不导电的。
此时在晶闸管两端施加的电压低于其绝缘强度,没有足够的电子跨越PN结进入N型区域,也没有足够的空穴跨越PN结进入P型区域。
2. 触发状态:通过控制极施加一个短的脉冲电压,可以注入到N型区的少量电子,这些电子在PN结中的重复撞击产生更多的电子,这些电子在N型区域和P型区域传播,直到引起晶闸管的完全导通。
在完全导通状态下,PN结两侧形成了大量的少数载流子,这些载流子可以像导体一样流动并在晶闸管中形成一个低阻通路。
3. 导通状态:在晶闸管的导通状态下,当控制极不再施加脉冲电压时,晶体仍继续处于导通状态,并且只有在PN结两端电流降为零时才能停止导通。
因此,在应用中可以通过控制电流的大小和时间来控制晶闸管的导通状态,从而实现所需的电路控制。